1
|
Peris-Díaz MD, Krężel A, Barran P. Deciphering the safeguarding role of cysteine residues in p53 against H 2O 2-induced oxidation using high-resolution native mass spectrometry. Commun Chem 2025; 8:13. [PMID: 39814824 PMCID: PMC11736120 DOI: 10.1038/s42004-024-01395-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/12/2024] [Indexed: 01/18/2025] Open
Abstract
The transcription factor p53 is exquisitely sensitive and selective to a broad variety of cellular environments. Several studies have reported that oxidative stress weakens the p53-DNA binding affinity for certain promoters depending on the oxidation mechanism. Despite this body of work, the precise mechanisms by which the physiologically relevant DNA-p53 tetramer complex senses cellular stresses caused by H2O2 are still unknown. Here, we employed native mass spectrometry (MS) and ion mobility (IM)-MS coupled to chemical labelling and H2O2-induced oxidation to examine the mechanism of redox regulation of the p53-p21 complex. Our approach has found that two reactive cysteines in p53 protect against H2O2-induced oxidation by forming reversible sulfenates.
Collapse
Affiliation(s)
- Manuel David Peris-Díaz
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, Manchester, UK.
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław, Poland.
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław, Poland
| | - Perdita Barran
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, Manchester, UK.
| |
Collapse
|
2
|
Rider R, Lantz C, Fan L, Russell DH. Structure and Stabilities of Solution and Gas Phase Protein Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:3028-3036. [PMID: 39569632 PMCID: PMC11622221 DOI: 10.1021/jasms.4c00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
Collision-induced unfolding (CIU) has provided new levels of understanding of the stabilities and structure(s) for gas phase protein and protein complex ions formed by electrospray ionization (ESI). Variable-temperature (vT-ESI) data provide complementary information about temperature-induced folding/unfolding (TIU) reactions of solution phase ions. Results obtained by using CIU and TIU provide complementary information about stabilities of gas phase versus solution phase ions. Such comparisons may provide the most direct experimental approach to answer a long-standing question from Fred McLafferty: "For how long, under what conditions, and to what extent, can solution structure be retained without solvent?" Answers to this question require greater understanding of the (i) structure(s), stabilities, and dynamics of proteins/protein complexes in solution prior to ESI; (ii) effects of water removal by droplet fission and "freeze-drying" by evaporation of water from the nanodroplet; and (iii) potential reactions and structural changes that may occur as the ions traverse the heated capillary, the final stage in the transition to solvent-free gas phase ions. Here, we employ vT-ESI coupled with ion mobility-mass spectrometry (IM-MS) as a means to provide more detailed answers to the above-mentioned questions. Apo- and metalated-metallothionein-2A (MT), a cysteine-rich metal binding protein, and various proteoforms of transthyretin (TTR), a homotetrameric (56 kDa) retinol and thyroxine transporter protein complex were studied to examine distinct features of CIU and TIU across two different types of protein complexes. The results in this work shed light on the capabilities of CIU, TIU, and average charge state (Zavg) for probing the rugged energy landscape of native proteins and highlights the effects of water and cofactors (metal ions) on the structure and stabilities of proteins and protein complexes.
Collapse
Affiliation(s)
- Robert
L. Rider
- Department of Chemistry Texas
A&M University College
Station, Texas 77843, United States
| | - Carter Lantz
- Department of Chemistry Texas
A&M University College
Station, Texas 77843, United States
| | - Liqi Fan
- Department of Chemistry Texas
A&M University College
Station, Texas 77843, United States
| | - David H. Russell
- Department of Chemistry Texas
A&M University College
Station, Texas 77843, United States
| |
Collapse
|
3
|
Zhou W, Xiang Y, Yang J, Chen T. Metal ion-complexed DNA probe coupled with CRISPR/Cas12a amplification and AuNPs for sensitive colorimetric assay of metallothionein in fish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124682. [PMID: 38936209 DOI: 10.1016/j.saa.2024.124682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/30/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
The accurate and sensitive detection of metallothionein (MT) is of great significance in the fields of biomedical, toxicological and environmental sciences. In this work, based on the high affinity interaction between MT and the heavy metal ions of Hg2+ and the significant signal amplification capability of Cas12a/crRNA enzyme as well, we report a simple and highly sensitive method for visual detection of MT, a biomarker in fish for heavy metal ion-induced water bio-pollution. The target MT molecules bind Hg2+ in the Hg2+- complexed hairpin DNA probes to unfold the hairpin structure into ssDNAs, which hybridize with the partial dsDNA duplexes via strand displacement to yield specific sequence-containing dsDNAs. Cas12a/crRNA recognizes these specific sequences to activate its enzyme activity to cyclically cleave the ssDNA linkers in the blue colored gold nanoparticle aggregates to transit their color into red to realize visual detection of MT. Owing to the signal amplification by Cas12a/crRNA, as low as 25 nM of MT can be visually detected with naked eye. In addition, our colorimetric detection method has high selectivity for MT against other interference proteins and can detect MT in the livers and kidneys of crucian carps bought from a local supermarket. Moreover, the developed assay overcomes the limitations of conventional MT detection methods in terms of complexity, high cost and low sensitivity and can therefore offer new methods for monitoring water bio-pollutions.
Collapse
Affiliation(s)
- Wenjiao Zhou
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | - Yu Xiang
- Chongqing Yucai Secondary School, Chongqing 400050, PR China
| | - Jirong Yang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Tiantian Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| |
Collapse
|
4
|
Quinn CF, Wilcox DE. Thermodynamic origin of the affinity, selectivity, and domain specificity of metallothionein for essential and toxic metal ions. Metallomics 2024; 16:mfae041. [PMID: 39289027 DOI: 10.1093/mtomcs/mfae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
The small Cys-rich protein metallothionein (MT) binds several metal ions in clusters within two domains. While the affinity of MT for both toxic and essential metals has been well studied, the thermodynamics of this binding has not. We have used isothermal titration calorimetry measurements to quantify the change in enthalpy (ΔH) and change in entropy (ΔS) when metal ions bind to the two ubiquitous isoforms of MT. The seven Zn2+ that bind sequentially at pH 7.4 do so in two populations with different coordination thermodynamics, an initial four that bind randomly with individual tetra-thiolate coordination and a subsequent three that bind with bridging thiolate coordination to assemble the metal clusters. The high affinity of MT for both populations is due to a very favourable binding entropy that far outweighs an unfavourable binding enthalpy. This originates from a net enthalpic penalty for Zn2+ displacement of protons from the Cys thiols and a favourable entropic contribution from the displaced protons. The thermodynamics of other metal ions binding to MT were determined by their displacement of Zn2+ from Zn7MT and subtraction of the Zn2+-binding thermodynamics. Toxic Cd2+, Pb2+, and Ag+, and essential Cu+, also bind to MT with a very favourable binding entropy but a net binding enthalpy that becomes increasingly favourable as the metal ion becomes a softer Lewis acid. These thermodynamics are the origin of the high affinity, selectivity, and domain specificity of MT for these metal ions and the molecular basis for their in vivo binding competition.
Collapse
Affiliation(s)
- Colette F Quinn
- Department of Chemistry, 6128 Burke Laboratory, Dartmouth College, Hanover, NH 03755, USA
- Waters | Wyatt Technology Corporation, 6330 Hollister Avenue, Goleta, CA 93117, USA
| | - Dean E Wilcox
- Department of Chemistry, 6128 Burke Laboratory, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
5
|
Peris-Díaz MD, Orzeł A, Wu S, Mosna K, Barran PE, Krężel A. Combining Native Mass Spectrometry and Proteomics to Differentiate and Map the Metalloform Landscape in Metallothioneins. J Proteome Res 2024; 23:3626-3637. [PMID: 38993068 PMCID: PMC11301679 DOI: 10.1021/acs.jproteome.4c00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Within the intricate landscape of the proteome, approximately 30% of all proteins bind metal ions. This repertoire is even larger when considering all the different forms of a protein, known as proteoforms. Here, we propose the term "metalloforms" to refer to different structural or functional variations of a protein resulting from the binding of various hetero- or homogeneous metal ions. Using human Cu(I)/Zn(II)-metallothionein-3 as a representative model, we developed a chemical proteomics strategy to simultaneously differentiate and map Zn(II) and Cu(I) metal binding sites. In the first labeling step, N-ethylmaleimide reacts with Cysteine (Cys), resulting in the dissociation of all Zn(II) ions while Cu(I) remains bound to the protein. In the second labeling step, iodoacetamide is utilized to label Cu(I)-bound Cys residues. Native mass spectrometry (MS) was used to determine the metal/labeling protein stoichiometries, while bottom-up/top-down MS was used to map the Cys-labeled residues. Next, we used a developed methodology to interrogate an isolated rabbit liver metallothionein fraction containing three metallothionein-2 isoforms and multiple Cd(II)/Zn(II) metalloforms. The approach detailed in this study thus holds the potential to decode the metalloproteoform diversity within other proteins.
Collapse
Affiliation(s)
- Manuel David Peris-Díaz
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław 50-383, Poland
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Alicja Orzeł
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław 50-383, Poland
| | - Sylwia Wu
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław 50-383, Poland
| | - Karolina Mosna
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław 50-383, Poland
| | - Perdita E. Barran
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Artur Krężel
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław 50-383, Poland
| |
Collapse
|
6
|
Korkola NC, Ostertag AL, Toswell E, Stillman MJ. Bi(III) Binding Stoichiometry and Domain-Specificity Differences Between Apo and Zn(II)-bound Human Metallothionein 1a. Chemistry 2024; 30:e202304216. [PMID: 38356034 DOI: 10.1002/chem.202304216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/16/2024]
Abstract
Bismuth is a xenobiotic metal with a high affinity to sulfur that is used in a variety of therapeutic applications. Bi(III) induces the cysteine-rich metallothionein (MT), a protein known to form two-domain cluster structures with certain metals such as Zn(II), Cd(II), or Cu(I). The binding of Bi(III) to MTs has been previously studied, but there are conflicting reports on the stoichiometry and binding pathway, which appear to be highly dependent on pH and initial metal-loading status of the MT. Additionally, domain specificity has not been thoroughly investigated. In this paper, ESI-MS was used to determine the binding constants of [Bi(EDTA)]- binding to apo-MT1a and its individual αMT fragment. The results were compared to previous experiments using βMT1a and βαMT3. Domain specificity was investigated using proteolysis methods and the initial cooperatively formed Bi2MT was found to bind to cysteines that spanned across the traditional metal binding domain regions. Titrations of [Bi(EDTA)]- into Zn7MT were performed and were found to result in a maximum stoichiometry of Bi7MT, contrasting the Bi6MT formed when [Bi(EDTA)]- was added to apo-MT. These results show that the initial structure of the apo-MT determines the stoichiometry of new incoming metals and explains the previously observed differences in stoichiometry.
Collapse
Affiliation(s)
- Natalie C Korkola
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, ON, Canada, N6A 5B7
| | - Anne-Lena Ostertag
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, ON, Canada, N6A 5B7
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Alle 114-116, 14558, Nuthetal, Germany
| | - Emily Toswell
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, ON, Canada, N6A 5B7
| | - Martin J Stillman
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, ON, Canada, N6A 5B7
| |
Collapse
|
7
|
Fang Y, Ding S, Li W, Zhang J, Sun H, Lin X. Dual-Channel Fluorescent/Colorimetric-Based OPD-Pd/Pt NFs Sensor for High-Sensitivity Detection of Silver Ions. Foods 2023; 12:4260. [PMID: 38231754 DOI: 10.3390/foods12234260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 01/19/2024] Open
Abstract
Silver ions (Ag+) exist widely in various areas of human life, and the food contamination caused by them poses a serious threat to human health. Among the numerous methods used for the detection of Ag+, fluorescence and colorimetric analysis have attracted much attention due to their inherent advantages, such as high sensitivity, simple operation, short time, low cost and visualized detection. In this work, Pd/Pt nanoflowers (NFs) specifically responsive to Ag+ were synthesized in a simple way to oxidize o-phenylenediamine (OPD) into 2,3-diaminophenazine (DAP). The interaction of Ag+ with the surface of Pd/Pt NFs inhibits the catalytic activity of Pd/Pt NFs towards the substrate OPD. A novel dual-channel nanosensor was constructed for the detection of Ag+, using the fluorescence intensity and UV-vis absorption intensity of DAP as output signals. This dual-mode analysis combines their respective advantages to significantly improve the sensitivity and accuracy of Ag+ detection. The results showed that the limit of detection was 5.8 nM for the fluorescence channel and 46.9 nM for the colorimetric channel, respectively. Moreover, the developed platform has been successfully used for the detection of Ag+ in real samples with satisfactory recoveries, which is promising for the application in the point-of-care testing of Ag+ in the field of food safety.
Collapse
Affiliation(s)
- Yuan Fang
- State Key Laboratory of Food Nutrition and Safety, Tianjin Key Laboratory of Food Quality and Health, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shusen Ding
- State Key Laboratory of Food Nutrition and Safety, Tianjin Key Laboratory of Food Quality and Health, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Weiran Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin Key Laboratory of Food Quality and Health, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingjing Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin Key Laboratory of Food Quality and Health, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hui Sun
- State Key Laboratory of Food Nutrition and Safety, Tianjin Key Laboratory of Food Quality and Health, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaodong Lin
- Zhuhai UM Science & Technology Research Institute, Zhuhai 519000, China
| |
Collapse
|
8
|
Melenbacher A, Stillman MJ. Cu(I) binds to Zn7-MT2 via two parallel pathways. Metallomics 2023; 15:mfad053. [PMID: 37699789 DOI: 10.1093/mtomcs/mfad053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023]
Abstract
Metallothionein proteins are essential for Cu(I) and Zn(II) homeostasis as well as heavy metal detoxification. The metallation properties of MT2 are of great interest due to their wide patterns of expression and correlation with multiple diseases including cancers, neurological disorders, and respiratory diseases. Use of isotopically pure 63Cu(I) and 68Zn(II) eliminates the complexity of the Cu, Zn-MT2 mass spectral peaks due to significant overlap of naturally abundant isotopes. This allows for the resolution of the precise Cu(I) and Zn(II) stoichiometries when both Cu(I) and Zn(II) are bound to MT2 at physiological pH as expected in vivo. Exact Cu: Zn ratios were determined from mass spectral simulations carried out for every point in the titration. We report that Cu(I) metallation of Zn7-MT2 can only be understood in terms of two pathways occurring in parallel with pathway ① resulting in Cu5Zn5-MT2 and Cu9Zn3-MT2. Pathway ② results in Cu6Zn4-MT2 and Cu10Zn2-MT2, which are the major products of the reaction. From the electrospray ionization (ESI)-mass spectral data we report a series of formation constants (KF) for species starting from Zn7-MT2 up to Cu11Zn2-MT2. Room temperature phosphorescence and circular dichroism (CD) spectra were measured in parallel with the ESI-mass spectrometry data allowing for the assignment of specific species to specific spectral bands. Through analysis of the CD spectral bands, we propose that Cu(I) binds to the β domain first to form a Cu5Zn1 cluster or Cu6 cluster with emission at 670 and 750 nm, respectively, leaving the Zn4 cluster in the α domain.
Collapse
Affiliation(s)
- Adyn Melenbacher
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| | - Martin J Stillman
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
9
|
Peris-Díaz MD, Wu S, Mosna K, Liggett E, Barkhanskiy A, Orzeł A, Barran P, Krężel A. Structural Characterization of Cu(I)/Zn(II)-metallothionein-3 by Ion Mobility Mass Spectrometry and Top-Down Mass Spectrometry. Anal Chem 2023; 95:10966-10974. [PMID: 37440218 PMCID: PMC10372872 DOI: 10.1021/acs.analchem.3c00989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/29/2023] [Indexed: 07/14/2023]
Abstract
Mammalian zinc metallothionein-3 (Zn7MT3) plays an important role in protecting against copper toxicity by scavenging free Cu(II) ions or removing Cu(II) bound to β-amyloid and α-synuclein. While previous studies reported that Zn7MT3 reacts with Cu(II) ions to form Cu(I)4Zn(II)4MT3ox containing two disulfides (ox), the precise localization of the metal ions and disulfides remained unclear. Here, we undertook comprehensive structural characterization of the metal-protein complexes formed by the reaction between Zn7MT3 and Cu(II) ions using native ion mobility mass spectrometry (IM-MS). The complex formation mechanism was found to involve the disassembly of Zn3S9 and Zn4S11 clusters from Zn7MT3 and reassembly into Cu(I)xZn(II)yMT3ox complexes rather than simply Zn(II)-to-Cu(I) exchange. At neutral pH, the β-domain was shown to be capable of binding up to six Cu(I) ions to form Cu(I)6Zn(II)4MT3ox, although the most predominant species was the Cu(I)4Zn(II)4MT3ox complex. Under acidic conditions, four Zn(II) ions dissociate, but the Cu(I)4-thiolate cluster remains stable, highlighting the MT3 role as a Cu(II) scavenger even at lower than the cytosolic pH. IM-derived collision cross sections (CCS) reveal that Cu(I)-to-Zn(II) swap in Zn7MT3 with concomitant disulfide formation induces structural compaction and a decrease in conformational heterogeneity. Collision-induced unfolding (CIU) experiments estimated that the native-like folded Cu(I)4Zn(II)4MT3ox conformation is more stable than Zn7MT3. Native top-down MS demonstrated that the Cu(I) ions are exclusively bound to the β-domain in the Cu(I)4Zn(II)4MT3ox complex as well as the two disulfides, serving as a steric constraint for the Cu(I)4-thiolate cluster. In conclusion, this study enhances our comprehension of the structure, stability, and dynamics of Cu(I)xZn(II)yMT3ox complexes.
Collapse
Affiliation(s)
- Manuel David Peris-Díaz
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United
Kingdom
| | - Sylwia Wu
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Karolina Mosna
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Ellen Liggett
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United
Kingdom
| | - Alexey Barkhanskiy
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United
Kingdom
| | - Alicja Orzeł
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Perdita Barran
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United
Kingdom
| | - Artur Krężel
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| |
Collapse
|
10
|
Singh AK, Pomorski A, Wu S, Peris-Díaz MD, Czepczyńska-Krężel H, Krężel A. The connection of α- and β-domains in mammalian metallothionein-2 differentiates Zn(II) binding affinities, affects folding, and determines zinc buffering properties. Metallomics 2023; 15:mfad029. [PMID: 37147085 PMCID: PMC10243857 DOI: 10.1093/mtomcs/mfad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/03/2023] [Indexed: 05/07/2023]
Abstract
Mammalian metallothioneins (MTs) are small Cys-rich proteins involved in Zn(II) and Cu(I) homeostasis. They bind seven Zn(II) ions in two distinct β- and α-domains, forming Zn3Cys9 and Zn4Cys11 clusters, respectively. After six decades of research, their role in cellular buffering of Zn(II) ions has begun to be understood recently. This is because of different affinities of bound ions and the proteins' coexistence in variously Zn(II)-loaded Zn4-7MT species in the cell. To date, it has remained unclear how these mechanisms of action occur and how the affinities are differentiated despite the Zn(S-Cys)4 coordination environment being the same. Here, we dissect the molecular basis of these phenomena by using several MT2 mutants, hybrid protein, and isolated domains. Through a combination of spectroscopic and stability studies, thiol(ate) reactivity, and steered molecular dynamics, we demonstrate that both protein folding and thermodynamics of Zn(II) ion (un)binding significantly differ between isolated domains and the whole protein. Close proximity reduces the degrees of freedom of separated domains, making them less dynamic. It is caused by the formation of intra- and interdomain electrostatic interactions. The energetic consequence of domains connection has a critical impact on the role of MTs in the cellular environment, where they function not only as a zinc sponge but also as a zinc buffering system keeping free Zn(II) in the right concentrations. Any change of that subtle system affects the folding mechanism, zinc site stabilities, and cellular zinc buffer components.
Collapse
Affiliation(s)
- Avinash Kumar Singh
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Adam Pomorski
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Sylwia Wu
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Manuel D Peris-Díaz
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Hanna Czepczyńska-Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| |
Collapse
|
11
|
Wang XL, Schnoor M, Yin LM. Metallothionein-2: An emerging target in inflammatory diseases and cancers. Pharmacol Ther 2023; 244:108374. [PMID: 36889441 DOI: 10.1016/j.pharmthera.2023.108374] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
Metallothionein-2 (MT-2) was originally discovered as a mediator of zinc homeostasis and cadmium detoxification. However, MT-2 has recently received increased attention because altered expression of MT-2 is closely related to various diseases such as asthma and cancers. Several pharmacological strategies have been developed to inhibit or modify MT-2, revealing its potential as drug target in diseases. Therefore, a better understanding of the mechanisms of MT-2 action is warranted to improve drug development for potential clinical applications. In this review, we highlight recent advances in determining the protein structure, regulation, binding partners, and new functions of MT-2 in inflammatory diseases and cancers.
Collapse
Affiliation(s)
- Xue-Ling Wang
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Michael Schnoor
- Department of Molecular Biomedicine, Center for Investigation and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Avenida IPN 2508, 07360 Mexico City, Mexico
| | - Lei-Miao Yin
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China.
| |
Collapse
|
12
|
Fan L, Russell DH. An ion mobility-mass spectrometry study of copper-metallothionein-2A: binding sites and stabilities of Cu-MT and mixed metal Cu-Ag and Cu-Cd complexes. Analyst 2023; 148:546-555. [PMID: 36545796 PMCID: PMC9904198 DOI: 10.1039/d2an01556k] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The presence of Cu, a highly redox active metal, is known to damage DNA as well as other cellular components, but the adverse effects of cellular Cu can be mitigated by metallothioneins (MT), small cysteine rich proteins that are known to bind to a broad range of metal ions. While metal ion binding has been shown to involve the cysteine thiol groups, the specific ion binding sites are controversial as are the overall structure and stability of the Cu-MT complexes. Here, we report results obtained using nano-electrospray ionization mass spectrometry and ion mobility-mass spectrometry for several Cu-MT complexes and compare our results with those previously reported for Ag-MT complexes. The data include determination of the stoichiometries of the complex (Cui-MT, i = 1-19), and Cu+ ion binding sites for complexes where i = 4, 6, and 10 using bottom-up and top-down proteomics. The results show that Cu+ ions first bind to the β-domain to form Cu4MT then Cu6MT, followed by addition of four Cu+ ions to the α-domain to form a Cu10-MT complex. Stabilities of the Cui-MT (i = 4, 6 and 10) obtained using collision-induced unfolding (CIU) are reported and compared with previously reported CIU data for Ag-MT complexes. We also compare CIU data for mixed metal complexes (CuiAgj-MT, where i + j = 4 and 6 and CuiCdj, where i + j = 4 and 7). Lastly, higher order Cui-MT complexes, where i = 11-19, were also detected at higher concentrations of Cu+ ions, and the metalated product distributions observed are compared to previously reported results for Cu-MT-1A (Scheller et al., Metallomics, 2017, 9, 447-462).
Collapse
Affiliation(s)
- Liqi Fan
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
13
|
Gadkari VV, Juliano BR, Mallis CS, May JC, Kurulugama RT, Fjeldsted JC, McLean JA, Russell DH, Ruotolo BT. Performance evaluation of in-source ion activation hardware for collision-induced unfolding of proteins and protein complexes on a drift tube ion mobility-mass spectrometer. Analyst 2023; 148:391-401. [PMID: 36537590 PMCID: PMC10103148 DOI: 10.1039/d2an01452a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Native ion mobility-mass spectrometry (IM-MS) has emerged as an information-rich technique for gas phase protein structure characterization; however, IM resolution is currently insufficient for the detection of subtle structural differences in large biomolecules. This challenge has spurred the development of collision-induced unfolding (CIU) which utilizes incremental gas phase activation to unfold a protein in order to expand the number of measurable descriptors available for native protein ions. Although CIU is now routinely used in native mass spectrometry studies, the interlaboratory reproducibility of CIU has not been established. Here we evaluate the reproducibility of the CIU data produced across three laboratories (University of Michigan, Texas A&M University, and Vanderbilt University). CIU data were collected for a variety of protein ions ranging from 8.6-66 kDa. Within the same laboratory, the CIU fingerprints were found to be repeatable with root mean square deviation (RMSD) values of less than 5%. Collision cross section (CCS) values of the CIU intermediates were consistent across the laboratories, with most features exhibiting an interlaboratory reproducibility of better than 1%. In contrast, the activation potentials required to induce protein CIU transitions varied between the three laboratories. To address these differences, three source assemblies were constructed with an updated ion activation hardware design utilizing higher mechanical tolerance specifications. The production-grade assemblies were found to produce highly consistent CIU data for intact antibodies, exhibiting high precision ion CCS and CIU transition values, thus opening the door to establishing databases of CIU fingerprints to support future biomolecular classification efforts.
Collapse
Affiliation(s)
- Varun V Gadkari
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | - Brock R Juliano
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | - Christopher S Mallis
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Jody C May
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | - John A McLean
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
14
|
Drozd M, Duszczyk A, Ivanova P, Pietrzak M. Interactions of proteins with metal-based nanoparticles from a point of view of analytical chemistry - Challenges and opportunities. Adv Colloid Interface Sci 2022; 304:102656. [PMID: 35367856 DOI: 10.1016/j.cis.2022.102656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/01/2022]
Abstract
Interactions of proteins with nanomaterials draw attention of many research groups interested in fundamental phenomena. However, alongside with valuable information regarding physicochemical aspects of such processes and their mechanisms, they more and more often prove to be useful from a point of view of bioanalytics. Deliberate use of processes based on adsorption of proteins on nanoparticles (or vice versa) allows for a development of new analytical methods and improvement of the existing ones. It also leads to obtaining of nanoparticles of desired properties and functionalities, which can be used as elements of analytical tools for various applications. Due to interactions with nanoparticles, proteins can also gain new functionalities or lose their interfering potential, which from perspective of bioanalytics seems to be very inviting and attractive. In the framework of this article we will discuss the bioanalytical potential of interactions of proteins with a chosen group of nanoparticles, and implementation of so driven processes for biosensing. Moreover, we will show both positive and negative (opportunities and challenges) aspects resulting from the presence of proteins in media/samples containing metal-based nanoparticles or their precursors.
Collapse
|
15
|
Bellamy-Carter J, Sound JK, Leney AC. Probing heavy metal binding to phycobiliproteins. FEBS J 2022; 289:4646-4656. [PMID: 35156751 PMCID: PMC9542875 DOI: 10.1111/febs.16396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/31/2022] [Accepted: 02/11/2022] [Indexed: 01/26/2023]
Abstract
Blue-green algae, also known as cyanobacteria, contain some of the most efficient light-harvesting complexes known. These large, colourful complexes consist of phycobiliproteins which are extremely valuable in the cosmetics, food, nutraceutical and pharmaceutical industries. Additionally, the colourful and fluorescent properties of phycobiliproteins can be modulated by metal ions, making them highly attractive as heavy metal sensors and heavy metal scavengers. Although the overall quenching ability metal ions have on phycobiliproteins is known, the mechanism of heavy metal binding to phycobiliproteins is not fully understood, limiting their widespread quantitative applications. Here, we show using high-resolution native mass spectrometry that phycobiliprotein complexes bind metal ions in different manners. Through monitoring the binding equilibria and metal-binding stoichiometry, we show in particular copper and silver to have drastic, yet different effects on phycobiliprotein structure, both copper and silver modulate the overall complex properties. Together, the data reveals the mechanisms by which metal ions can modulate phycobiliprotein properties which can be used as a basis for the future design of metal-related phycobiliprotein applications.
Collapse
|
16
|
Lin Y, Gross ML. Mass Spectrometry-Based Structural Proteomics for Metal Ion/Protein Binding Studies. Biomolecules 2022; 12:135. [PMID: 35053283 PMCID: PMC8773722 DOI: 10.3390/biom12010135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 01/01/2023] Open
Abstract
Metal ions are critical for the biological and physiological functions of many proteins. Mass spectrometry (MS)-based structural proteomics is an ever-growing field that has been adopted to study protein and metal ion interactions. Native MS offers information on metal binding and its stoichiometry. Footprinting approaches coupled with MS, including hydrogen/deuterium exchange (HDX), "fast photochemical oxidation of proteins" (FPOP) and targeted amino-acid labeling, identify binding sites and regions undergoing conformational changes. MS-based titration methods, including "protein-ligand interactions by mass spectrometry, titration and HD exchange" (PLIMSTEX) and "ligand titration, fast photochemical oxidation of proteins and mass spectrometry" (LITPOMS), afford binding stoichiometry, binding affinity, and binding order. These MS-based structural proteomics approaches, their applications to answer questions regarding metal ion protein interactions, their limitations, and recent and potential improvements are discussed here. This review serves as a demonstration of the capabilities of these tools and as an introduction to wider applications to solve other questions.
Collapse
Affiliation(s)
- Yanchun Lin
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
17
|
Abstract
The functions, purposes, and roles of metallothioneins have been the subject of speculations since the discovery of the protein over 60 years ago. This article guides through the history of investigations and resolves multiple contentions by providing new interpretations of the structure-stability-function relationship. It challenges the dogma that the biologically relevant structure of the mammalian proteins is only the one determined by X-ray diffraction and NMR spectroscopy. The terms metallothionein and thionein are ambiguous and insufficient to understand biological function. The proteins need to be seen in their biological context, which limits and defines the chemistry possible. They exist in multiple forms with different degrees of metalation and types of metal ions. The homoleptic thiolate coordination of mammalian metallothioneins is important for their molecular mechanism. It endows the proteins with redox activity and a specific pH dependence of their metal affinities. The proteins, therefore, also exist in different redox states of the sulfur donor ligands. Their coordination dynamics allows a vast conformational landscape for interactions with other proteins and ligands. Many fundamental signal transduction pathways regulate the expression of the dozen of human metallothionein genes. Recent advances in understanding the control of cellular zinc and copper homeostasis are the foundation for suggesting that mammalian metallothioneins provide a highly dynamic, regulated, and uniquely biological metal buffer to control the availability, fluctuations, and signaling transients of the most competitive Zn(II) and Cu(I) ions in cellular space and time.
Collapse
Affiliation(s)
- Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław 50-383, Poland
| | - Wolfgang Maret
- Departments of Biochemistry and Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9NH, U.K
| |
Collapse
|
18
|
Peris-Díaz M, Guran R, Domene C, de los Rios V, Zitka O, Adam V, Krężel A. An Integrated Mass Spectrometry and Molecular Dynamics Simulations Approach Reveals the Spatial Organization Impact of Metal-Binding Sites on the Stability of Metal-Depleted Metallothionein-2 Species. J Am Chem Soc 2021; 143:16486-16501. [PMID: 34477370 PMCID: PMC8517974 DOI: 10.1021/jacs.1c05495] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Indexed: 12/16/2022]
Abstract
Mammalian metallothioneins (MTs) are a group of cysteine-rich proteins that bind metal ions in two α- and β-domains and represent a major cellular Zn(II)/Cu(I) buffering system in the cell. At cellular free Zn(II) concentrations (10-11-10-9 M), MTs do not exist in fully loaded forms with seven Zn(II)-bound ions (Zn7MTs). Instead, MTs exist as partially metal-depleted species (Zn4-6MT) because their Zn(II) binding affinities are on the nano- to picomolar range comparable to the concentrations of cellular Zn(II). The mode of action of MTs remains poorly understood, and thus, the aim of this study is to characterize the mechanism of Zn(II) (un)binding to MTs, the thermodynamic properties of the Zn1-6MT2 species, and their mechanostability properties. To this end, native mass spectrometry (MS) and label-free quantitative bottom-up and top-down MS in combination with steered molecular dynamics simulations, well-tempered metadynamics (WT-MetaD), and parallel-bias WT-MetaD (amounting to 3.5 μs) were integrated to unravel the chemical coordination of Zn(II) in all Zn1-6MT2 species and to explain the differences in binding affinities of Zn(II) ions to MTs. Differences are found to be the result of the degree of water participation in MT (un)folding and the hyper-reactive character of Cys21 and Cys29 residues. The thermodynamics properties of Zn(II) (un)binding to MT2 are found to differ from those of Cd(II), justifying their distinctive roles. The potential of this integrated strategy in the investigation of numerous unexplored metalloproteins is attested by the results highlighted in the present study.
Collapse
Affiliation(s)
- Manuel
David Peris-Díaz
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Roman Guran
- Department
of Chemistry and Biochemistry, Mendel University
in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkynova
123, 612 00 Brno, Czech Republic
| | - Carmen Domene
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
- Department
of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Vivian de los Rios
- Functional
Proteomics, Department of Cellular and Molecular Medicine and Proteomic
Facility, Centro de Investigaciones Biológicas
(CIB-CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ondrej Zitka
- Department
of Chemistry and Biochemistry, Mendel University
in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkynova
123, 612 00 Brno, Czech Republic
| | - Vojtech Adam
- Department
of Chemistry and Biochemistry, Mendel University
in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkynova
123, 612 00 Brno, Czech Republic
| | - Artur Krężel
- Department
of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| |
Collapse
|
19
|
Gunn AP, McLean CA, Crouch PJ, Roberts BR. Quantification of metallothionein-III in brain tissues using liquid chromatography tandem mass spectrometry. Anal Biochem 2021; 630:114326. [PMID: 34358515 DOI: 10.1016/j.ab.2021.114326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/19/2022]
Abstract
Metallothioneins (MTs) are crucial for metal ion homeostasis in mammalian cells. Specialized mass spectrometry methods have been developed to detect MTs in tissue extracts, though facile methods with scalable throughput are lacking. To improve analytical throughput and repeatability, we developed a standardised liquid chromatography tandem mass spectrometry (LC-MS/MS) method for robust determination of metallothionein-3 (MT3) that is amenable to microplate processing. This method uses standard protein digestion conditions with commercially available reagents and commonly practiced reversed-phase chromatography, detecting MT3 at low ng/mL levels in human brain tissue extracts. We found that trypsin digestion largely underestimated MT3 levels, whereas endopeptidase Lys-C yielded vastly higher signals with low replicate variance. The choice of target peptide was critical for accurate MT3 detection - a peptide in the α-domain yielded the most robust signals. We demonstrate the utility of this method by comparing the expression of MT3 in post-mortem brain tissues of a cohort of Alzheimer's disease (AD) individuals and age-matched controls.
Collapse
Affiliation(s)
- Adam P Gunn
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Catriona A McLean
- Department of Anatomical Pathology, Alfred Hospital, Prahran, Victoria, 3004, Australia
| | - Peter J Crouch
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Blaine R Roberts
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
20
|
Coulibaly K, Thauvin M, Melenbacher A, Testard C, Trigoni E, Vincent A, Stillman MJ, Vriz S, Policar C, Delsuc N. A di-Copper Peptidyl Complex Mimics the Activity of Catalase, a Key Antioxidant Metalloenzyme. Inorg Chem 2021; 60:9309-9319. [PMID: 34109781 DOI: 10.1021/acs.inorgchem.0c03718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Catalases (CAT) are antioxidant metalloenzymes necessary for life in oxygen-metabolizing cells to regulate H2O2 concentration by accelerating its dismutation. Many physiopathological situations are associated with oxidative stress resulting from H2O2 overproduction, during which antioxidant defenses are overwhelmed. We have used a combinatorial approach associated with an activity-based screening to discover a first peptidyl di-copper complex mimicking CAT. The complex was studied in detail and characterized for its CAT activity both in solutions and in cells using different analytical methods. The complex exhibited CAT activity in solutions and, more interestingly, on HyPer HeLa cells that possess a genetically encoded ratiometric fluorescent sensors of H2O2. These results highlight the efficiency of a combinatorial approach for the discovery of peptidyl complexes that exhibit catalytic activity.
Collapse
Affiliation(s)
- Koudedja Coulibaly
- Laboratoire des biomolécules, LBM, Département de chimie, Ecole normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Marion Thauvin
- Collège de France, Centre Interdisciplinaire de Recherche en Biologie (CIRB), CNRS UMR7241/INSERM U1050, 75231 Paris, Cedex 05, France.,Sorbonne Université, 4 place Jussieu, 75005 Paris, France
| | - Adyn Melenbacher
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Clara Testard
- Laboratoire des biomolécules, LBM, Département de chimie, Ecole normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Evangelia Trigoni
- Laboratoire des biomolécules, LBM, Département de chimie, Ecole normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Amandine Vincent
- Laboratoire des biomolécules, LBM, Département de chimie, Ecole normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Martin J Stillman
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Sophie Vriz
- Collège de France, Centre Interdisciplinaire de Recherche en Biologie (CIRB), CNRS UMR7241/INSERM U1050, 75231 Paris, Cedex 05, France.,Faculty of Science, Université de Paris, 75006 Paris, France
| | - Clotilde Policar
- Laboratoire des biomolécules, LBM, Département de chimie, Ecole normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Nicolas Delsuc
- Laboratoire des biomolécules, LBM, Département de chimie, Ecole normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
21
|
McCabe JW, Hebert MJ, Shirzadeh M, Mallis CS, Denton JK, Walker TE, Russell DH. THE IMS PARADOX: A PERSPECTIVE ON STRUCTURAL ION MOBILITY-MASS SPECTROMETRY. MASS SPECTROMETRY REVIEWS 2021; 40:280-305. [PMID: 32608033 PMCID: PMC7989064 DOI: 10.1002/mas.21642] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/03/2020] [Indexed: 05/06/2023]
Abstract
Studies of large proteins, protein complexes, and membrane protein complexes pose new challenges, most notably the need for increased ion mobility (IM) and mass spectrometry (MS) resolution. This review covers evolutionary developments in IM-MS in the authors' and key collaborators' laboratories with specific focus on developments that enhance the utility of IM-MS for structural analysis. IM-MS measurements are performed on gas phase ions, thus "structural IM-MS" appears paradoxical-do gas phase ions retain their solution phase structure? There is growing evidence to support the notion that solution phase structure(s) can be retained by the gas phase ions. It should not go unnoticed that we use "structures" in this statement because an important feature of IM-MS is the ability to deal with conformationally heterogeneous systems, thus providing a direct measure of conformational entropy. The extension of this work to large proteins and protein complexes has motivated our development of Fourier-transform IM-MS instruments, a strategy first described by Hill and coworkers in 1985 (Anal Chem, 1985, 57, pp. 402-406) that has proved to be a game-changer in our quest to merge drift tube (DT) and ion mobility and the high mass resolution orbitrap MS instruments. DT-IMS is the only method that allows first-principles determinations of rotationally averaged collision cross sections (CSS), which is essential for studies of biomolecules where the conformational diversities of the molecule precludes the use of CCS calibration approaches. The Fourier transform-IM-orbitrap instrument described here also incorporates the full suite of native MS/IM-MS capabilities that are currently employed in the most advanced native MS/IM-MS instruments. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Jacob W McCabe
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| | - Michael J Hebert
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| | - Mehdi Shirzadeh
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| | | | - Joanna K Denton
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| | - Thomas E Walker
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| |
Collapse
|
22
|
Korkola NC, Hudson E, Stillman MJ. Structurally restricted Bi(III) metallation of apo-βMT1a: metal-induced tangling. Metallomics 2021; 13:6253221. [PMID: 33899918 DOI: 10.1093/mtomcs/mfab023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 11/13/2022]
Abstract
Non-toxic bismuth salts are used in anti-ulcer medications and to protect against nephrotoxicity from anticancer drugs. Bismuth salts also induce metallothionein (MT), a metal-binding protein that lacks a formal secondary structure. We report the impact on the metallation properties of Bi(III) to the 9-cysteine β fragment of MT as a function of cysteine accessibility using electrospray ionization mass spectrometry. At pH 7.4, Bi2βMT formed cooperatively. Cysteine modification shows that each Bi(III) was terminally bound to three cysteinyl thiolates. Non-cooperative Bi(III) binding was observed at pH 2.3, where cysteine accessibility is increased. However, competition from H4EDTA inhibited Bi(III) binding. When GdmCl, a well-known denaturing agent, was used to increase cysteine accessibility of the apoβMT at pH 7.4, a greater fraction of Bi3βMT formed using all nine cysteines. The change in binding profile and equilibrium of Bi2βMT was determined as a function of acidification, which changed as a result of competition with H4EDTA. There was no Bi(III) transfer between Bi2βMT, Cd3βMT, and Zn3βMT. This lack of metal exchange and the resistance towards binding the third Bi(III) suggest a rigidity in the Bi2βMT binding sites that inhibits Bi(III) mobility. These experiments emphasize the conformational control of metallation that results in substantially different metallated products: at pH 7.4 (many cysteines buried) Bi2βMT, whereas at pH 7.4 (all cysteines accessible) enhanced formation of Bi3βMT. These data suggest that the addition of the first two Bi(III) crosslinks the protein, blocking access to the remaining three cysteines for the third Bi(III), as a result of tangle formation.
Collapse
Affiliation(s)
- Natalie C Korkola
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 3K7, Canada
| | - Elyse Hudson
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 3K7, Canada
| | - Martin J Stillman
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 3K7, Canada
| |
Collapse
|
23
|
Wątły J, Łuczkowski M, Padjasek M, Krężel A. Phytochelatins as a Dynamic System for Cd(II) Buffering from the Micro- to Femtomolar Range. Inorg Chem 2021; 60:4657-4675. [PMID: 33736430 PMCID: PMC8041291 DOI: 10.1021/acs.inorgchem.0c03639] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Indexed: 01/30/2023]
Abstract
Phytochelatins (PCs) are short Cys-rich peptides with repeating γ-Glu-Cys motifs found in plants, algae, certain fungi, and worms. Their biosynthesis has been found to be induced by heavy metals-both biogenic and toxic. Among all metal inducers, Cd(II) has been the most explored from a biological and chemical point of view. Although Cd(II)-induced PC biosynthesis has been widely examined, still little is known about the structure of Cd(II) complexes and their thermodynamic stability. Here, we systematically investigated glutathione (GSH) and PC2-PC6 systems, with regard to their complex stoichiometries and spectroscopic and thermodynamic properties. We paid special attention to the determination of stability constants using several complementary techniques. All peptides form CdL complexes, but CdL2 was found for GSH, PC2, and partially for PC3. Moreover, binuclear species CdxLy were identified for the series PC3-PC6 in an excess of Cd(II). Potentiometric and competition spectroscopic studies showed that the affinity of Cd(II) complexes increases from GSH to PC4 almost linearly from micromolar (log K7.4GSH = 5.93) to the femtomolar range (log K7.4PC4 = 13.39) and additional chain elongation does not increase the stability significantly. Data show that PCs form an efficient system which buffers free Cd(II) ions in the pico- to femtomolar range under cellular conditions, avoiding significant interference with Zn(II) complexes. Our study confirms that the favorable entropy change is the factor governing the elevation of phytochelatins' stability and illuminates the importance of the chelate effect in shifting the free Gibbs energy.
Collapse
Affiliation(s)
| | | | - Michał Padjasek
- Department of Chemical Biology, Faculty
of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Artur Krężel
- Department of Chemical Biology, Faculty
of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| |
Collapse
|