1
|
Suarez C, Cheang SE, Larke JA, Jiang J, Weng CYC, Stacy A, Couture G, Chen Y, Bacalzo NP, Smilowitz JT, German JB, Mills DA, Lemay DG, Lebrilla CB. Development of a comprehensive food glycomic database and its application: Associations between dietary carbohydrates and insulin resistance. Food Chem 2025; 473:142977. [PMID: 39864179 DOI: 10.1016/j.foodchem.2025.142977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 01/28/2025]
Abstract
Carbohydrates are an integral part of a healthy diet. The molecular compositions of carbohydrates encompass a very broad range of unique structures with many being ill-defined. This vast structural complexity is distilled into vague categories such as total carbohydrates, sugars, starches, and soluble/insoluble fibers. Structural elucidation of the food glycome is until recently extremely slow and immensely challenging. Dietary carbohydrates, including monosaccharides, oligosaccharides, glycosidic linkages, and polysaccharides were determined for the most consumed foods in the US consisting of 250 common foods using a multiglycomic platform. The food glycome was then correlated with clinical data from the National Health and Nutrition Examination Survey (NHANES) consisting of dietary recalls from 13,550 adults to determine associations between dietary carbohydrates, their structural features and insulin resistance. Several features were more powerful predictors compared to traditional measures indicating the need for molecular fine-scale food carbohydrate data in guiding precision nutrition initiatives and clinical studies.
Collapse
Affiliation(s)
- Christopher Suarez
- Department of Chemistry, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA
| | - Shawn Ehlers Cheang
- Department of Chemistry, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA
| | - Jules A Larke
- USDA Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA
| | - Jiani Jiang
- Department of Chemistry, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA
| | - Cheng-Yu Charlie Weng
- Department of Chemistry, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA
| | - Aaron Stacy
- Department of Chemistry, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA
| | - Garret Couture
- Department of Chemistry, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA
| | - Ye Chen
- Department of Chemistry, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA
| | - Nikita P Bacalzo
- Department of Chemistry, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA
| | | | - J Bruce German
- Foods for Health Institute, University of California Davis, Davis, CA, USA; Department of Food Science and Technology, University of California Davis, Davis, CA, USA
| | - David A Mills
- Foods for Health Institute, University of California Davis, Davis, CA, USA; Department of Food Science and Technology, University of California Davis, Davis, CA, USA; Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
| | - Danielle G Lemay
- USDA Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA; Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, CA, USA.
| |
Collapse
|
2
|
Luo XY, Yu M, Li HJ, Kong XY, Zou ZM, Ye XC. Structural characteristics and potential antidepressant mechanism of a water-insoluble β-1,3-glucan from an edible fungus Wolfiporia cocos. Carbohydr Polym 2025; 348:122779. [PMID: 39562060 DOI: 10.1016/j.carbpol.2024.122779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/30/2024] [Accepted: 09/18/2024] [Indexed: 11/21/2024]
Abstract
A water-insoluble β-1,3-glucan (Wβ) with a molecular weight of 8.12 × 104 Da was extracted from an edible fungus Wolfiporia cocos. Its backbone was composed of 1,3-β-linked Glcp branched at the C-2, C-4, and C-6 positions, connecting more 1,3-β-linked Glcp with a triple helical structure. Wβ effectively ameliorated depressive symptoms, abnormality of neurotransmitters and inflammatory factors in chronic unpredictable mild stress (CUMS)-induced rats. Wβ also altered the composition of gut microbiota, especially Romboutsia, norank_f_Muribaculaceae and Ruminococcus. Integration of untargeted and targeted metabolomics and Western blotting analysis suggested that the short-chain fatty acids (SCFAs) and tryptophan metabolites were the most important metabolites involved in Wβ mediation. Wβ significantly modulated the levels of 7 SCFAs and 7 tryptophan metabolites, as well as the protein expression of two related enzymes (indoleamine-2,3-dioxygenase: IDO; kynurenine-3-monooxygenase: KMO). Our results suggest that Wβ exerts its antidepressant effect by influencing neurotransmitters and inflammatory factors through interactions between the gut microbiota, SCFA and tryptophan metabolites. The findings offer new insights into water-insoluble polysaccharides, especially β-glucan in structure analysis and utilization, and provide evidence that Wβ, a novel glucan from the often-discarded water-insoluble part of Wolfiporia cocos, has potential application in antidepressant health products.
Collapse
Affiliation(s)
- Xin-Yao Luo
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Meng Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hui-Jun Li
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Xin-Yu Kong
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Zhong-Mei Zou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Xiao-Chuan Ye
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan 430065, China.
| |
Collapse
|
3
|
Byeon CH, Hansen KH, DePas W, Akbey Ü. High-resolution 2D solid-state NMR provides insights into nontuberculous mycobacteria. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2024; 134:101970. [PMID: 39312837 DOI: 10.1016/j.ssnmr.2024.101970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
We present a high-resolution magic-angle spinning (MAS) solid-state NMR (ssNMR) study to characterize nontuberculous mycobacteria (NTM). We studied two different NTM strains, Mycobacterium smegmatis, a model, non-pathogenic strain, and Mycobacterium abscessus, an emerging and important human pathogen. Hydrated NTM samples were studied at natural abundance without isotope-labelling, as whole-cells versus cell envelope isolates, and native versus fixed sample preparations. We utilized 1D13C and 2D 1H-13C ssNMR spectra and peak deconvolution to identify NTM cell-wall chemical sites. More than ∼100 distinct 13C signals were identified in the ssNMR spectra. We provide tentative assignments for ∼30 polysaccharides by using well resolved 1H/13C chemical shifts from the 2D INEPT-based 1H-13C ssNMR spectrum. The signals originating from both the flexible and rigid fractions of the whole-cell bacteria samples were selectively analyzed by utilizing either CP or INEPT based 13C ssNMR spectra. CP buildup curves provide insights into the dynamical similarity of the cell-wall components for NTM strains. Signals from peptidoglycan, arabinogalactan and mycolic acid were identified. The majority of the 13C signals were not affected by fixation of the whole cell samples. The isolated cell envelope NMR spectrum overlap with the whole-cell spectrum to a large extent, where the latter has more signals. As an orthogonal way of characterizing these bacteria, electron microscopy (EM) was used to provide spatial information. ssNMR and EM data suggest that the M. abscessus cell-wall is composed of a smaller peptidoglycan layer which is more flexible compared to M. smegmatis, which may be related to its higher pathogenicity. Here in this work, we used high-resolution 2D ssNMR first time to characterize NTM strains and identify chemical sites. These results will aid the development of structure-based approaches to combat NTM infections.
Collapse
Affiliation(s)
- Chang-Hyeock Byeon
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, 15261, United States
| | - Kasper Holst Hansen
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, 15261, United States
| | - William DePas
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, 15261, United States
| | - Ümit Akbey
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, 15261, United States.
| |
Collapse
|
4
|
Couture G, Cheang SE, Suarez C, Chen Y, Bacalzo NP, Jiang J, Weng CYC, Stacy A, Castillo JJ, Delannoy-Bruno O, Webber DM, Barratt MJ, Gordon JI, Mills DA, German JB, Fukagawa NK, Lebrilla CB. A multi-glycomic platform for the analysis of food carbohydrates. Nat Protoc 2024; 19:3321-3359. [PMID: 39026121 DOI: 10.1038/s41596-024-01017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/30/2024] [Indexed: 07/20/2024]
Abstract
Carbohydrates comprise the largest fraction of most diets and exert a profound impact on health. Components such as simple sugars and starch supply energy, while indigestible components, deemed dietary fiber, reach the colon to provide food for the tens of trillions of microbes that make up the gut microbiota. The interactions between dietary carbohydrates, our gastrointestinal tracts, the gut microbiome and host health are dictated by their structures. However, current methods for analysis of food glycans lack the sensitivity, specificity and throughput needed to quantify and elucidate these myriad structures. This protocol describes a multi-glycomic approach to food carbohydrate analysis in which the analyte might be any food item or biological material such as fecal and cecal samples. The carbohydrates are extracted by ethanol precipitation, and the resulting samples are subjected to rapid-throughput liquid chromatography (LC)-tandem mass spectrometry (LC-MS/MS) methods. Quantitative analyses of monosaccharides, glycosidic linkages, polysaccharides and alcohol-soluble carbohydrates are performed in 96-well plates at the milligram scale to reduce the biomass of sample required and enhance throughput. Detailed stepwise processes for sample preparation, LC-MS/MS and data analysis are provided. We illustrate the application of the protocol to a diverse set of foods as well as different apple cultivars and various fermented foods. Furthermore, we show the utility of these methods in elucidating glycan-microbe interactions in germ-free and colonized mice. These methods provide a framework for elucidating relationships between dietary fiber, the gut microbiome and human physiology. These structures will further guide nutritional and clinical feeding studies that enhance our understanding of the role of diet in nutrition and health.
Collapse
Affiliation(s)
- Garret Couture
- Department of Chemistry, University of California, Davis, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
| | - Shawn Ehlers Cheang
- Department of Chemistry, University of California, Davis, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
| | - Christopher Suarez
- Department of Chemistry, University of California, Davis, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
| | - Ye Chen
- Department of Chemistry, University of California, Davis, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
| | - Nikita P Bacalzo
- Department of Chemistry, University of California, Davis, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
| | - Jiani Jiang
- Department of Chemistry, University of California, Davis, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
| | - Cheng-Yu Charlie Weng
- Department of Chemistry, University of California, Davis, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
| | - Aaron Stacy
- Department of Chemistry, University of California, Davis, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
| | - Juan J Castillo
- Department of Chemistry, University of California, Davis, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
| | - Omar Delannoy-Bruno
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St Louis, MO, USA
| | - Daniel M Webber
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Michael J Barratt
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Jeffrey I Gordon
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - David A Mills
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, USA
| | - J Bruce German
- Foods for Health Institute, University of California, Davis, Davis, CA, USA
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
| | - Naomi K Fukagawa
- USDA Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, Davis, CA, USA.
- Foods for Health Institute, University of California, Davis, Davis, CA, USA.
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
5
|
Ndukwe IE, Black I, Castro CA, Vlach J, Heiss C, Roper C, Azadi P. Permethylation as a strategy for high-molecular-weight polysaccharide structure analysis by nuclear magnetic resonance-Case study of Xylella fastidiosa extracellular polysaccharide. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:370-377. [PMID: 37985228 PMCID: PMC11047163 DOI: 10.1002/mrc.5413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023]
Abstract
Current practices for structural analysis of extremely large-molecular-weight polysaccharides via solution-state nuclear magnetic resonance (NMR) spectroscopy incorporate partial depolymerization protocols that enable polysaccharide solubilization in suitable solvents. Non-specific depolymerization techniques utilized for glycosidic bond cleavage, such as chemical degradation or ultrasonication, potentially generate structural fragments that can complicate complete and accurate characterization of polysaccharide structures. Utilization of appropriate enzymes for polysaccharide degradation, on the other hand, requires prior structural knowledge and optimal enzyme activity conditions that are not available to an analyst working with novel or unknown compounds. Herein, we describe an application of a permethylation strategy that allows the complete dissolution of intact polysaccharides for NMR structural characterization. This approach is utilized for NMR analysis of Xylella fastidiosa extracellular polysaccharide (EPS), which is essential for the virulence of the plant pathogen that affects multiple commercial crops and is responsible for multibillion dollar losses each year.
Collapse
Affiliation(s)
- Ikenna E Ndukwe
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Ian Black
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Claudia A Castro
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, USA
| | - Jiri Vlach
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Christian Heiss
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Caroline Roper
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
6
|
Bajwa B, Xing X, Terry SA, Gruninger RJ, Abbott DW. Methylation-GC-MS/FID-Based Glycosidic Linkage Analysis of Unfractionated Polysaccharides in Red Seaweeds. Mar Drugs 2024; 22:192. [PMID: 38786583 PMCID: PMC11122361 DOI: 10.3390/md22050192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
Glycosidic linkage analysis was conducted on the unfractionated polysaccharides in alcohol-insoluble residues (AIRs) prepared from six red seaweeds (Gracilariopsis sp., Prionitis sp., Mastocarpus papillatus, Callophyllis sp., Mazzaella splendens, and Palmaria palmata) using GC-MS/FID analysis of partially methylated alditol acetates (PMAAs). The cell walls of P. palmata primarily contained mixed-linkage xylans and small amounts of sulfated galactans and cellulose. In contrast, the unfractionated polysaccharides of the other five species were rich in galactans displaying diverse 3,6-anhydro-galactose and galactose linkages with varied sulfation patterns. Different levels of cellulose were also observed. This glycosidic linkage method offers advantages for cellulose analysis over traditional monosaccharide analysis that is known for underrepresenting glucose in crystalline cellulose. Relative linkage compositions calculated from GC-MS and GC-FID measurements showed that anhydro sugar linkages generated more responses in the latter detection method. This improved linkage workflow presents a useful tool for studying polysaccharide structural variations across red seaweed species. Furthermore, for the first time, relative linkage compositions from GC-MS and GC-FID measurements, along with normalized FID and total ion current (TIC) chromatograms without peak assignments, were analyzed using principal component analysis (PCA) as a proof-of-concept demonstration of the technique's potential to differentiate various red seaweed species.
Collapse
Affiliation(s)
| | | | | | | | - D. Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada; (B.B.); (X.X.); (S.A.T.); (R.J.G.)
| |
Collapse
|
7
|
Li XJ, Yin Y, Xiao SJ, Chen J, Zhang R, Yang T, Zhou TY, Zhang SY, Hu P, Zhang X. Extraction, structural characterization and immunoactivity of glucomannan type polysaccahrides from Lilium brownii var. viridulum Baker. Carbohydr Res 2024; 536:109046. [PMID: 38335805 DOI: 10.1016/j.carres.2024.109046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/21/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024]
Abstract
Homogeneous polysaccharide (LBP) was extracted and purified from the bulblets of Lilium brownii var. viridulum Baker with a molecular weight of 312 kDa. The monosaccharides are composed of mannose and glucose, and the corresponding molar ratios are 0.582 and 0.418, respectively. FT-IR, LC-MS, NMR, GC-MS and HPAEC were used to analyze the functional groups, glycosidic linkages and chemical structure of LBP, which was a 1-4-linked glucomannan and contained a dodecasaccharide repeating units of →4)-β-D-Manp-(1 → 4)-β-D-Manp-(1 → 4)-β-D-Manp-(1 → 4)-β-D-Glcp-(1 → 4)-β-D-Manp-(1 → 4)-β-D-Manp-(1 → 4)-β-D-Glcp-(1 → 4)-α-D-Glcp-(1 → 4)-β-D-Glcp-(1 → 4)-β-D-Glcp-(1 → 4)-β-D-Manp-(1 → 4)-β-D-Manp-(1 → . In vitro experimental results showed that LBP had noble biocompatibility, and a low dose of 5 μg/mL LBP significantly up-regulated the mRNA expression of TNF-α, iNOS, IL-6, IL-1β and Toll-like receptors family (TLRs) in RAW 264.7 cells. In conclusion, LBP played an important role in immunomodulation, and further studies on the specific immunomodulatory mechanisms of LBP on RAW 264.7 cells are still needed.
Collapse
Affiliation(s)
- Xiao-Jun Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Yuan Yin
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China
| | - Shi-Jun Xiao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Jiang Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China
| | - Rui Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Tong Yang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Tong-Yu Zhou
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Si-Yan Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Pei Hu
- Jiangzhong Pharmaceutical Co., Ltd., No.1899 Meiling Road, Nanchang, 330103, PR China.
| | - Xue Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.
| |
Collapse
|
8
|
Fernando LD, Zhao W, Gautam I, Ankur A, Wang T. Polysaccharide assemblies in fungal and plant cell walls explored by solid-state NMR. Structure 2023; 31:1375-1385. [PMID: 37597511 PMCID: PMC10843855 DOI: 10.1016/j.str.2023.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/30/2023] [Accepted: 07/26/2023] [Indexed: 08/21/2023]
Abstract
Structural analysis of macromolecular complexes within their natural cellular environment presents a significant challenge. Recent applications of solid-state NMR (ssNMR) techniques on living fungal cells and intact plant tissues have greatly enhanced our understanding of the structure of extracellular matrices. Here, we selectively highlight the most recent progress in this field. Specifically, we discuss how ssNMR can provide detailed insights into the chemical composition and conformational structure of pectin, and the consequential impact on polysaccharide interactions and cell wall organization. We elaborate on the use of ssNMR data to uncover the arrangement of the lignin-polysaccharide interface and the macrofibrillar structure in native plant stems or during degradation processes. We also comprehend the dynamic structure of fungal cell walls under various morphotypes and stress conditions. Finally, we assess how the combination of NMR with other techniques can enhance our capacity to address unresolved structural questions concerning these complex macromolecular assemblies.
Collapse
Affiliation(s)
- Liyanage D Fernando
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Wancheng Zhao
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Isha Gautam
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Ankur Ankur
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Tuo Wang
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
9
|
Ndukwe IE, Black I, Castro CA, Vlach J, Heiss C, Roper C, Azadi P. Permethylation as a Strategy for High Molecular Weight Polysaccharide Structure Analysis by NMR - Case Study of Xylella fastidiosa EPS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538115. [PMID: 37162848 PMCID: PMC10168210 DOI: 10.1101/2023.04.24.538115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Current practices for structure analysis of extremely large molecular weight polysaccharides via solution-state NMR spectroscopy incorporate partial depolymerization protocols that enable polysaccharide solubilization in suitable solvents. Non-specific depolymerization techniques utilized for glycosidic bond cleavage, such as chemical degradation or ultrasonication, potentially generate structure fragments that can complicate the complete characterization of polysaccharide structures. Utilization of appropriate enzymes for polysaccharide degradation, on the other hand, requires prior structure information and optimal enzyme activity conditions that are not available to the analyst working with novel or unknown compounds. Herein, we describe the application of a permethylation strategy that allows the complete dissolution of the intact polysaccharides for NMR structure characterization. This approach is utilized for NMR analysis of Xylella fastidiosa EPS, which is essential for the virulence the plant pathogen that affects multiple commercial crops and is responsible for multibillion dollar losses each year.
Collapse
|
10
|
Tian D, Huang L, Zhang Z, Tian Z, Ge S, Wang C, Hu Y, Wang Y, Yang J. A novel approach for quantitative determination of cellulose content in tobacco via 2D HSQC NMR spectroscopy. Carbohydr Res 2023; 526:108790. [PMID: 36933368 DOI: 10.1016/j.carres.2023.108790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023]
Abstract
Cellulose is an important component of tobacco (Nicotiana tabacum L.) cell walls, which can be precursors for many harmful compounds in smoke. Traditional cellulose content analysis methods involve sequential extraction and separation steps, which are time-consuming and environmentally unfriendly. In this study, a novel method was first introduced to analyze cellulose content in tobacco via two-dimensional heteronuclear single quantum coherence (2D HSQC) NMR spectroscopy. The method was based on derivatization approach to allow the dissolution of insoluble polysaccharide fractions of tobacco cell walls in DMSO‑d6/pyridine-d5 (4:1 v/v) for NMR analysis. The NMR results suggested that besides the main NMR signals of cellulose, partial signals of hemicellulose including mannopyranose, arabinofuranose, and galactopyranose units could also be identified. In addition, the utilization of relaxation reagents has proved to be an effective way to improve the sensitivity of 2D NMR spectroscopy, which was beneficial for quantification of biological samples with limited quantities. To overcome the limitations of quantification using 2D NMR, the calibration curve of cellulose with 1,3,5-trimethoxybenzene as internal reference was constructed and thus the accurate measurement of cellulose in tobacco was achieved. Compared with the chemical method, the interesting method was simple, reliable, and environmentally friendly, which provided a new insight for quantitative determination and structure analysis of plant macromolecules in complex samples.
Collapse
Affiliation(s)
- Dayu Tian
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, People's Republic of China
| | - Lan Huang
- Technology Center, China Tobacco Auhui Industrial Co., Ltd., No.9 Tianda Road, Hefei, 230088, People's Republic of China; Key Laboratory of Tobacco Chemistry in Anhui Province, China Tobacco Auhui Industrial Co., Ltd., No.9 Tianda Road, Hefei, 230088, People's Republic of China.
| | - Zhao Zhang
- Technology Center, China Tobacco Auhui Industrial Co., Ltd., No.9 Tianda Road, Hefei, 230088, People's Republic of China; Key Laboratory of Tobacco Chemistry in Anhui Province, China Tobacco Auhui Industrial Co., Ltd., No.9 Tianda Road, Hefei, 230088, People's Republic of China
| | - Zhenfeng Tian
- Technology Center, China Tobacco Auhui Industrial Co., Ltd., No.9 Tianda Road, Hefei, 230088, People's Republic of China; Key Laboratory of Tobacco Chemistry in Anhui Province, China Tobacco Auhui Industrial Co., Ltd., No.9 Tianda Road, Hefei, 230088, People's Republic of China
| | - Shaolin Ge
- Technology Center, China Tobacco Auhui Industrial Co., Ltd., No.9 Tianda Road, Hefei, 230088, People's Republic of China; Key Laboratory of Tobacco Chemistry in Anhui Province, China Tobacco Auhui Industrial Co., Ltd., No.9 Tianda Road, Hefei, 230088, People's Republic of China
| | - Chenghui Wang
- Technology Center, China Tobacco Auhui Industrial Co., Ltd., No.9 Tianda Road, Hefei, 230088, People's Republic of China; Key Laboratory of Tobacco Chemistry in Anhui Province, China Tobacco Auhui Industrial Co., Ltd., No.9 Tianda Road, Hefei, 230088, People's Republic of China
| | - Yonghua Hu
- Technology Center, China Tobacco Auhui Industrial Co., Ltd., No.9 Tianda Road, Hefei, 230088, People's Republic of China; Key Laboratory of Tobacco Chemistry in Anhui Province, China Tobacco Auhui Industrial Co., Ltd., No.9 Tianda Road, Hefei, 230088, People's Republic of China
| | - Ying Wang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, People's Republic of China
| | - Jun Yang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, People's Republic of China; Key Laboratory of Tobacco Chemistry in Anhui Province, China Tobacco Auhui Industrial Co., Ltd., No.9 Tianda Road, Hefei, 230088, People's Republic of China.
| |
Collapse
|
11
|
Most of the rhamnogalacturonan-I from cultured Arabidopsis cell walls is covalently linked to arabinogalactan-protein. Carbohydr Polym 2022; 301:120340. [DOI: 10.1016/j.carbpol.2022.120340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/16/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
|
12
|
Leonard W, Zhang P, Ying D, Nie S, Liu S, Fang Z. Post-extrusion physical properties, techno-functionality and microbiota-modulating potential of hempseed (Cannabis sativa L.) hull fiber. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
13
|
Ma S, Chen F, Zhang M, Yuan H, Ouyang G, Zhao W, Zhang S, Zhao Y. Carboxyl-Based CPMP Tag for Ultrasensitive Analysis of Disaccharides by Negative Tandem Mass Spectrometry. Anal Chem 2022; 94:9557-9563. [PMID: 35759693 DOI: 10.1021/acs.analchem.2c00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here, we develop a sensitive method for glucose-containing disaccharide analysis by 1-(4-carboxyphenyl)-3-methyl-5-pyrazolone (CPMP) derivatization using mass spectrometry. The intense anion of [M - H]- (m/z 759) was observed for CPMP-labeled disaccharides in a negative mode. After derivatization, its sensitivity was significantly increased with the limits of detection (LODs) and limits of quantification (LOQ) ranging from 3.90 to 8.67 ng L-1 and 12.99 to 28.92 ng L-1, respectively. During CID-MS/MS analysis, the fragment patterns of CPMP derivatized disaccharides in the negative mode were simpler and clearer than their counterparts in a positive mode, which further could be applied to distinct and relatively quantitative isomeric disaccharides with ultrahigh sensitivity and good reproducibility. The great linear relationships could be achieved under wider concentration ratios from 0.01 to 20 compared to the previous report. Eventually, the developed methodology was applicable to identify isomeric disaccharides in beers. No sucrose was discovered. All beers contain 1,4- and 1,6-linked disaccharides. Some of them also have a mixture of 1,2- and 1,3-linked disaccharides. Through the integration of statistical analysis, beers with different production processes were finally discriminated, and the relative quantification of isomaltose and maltose was realized. In general, this method is sensitive, fast, and reliable for the discrimination and relative quantification of isomeric disaccharides in complex matrices. This study provides a new idea for the structural analysis of oligosaccharides in food, plants, and animals and an important theoretical basis for the exploration of new functions of oligosaccharides.
Collapse
Affiliation(s)
- Shanshan Ma
- College of Chemistry, Zhengzhou University, Henan 450001, China
| | - Fangya Chen
- School of Ecology and Environment, Zhengzhou University, Henan 450001, China
| | - Meng Zhang
- College of Chemistry, Zhengzhou University, Henan 450001, China
| | - Hang Yuan
- College of Chemistry, Zhengzhou University, Henan 450001, China
| | - Gangfeng Ouyang
- College of Chemistry, Zhengzhou University, Henan 450001, China.,KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wuduo Zhao
- College of Chemistry, Zhengzhou University, Henan 450001, China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Henan 450001, China
| | - Yufen Zhao
- College of Chemistry, Zhengzhou University, Henan 450001, China.,Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
14
|
Mohanta B, Sen DJ, Mahanti B, Nayak AK. Antioxidant potential of herbal polysaccharides: An overview on recent researches. SENSORS INTERNATIONAL 2022. [DOI: 10.1016/j.sintl.2022.100158] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
15
|
Zhang X, Bi C, Shi H, Li X. Structural studies of a mannoglucan from Cremastra appendiculata (Orchidaceae) by chemical and enzymatic methods. Carbohydr Polym 2021; 272:118524. [PMID: 34420759 DOI: 10.1016/j.carbpol.2021.118524] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/01/2021] [Accepted: 08/01/2021] [Indexed: 01/16/2023]
Abstract
Pseudobulb of Cremastra appendiculata (Orchidaceae) is a traditionally used medicine in China for treatment of certain cancers. The polysaccharides from this medicinal plant are poorly understood. Therefore, we focused on the isolation and fine structure characterization of C. appendiculata polysaccharides. After isolation by DE-52 and Superdex 200 gel chromatography, the purified polysaccharide (named as CAP) with Mw 557.5 kDa was obtained with a narrow and symmetric peak presented in the HPGPC. The monosaccharide composition results showed in HPAEC that CAP was a heteropolysaccharide composed of glucose and mannose at a molar ratio roughly 0.34:0.66. The methylation results indicated that CAP was a 1,4-β-mannose and 1,4-β-glucose linear linkage. The further NMR studies suggested a 0.208 acetylation substitution of CAP and a hexasaccharide repeating unit composed of 1,4-β-mannose and1, 4-β-glucose in the CAP structure. The chemical structure of CAP was confirmed further by the specific glucanase and mannanase hydrolysis results.
Collapse
Affiliation(s)
- Xue Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Caili Bi
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Hongcan Shi
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Xiaojun Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225001, PR China.
| |
Collapse
|
16
|
Tingley JP, Low KE, Xing X, Abbott DW. Combined whole cell wall analysis and streamlined in silico carbohydrate-active enzyme discovery to improve biocatalytic conversion of agricultural crop residues. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:16. [PMID: 33422151 PMCID: PMC7797155 DOI: 10.1186/s13068-020-01869-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/24/2020] [Indexed: 05/08/2023]
Abstract
The production of biofuels as an efficient source of renewable energy has received considerable attention due to increasing energy demands and regulatory incentives to reduce greenhouse gas emissions. Second-generation biofuel feedstocks, including agricultural crop residues generated on-farm during annual harvests, are abundant, inexpensive, and sustainable. Unlike first-generation feedstocks, which are enriched in easily fermentable carbohydrates, crop residue cell walls are highly resistant to saccharification, fermentation, and valorization. Crop residues contain recalcitrant polysaccharides, including cellulose, hemicelluloses, pectins, and lignin and lignin-carbohydrate complexes. In addition, their cell walls can vary in linkage structure and monosaccharide composition between plant sources. Characterization of total cell wall structure, including high-resolution analyses of saccharide composition, linkage, and complex structures using chromatography-based methods, nuclear magnetic resonance, -omics, and antibody glycome profiling, provides critical insight into the fine chemistry of feedstock cell walls. Furthermore, improving both the catalytic potential of microbial communities that populate biodigester reactors and the efficiency of pre-treatments used in bioethanol production may improve bioconversion rates and yields. Toward this end, knowledge and characterization of carbohydrate-active enzymes (CAZymes) involved in dynamic biomass deconstruction is pivotal. Here we overview the use of common "-omics"-based methods for the study of lignocellulose-metabolizing communities and microorganisms, as well as methods for annotation and discovery of CAZymes, and accurate prediction of CAZyme function. Emerging approaches for analysis of large datasets, including metagenome-assembled genomes, are also discussed. Using complementary glycomic and meta-omic methods to characterize agricultural residues and the microbial communities that digest them provides promising streams of research to maximize value and energy extraction from crop waste streams.
Collapse
Affiliation(s)
- Jeffrey P Tingley
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, AB, T1J 4B1, Canada
- Department of Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 6T5, Canada
| | - Kristin E Low
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, AB, T1J 4B1, Canada
| | - Xiaohui Xing
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, AB, T1J 4B1, Canada
| | - D Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, AB, T1J 4B1, Canada.
- Department of Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 6T5, Canada.
| |
Collapse
|
17
|
PL-S2, a homogeneous polysaccharide from Radix Puerariae lobatae, attenuates hyperlipidemia via farnesoid X receptor (FXR) pathway-modulated bile acid metabolism. Int J Biol Macromol 2020; 165:1694-1705. [PMID: 33058986 DOI: 10.1016/j.ijbiomac.2020.10.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/20/2020] [Accepted: 10/03/2020] [Indexed: 02/07/2023]
Abstract
Polysaccharides are important active constituents of Radix Puerariae lobatae (RPL). In this study, a novel homogeneous polysaccharide from RPL was successfully obtained by HP-20 macroporous resin and purified by Sepharose G-100 column chromatography. Nuclear magnetic resonance (NMR) analysis showed that the main glycosidic bonds were composed of α-1,3-linked and α-1,4-linked glucose. The molecular weight of PL-S2 was 18.73 kDa. The hypolipidemic effect of PL-S2 on hyperlipidemic rats was evaluated in histopathology and metabolomics analyses. PL-S2 significantly reduced plasma lipid levels and inhibited bile acid metabolism. We also demonstrated that treatment with PL-S2 activated FXR, CYP7A1, BESP, and MRP2 in rat liver. Our findings first indicate that PL-S2 decreases plasma lipid levels in hyperlipidemic rats by activating the FXR signaling pathway and promoting bile acid excretion. Therefore, PL-S2 derived from RPL is implicated as a functional food factor with lipid-regulating activity, and highlighted as a potential food supplement for the treatment of hyperlipidemia.
Collapse
|