1
|
Wang Y, Wu Y, Lu B, Li M, Ji P, Feng S, Li Y, Lin H, Xiao Y, Luo Z, Duan Y. Advances in portable fiber optic-based aptasensors for on-site detection: design, evolution, and application. NANOSCALE 2025; 17:11221-11245. [PMID: 40241631 DOI: 10.1039/d4nr04846f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
The emergence of on-site detection using portable devices has transformed traditional analytical methods, which rely on precise but bulky laboratory instruments, into a promising technique for point-of-care testing. In this case, fiber optic (FO)-based aptasensors, featuring miniaturized devices, high sensitivity, and strong specificity, are candidates to meet the requirement of on-site detection. To enhance the interaction between light and the surrounding environment, numerous FO probes with novel micro/nano-structures have been designed, including tilted fiber Bragg grating (TFBG), long-period grating (LPG), bent, microfiber, D-shaped, and photonic bandgap fibers. Aptamers fold into unique tertiary structure to specifically and sensitively bind with their targets through a direct reaction or a binding-induced structural switch. Benefitting from advancements in FO probes and aptamers, multiple FO-based aptasensors have been constructed for sensitive detection, including evanescent wave-based, fluorescent-, localized surface plasmon resonance (LSPR)-based, and interferometer-based sensors. To date, FO-based aptasensors have been widely applied in clinical diagnosis, environmental monitoring, and food safety. This review focuses on design strategies, evolution, and applications of FO-based aptasensors. The opportunities and challenges of FO-based aptasensors for on-site detection are discussed in depth. This review aims to highlight the significance of FO-based aptasensors for on-site detection and promote their development from laboratory research to practical application.
Collapse
Affiliation(s)
- Yue Wang
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yuanfeng Wu
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
| | - Bowen Lu
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
| | - Mingyue Li
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
| | - Peijun Ji
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
| | - Shijian Feng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yu Li
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610500, PR China
| | - Huichun Lin
- Shenzhen Institute of Quality and Safety Inspection Research, Shenzhen 518000, China.
| | - Yuling Xiao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
| | - Zewei Luo
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
2
|
Mohan A, Roy I. Exploring the diagnostic landscape: Portable aptasensors in point-of-care testing. Anal Biochem 2025; 700:115788. [PMID: 39884526 DOI: 10.1016/j.ab.2025.115788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/31/2024] [Accepted: 01/25/2025] [Indexed: 02/01/2025]
Abstract
Aptamers, discovered in the 1990s, have marked a significant milestone in the fields of therapeutics and diagnostics. This review provides a comprehensive survey of aptamers, focusing on their diagnostic applications. It especially encapsulates a decade of aptamer, encompassing research, patents, and market trends. The unique properties and inherent stability of aptamers are discussed, highlighting their potential for various clinical applications. It goes on to introduce biosensor design, emphasizing the advantages of aptamers over antibodies as conventional molecular recognition interface. The operation and design of aptasensors are examined, with a focus on single- and dual-site binding configurations and their respective recognition modes. Paper-based sensors are highlighted as cost-effective, user-friendly alternatives that are gaining widespread adoption, particularly in point-of-care platforms.
Collapse
Affiliation(s)
- Anu Mohan
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab, 160062, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Punjab, 160062, India.
| |
Collapse
|
3
|
Cornejo MA, Linz TH. Integrating Particle Motion Tracking into Thermal Gel Electrophoresis for Label-Free Sugar Sensing. ACS Sens 2025; 10:204-212. [PMID: 39749639 DOI: 10.1021/acssensors.4c02042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Bioanalytical sensors are adept at quantifying target analytes from complex sample matrices with high sensitivity, but their multiplexing capacity is limited. Conversely, analytical separations afford great multiplexing capacity but typically require analyte labeling to increase sensitivity. Here, we report the development of a separation-based sensor to sensitively quantify unlabeled polysaccharides using particle motion tracking within a microfluidic electrophoresis platform. Carboxymethyl dextran (20 kDa) was spiked into Pluronic thermal gel along with fluorescent nanoparticles (200 nm diameter) and loaded into single-channel microfluidic devices. Upon voltage application, the soluble sugar enriched into a concentrated band that induced motion of the insoluble particles as it passed. Bead displacement was tracked over time to produce electropherograms where peak areas were proportional to analyte concentrations. Key studies herein established the range of acceptable operating conditions (e.g., gel concentration, temperature) to characterize how the temperature-dependent rigidity of thermal gel influenced the analysis. Data processing strategies were then evaluated to identify conditions (e.g., exposure intervals, particle averaging, motion directionality) to maximize sensitivity. The quantitative response of the method was evaluated over a broad concentration range (0.5-5000 nM) where detection limits were found to be 520 pM for the 20 kDa sugar, providing a 106-fold superior mass LOD than a gold standard UV-vis absorbance method. Studies into the detection mechanism found that sensitivity was dependent on the molecular weight of the sugar as larger sugars produced greater responses. Collectively, these studies established best practices for integrating particle sensing into thermal gel separations for label-free polysaccharide quantitation.
Collapse
Affiliation(s)
- Mario A Cornejo
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202, United States
| | - Thomas H Linz
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202, United States
| |
Collapse
|
4
|
Paialunga E, Bagheri N, Rossetti M, Fabiani L, Micheli L, Chamorro-Garcia A, Porchetta A. Leveraging Synthetic Antibody-DNA Conjugates to Expand the CRISPR-Cas12a Biosensing Toolbox. ACS Synth Biol 2025; 14:171-178. [PMID: 39746849 DOI: 10.1021/acssynbio.4c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
We report here the use of antibody-DNA conjugates (Ab-DNA) to activate the collateral cleavage activity of the CRISPR-Cas12a enzyme. Our findings demonstrate that Ab-DNA conjugates effectively trigger the collateral cleavage activity of CRISPR-Cas12a, enabling the transduction of antibody-mediated recognition events into fluorescence outputs. We developed two different immunoassays using an Ab-DNA as activator of Cas12a: the CRISPR-based immunosensing assay (CIA) for detecting SARS-CoV-2 spike S protein, which shows superior sensitivity compared with the traditional enzyme-linked immunosorbent assay (ELISA), and the CRISPR-based immunomagnetic assay (CIMA). Notably, CIMA successfully detected the SARS-CoV-2 spike S protein in undiluted saliva with a limit of detection (LOD) of 890 pM in a 2 h assay. Our results underscore the benefits of integrating Cas12a-based signal amplification with antibody detection methods. The potential of Ab-DNA conjugates, combined with CRISPR technology, offers a promising alternative to conventional enzymes used in immunoassays and could facilitate the development of versatile CRISPR analytical platforms for the detection of non-nucleic acid targets.
Collapse
Affiliation(s)
- Elisa Paialunga
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Neda Bagheri
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Marianna Rossetti
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Laura Fabiani
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Laura Micheli
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Alejandro Chamorro-Garcia
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Alessandro Porchetta
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
5
|
Kurian ASN, Mazumder MI, Gurukandure A, Easley CJ. An electrochemical proximity assay (ECPA) for antibody detection incorporating flexible spacers for improved performance. Anal Bioanal Chem 2024; 416:6529-6539. [PMID: 39367148 PMCID: PMC11541272 DOI: 10.1007/s00216-024-05546-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/06/2024]
Abstract
A clever approach for biosensing is to leverage the concept of the proximity effect, where analyte binding to probes can be coupled to a second, controlled binding event such as short DNA strands. This analyte-dependent effect has been exploited in various sensors with optical or electrochemical readouts. Electrochemical proximity assays (ECPA) are more amenable to miniaturization and adaptation to the point-of-care, yet ECPA has been generally targeted toward protein sensing with antibody-oligonucleotide probes. Antibodies themselves are also important as biomarkers, since they are produced in bodily fluids in response to various diseases or infections, often in low amounts. In this work, by using antigen-DNA conjugates, we targeted an ECPA method for antibody sensing and showed that the assay performance can be greatly enhanced using flexible spacers in the DNA conjugates. After adding flexible polyethylene glycol (PEG) spacers at two distinct positions, the spacers ultimately increased the antibody-dependent current by a factor of 4.0 without significant background increases, similar to our recent work using thermofluorimetric analysis (TFA). The optimized ECPA was applied to anti-digoxigenin antibody quantification at concentrations ranging over two orders of magnitude, from the limit of detection of 300 pM up to 50 nM. The assay was functional in 90% human serum, where increased ionic strength was used to counteract double-layer repulsion effects at the electrode. This flexible-probe ECPA methodology should be useful for sensing other antibodies in the future with high sensitivity, and the mechanism for signal improvement with probe flexibility may be applicable to other DNA-based electrochemical sensor platforms.
Collapse
Affiliation(s)
- Amanda S N Kurian
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA
| | | | - Asanka Gurukandure
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA
| | - Christopher J Easley
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
6
|
Hu J, Easley CJ. Development of a mix-and-read assay for human asprosin using antibody-oligonucleotide probes and thermofluorimetric analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6057-6063. [PMID: 39171961 PMCID: PMC11405182 DOI: 10.1039/d3ay01175e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Adipose tissue, or fat tissue, can now be classified as an endocrine organ as it responds to stimuli by secreting a range of hormones, termed adipokines, which regulate the functions of various other tissues and organs. Because novel adipokines continue to be discovered and characterized by researchers, there is an enduring need for the development of new analytical assays that target these hormones. Discovered recently, asprosin is an adipokine hormone secreted by white adipose tissue (WAT) during fasting which has been implicated for its important effects on the liver, skeletal muscle, hypothalamus, pancreas, and possibly other tissues. While standard immunoassays have been developed, the continued surge in research on asprosin's function would greatly benefit from an assay with homogeneous, mix-and-read workflow, and the nanomolar clinical range makes this goal more feasible. In this work, we developed such an assay for asprosin using our thermofluorimetric analysis (TFA) methods with antibody-oligonucleotide conjugate probes. The assay, achievable in less than one hour, was successfully validated by quantifying native levels of asprosin in human serum collected from fasting, nonfasting, type II diabetic, and obese donors.
Collapse
Affiliation(s)
- Juan Hu
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, USA.
| | | |
Collapse
|
7
|
Han C, Liu Q, Luo X, Zhao J, Zhang Z, He J, Ge F, Ding W, Luo Z, Jia C, Zhang L. Development of a CRISPR/Cas12a-mediated aptasensor for Mpox virus antigen detection. Biosens Bioelectron 2024; 257:116313. [PMID: 38688229 DOI: 10.1016/j.bios.2024.116313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/23/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
The emergence and rapid spread of Mpox (formerly monkeypox) have caused significant societal challenges. Adequate and appropriate diagnostics procedures are an urgent necessity. Herein, we discover a pair of aptamers through the systematic evolution of ligands by exponential enrichment (SELEX) that exhibit high affinity and bind to different sites towards the A29 protein of the Mpox virus. Subsequently, we propose a facile, sensitive, convenient CRISPR/Cas12a-mediated aptasensor for detecting the A29 antigen. The procedure employs the bivalent aptamers recognition, which induces the formation of a proximity switch probe and initiates subsequent cascade strand displacement reactions, then triggers CRISPR/Cas12a DNA trans-cleavage to achieve the sensitive detection of Mpox. Our method enables selective and ultrasensitive evaluation of the A29 protein within the range of 1 ng mL-1 to 1 μg mL-1, with a limit of detection (LOD) at 0.28 ng mL-1. Moreover, spiked A29 protein recovery exceeds 96.9%, while the detection activity remains above 91.9% after six months of storage at 4 °C. This aptasensor provides a novel avenue for exploring clinical diagnosis in cases involving Mpox as facilitating development in various analyte sensors.
Collapse
Affiliation(s)
- Cong Han
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300350, PR China
| | - Qirui Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300350, PR China
| | - Xuantong Luo
- Tianjin Haihe High School, Tianjin, 300202, PR China
| | - Jian Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300350, PR China
| | - Zheng Zhang
- The Cancer Hospital of the University of Chinese Academy of Sciences, Aptamer Selection Center, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, PR China
| | - Jiaxuan He
- The Cancer Hospital of the University of Chinese Academy of Sciences, Aptamer Selection Center, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, PR China
| | - Feng Ge
- Department of Gynecological Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Nankai University, Tianjin, 300071, PR China
| | - Wei Ding
- Department of Gynecological Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Nankai University, Tianjin, 300071, PR China
| | - Zhaofeng Luo
- The Cancer Hospital of the University of Chinese Academy of Sciences, Aptamer Selection Center, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, PR China
| | - Chao Jia
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300350, PR China.
| | - Liyun Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300350, PR China.
| |
Collapse
|
8
|
Feng X, Bi X, Feng J, Hu S, Wang Y, Zhao S, Zhang L. Proximity-Induced Bipedal DNA Walker for Accurately Visualizing microRNA in Living Cancer Cell. Anal Chem 2024; 96:10669-10676. [PMID: 38913536 DOI: 10.1021/acs.analchem.4c01483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
DNA walker, a type of dynamic DNA device that is capable of moving progressively along prescribed walking tracks, has emerged as an ideal and powerful tool for biosensing and bioimaging. However, most of the reported three-dimensional (3D) DNA walker were merely designed for the detection of a single target, and they were not capable of achieving universal applicability. Herein, we reported for the first time the development of a proximity-induced 3D bipedal DNA walker for imaging of low abundance biomolecules. As a proof of concept, miRNA-34a, a biomarker of breast cancer, is chosen as the model system to demonstrate this approach. In our design, the 3D bipedal DNA walker can be generated only by the specific recognition of two proximity probes for miRNA-34a. Meanwhile, it stochastically and autonomously traveled on 3D tracks (gold nanoparticles) via catalytic hairpin assembly (CHA), resulting in the amplified fluorescence signal. In comparison with some conventional DNA walkers that were utilized for living cell imaging, the 3D DNA walkers induced by proximity ligation assay can greatly improve and ensure the high selectivity of bioanalysis. By taking advantage of these unique features, the proximity-induced 3D bipedal DNA walker successfully realizes accurate and effective monitoring of target miRNA-34a expression levels in living cells, affording a universal, valuable, and promising platform for low-abundance cancer biomarker detection and accurate identification of cancer.
Collapse
Affiliation(s)
- Xiyuan Feng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Xiaofeng Bi
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Jinyue Feng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Shengqiang Hu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Yumin Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Liangliang Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
9
|
Bai D, Zhang J, Zhang Y, Yu H, Zhang L, Han X, Lv K, Wang L, Luo W, Wu Y, Zhou X, Wang W, Feng T, Xie G. A Spatially Controlled Proximity Split Tweezer Switch for Enhanced DNA Circuit Construction and Multifunctional Transduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307421. [PMID: 38072808 DOI: 10.1002/smll.202307421] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/15/2023] [Indexed: 05/03/2024]
Abstract
DNA strand displacement reactions are vital for constructing intricate nucleic acid circuits, owing to their programmability and predictability. However, the scarcity of effective methods for eliminating circuit leakages has hampered the construction of circuits with increased complexity. Herein, a versatile strategy is developed that relies on a spatially controlled proximity split tweezer (PST) switch to transduce the biomolecular signals into the independent oligonucleotides. Leveraging the double-stranded rigidity of the tweezer works synergistically with the hindering effect of the hairpin lock, effectively minimizing circuit leakage compared with sequence-level methods. In addition, the freely designed output strand is independent of the target binding sequence, allowing the PST switch conformation to be modulated by nucleic acids, small molecules, and proteins, exhibiting remarkable adaptability to a wide range of targets. Using this platform, established logical operations between different types of targets for multifunctional transduction are successfully established. Most importantly, the platform can be directly coupled with DNA catalytic circuits to further enhance transduction performance. The uniqueness of this platform lies in its design straightforwardness, flexibility, scalable intricacy, and system compatibility. These attributes pave a broad path toward nucleic acid-based development of sophisticated transduction networks, making them widely applied in basic science research and biomedical applications.
Collapse
Affiliation(s)
- Dan Bai
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, P. R. China
| | - Jianhong Zhang
- Clinical Laboratories, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Yaoyi Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, P. R. China
| | - Hongyan Yu
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, P. R. China
| | - Li Zhang
- Department of Forensic, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Xiaole Han
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, P. R. China
| | - Ke Lv
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 40016, P. R. China
| | - Li Wang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Wang Luo
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, P. R. China
| | - You Wu
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, P. R. China
| | - Xi Zhou
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, P. R. China
| | - Weitao Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, P. R. China
| | - Tong Feng
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, P. R. China
| | - Guoming Xie
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing, 400016, P. R. China
| |
Collapse
|
10
|
Chamorro A, Rossetti M, Bagheri N, Porchetta A. Rationally Designed DNA-Based Scaffolds and Switching Probes for Protein Sensing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:71-106. [PMID: 38273204 DOI: 10.1007/10_2023_235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The detection of a protein analyte and use of this type of information for disease diagnosis and physiological monitoring requires methods with high sensitivity and specificity that have to be also easy to use, rapid and, ideally, single step. In the last 10 years, a number of DNA-based sensing methods and sensors have been developed in order to achieve quantitative readout of protein biomarkers. Inspired by the speed, specificity, and versatility of naturally occurring chemosensors based on structure-switching biomolecules, significant efforts have been done to reproduce these mechanisms into the fabrication of artificial biosensors for protein detection. As an alternative, in scaffold DNA biosensors, different recognition elements (e.g., peptides, proteins, small molecules, and antibodies) can be conjugated to the DNA scaffold with high accuracy and precision in order to specifically interact with the target protein with high affinity and specificity. They have several advantages and potential, especially because the transduction signal can be drastically enhanced. Our aim here is to provide an overview of the best examples of structure switching-based and scaffold DNA sensors, as well as to introduce the reader to the rational design of innovative sensing mechanisms and strategies based on programmable functional DNA systems for protein detection.
Collapse
Affiliation(s)
| | - Marianna Rossetti
- Department of Chemistry, University of Rome Tor Vergata, Rome, Italy
| | - Neda Bagheri
- Department of Chemistry, University of Rome Tor Vergata, Rome, Italy
| | | |
Collapse
|
11
|
Gao H, Ding Y, Ping P, Wang D, Ma Y, Li H. Signal-on electrogenerated chemiluminescence detection of gonyautoxin 1/4 based on proximity ligation-induced an electrode-bound pseudoknot DNA. Talanta 2024; 266:124938. [PMID: 37467666 DOI: 10.1016/j.talanta.2023.124938] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
A "signal on" electrogenerated chemiluminescence (electrochemiluminescence, ECL) aptasensor based on proximity ligation-induced an electrode-bound pseudoknot DNA for sensitive detection of gonyautoxin 1/4 (GTX1/4) was developed on basis of the competitive type reaction mode. Aptamer was adopted as recognition element. Ru(bpy)32+ as ECL signal, was attached on the glassy carbon electrode (GCE) surface modified with nafion and gold nanoparticles (AuNPs) by electrostatic attraction to obtain the ECL platform. The pseudoknot DNA as capture probe, was immobilized onto the ECL platform via Au-S bond to obtain the ECL aptasensor. In the absence of GTX1/4, Y-shape proximate cooperative complex among aptamer, pseudoknot DNA and DNA1 was formed, drawing the ferrocene groups Fc, as ECL quencher) of both pseudoknot DNA and DNA1 near the electrode surface and resulting in low ECL signal. In the presence of GTX1/4, GTX1/4 competed with pseudoknot DNA and DNA1 for aptamer in homogeneous solution, preventing the formation of proximate cooperative complex and keeping the capture DNA in the pseudoknot conformation with Fc groups far away from the electrode surface, generating a high ECL signal. The recovery of ECL intensity increased with the GTX1/4 concentration and allowed the detection of GTX1/4 in the range of 0.01 ng/mL to 10 ng/mL with a detection of limit as low as 6.56 pg/mL. Additionally, the accuracy of this method was validated for analysis of spiked sea water samples with good recoveries, which indicates great potential in commercial application.
Collapse
Affiliation(s)
- Hongfang Gao
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China.
| | - Yilin Ding
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China
| | - Ping Ping
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China
| | - Denghong Wang
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China
| | - Yujie Ma
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China
| | - Haiyu Li
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China
| |
Collapse
|
12
|
Zhao Y, Patel N, Sun P, Faulds K, Graham D, Liu J. Light-up split aptamers: binding thermodynamics and kinetics for sensing. Analyst 2023; 148:5612-5618. [PMID: 37819248 DOI: 10.1039/d3an01368e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Due to their programmable structures, many aptamers can be readily split into two halves while still retaining their target binding function. While split aptamers are prevalent in the biosensor field, fundamental studies of their binding are still lacking. In this work, we took advantage of the fluorescence enhancement property of a new aptamer named OTC5 that can bind to tetracycline antibiotics to compare various split aptamers with the full-length aptamer. The split aptamers were designed to have different stem lengths. Longer stem length aptamers showed similar dissociation constants (Kd) to the full-length aptamer, while a shorter stem construct showed an 85-fold increase in Kd. Temperature-dependent fluorescence measurements confirmed the lower thermostability of split aptamers. Isothermal titration calorimetry indicated that split aptamer binding can release more heat but have an even larger entropy loss. Finally, a colorimetric biosensor using gold nanoparticles was designed by pre-assembling two thiolated aptamer halves, which can then link gold nanoparticles to give a red-to-blue color change.
Collapse
Affiliation(s)
- Yichen Zhao
- Department of Chemistry, Waterloo Institute for Nanotechnology, Waterloo, Ontario, N2L 3G1, Canada.
| | - Nikesh Patel
- Department of Chemistry, Waterloo Institute for Nanotechnology, Waterloo, Ontario, N2L 3G1, Canada.
- Department of Pure and Applied Chemistry, Technology and Innovation Center, University of Strathclyde, 99 George Street, Glasgow G1 1RD, UK.
| | - Peihuan Sun
- Department of Chemistry, Waterloo Institute for Nanotechnology, Waterloo, Ontario, N2L 3G1, Canada.
| | - Karen Faulds
- Department of Pure and Applied Chemistry, Technology and Innovation Center, University of Strathclyde, 99 George Street, Glasgow G1 1RD, UK.
| | - Duncan Graham
- Department of Pure and Applied Chemistry, Technology and Innovation Center, University of Strathclyde, 99 George Street, Glasgow G1 1RD, UK.
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, Waterloo, Ontario, N2L 3G1, Canada.
| |
Collapse
|
13
|
Jin Y, Huang Z, Xu B, Chen J. Localization of multiple DNAzymes as a branchedzyme-powered nanodevice for the immunoassay of tumor biomarkers. Anal Chim Acta 2023; 1274:341580. [PMID: 37455088 DOI: 10.1016/j.aca.2023.341580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Traditional immunoassay methods often face challenges due to the labeling procedure of protein enzymes, the use of multiple antibodies, and severe conditions. To address these limitations, we propose the concept of incorporating branchedzyme-powered nanodevices into immunoassays. In this strategy, multiple DNAzymes are localized onto gold nanoparticles (AuNPs) along with substrates. The localization format facilitates intramolecular reactions between DNAzymes and substrates, leading to accelerated kinetics of the nanodevice. Upon the formation of an immunocomplex with an antibody on a 96-well plate, the branchedzyme-powered nanodevice catalytically releases multiple fluorescent signals under ambient temperature, eliminating the need for secondary antibodies. The branched DNAzymes exhibit catalytic properties similar to those of protein enzymes, thus simplifying the assay procedure and achieving isothermal detection. Furthermore, the detection process can be controlled by the addition or deletion of cofactors. Additionally, the affinity ligand can be easily modified to construct nanodevices specific to different targets without requiring extensive redesign. This strategy has demonstrated successful quantification of tumor biomarkers such as alpha-fetoprotein (AFP) and prostate-specific antigen (PSA) at subpicomolar concentrations, showcasing its suitability for clinical applications. Consequently, the branchedzyme-powered nanodevice represents a valuable addition to the immunoassay toolbox, opening new possibilities for clinical diagnostics.
Collapse
Affiliation(s)
- Yanwen Jin
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan Universtity, Chengdu, Sichuan, 610064, China
| | - Zhuochun Huang
- Department of Laboratory Medicine, West China Hospital, Sichuan Universtity, Chengdu, Sichuan, 610064, China
| | - Bingyan Xu
- Department of Laboratory Medicine, West China Hospital, Sichuan Universtity, Chengdu, Sichuan, 610064, China
| | - Junbo Chen
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan, 610064, China.
| |
Collapse
|
14
|
Kurian ASN, Gurukandure A, Dovgan I, Kolodych S, Easley CJ. Thermofluorimetric Analysis (TFA) using Probes with Flexible Spacers: Application to Direct Antibody Sensing and to Antibody-Oligonucleotide (AbO) Conjugate Valency Monitoring. Anal Chem 2023; 95:11680-11686. [PMID: 37490525 PMCID: PMC10421636 DOI: 10.1021/acs.analchem.3c01590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Antibodies have long been recognized as clinically relevant biomarkers of disease. The onset of a disease often stimulates antibody production in low quantities, making it crucial to develop sensitive, specific, and easy-to-use antibody assay platforms. Antibodies are also extensively used as probes in bioassays, and there is a need for simpler methods to evaluate specialized probes, such as antibody-oligonucleotide (AbO) conjugates. Previously, we demonstrated that thermofluorimetric analysis (TFA) of analyte-driven DNA assembly can be leveraged to detect protein biomarkers using AbO probes. A key advantage of this technique is its ability to circumvent autofluorescence arising from biological samples, which otherwise hampers homogeneous assays. The analysis of differential DNA melt curves (dF/dT) successfully distinguishes the signal from the background and interferences. Expanding the applicability of TFA further, herein we demonstrate a unique proximity based TFA assay for antibody quantification that is functional in 90% human plasma. We show that the conformational flexibility of the DNA-based proximity probes is critically important for optimal performance in these assays. To promote stable, proximity-induced hybridization of the short DNA strands, substitution of poly(ethylene glycol) (PEG) spacers in place of ssDNA segments led to improved conformational flexibility and sensor performance. Finally, by applying these flexible spacers to study AbO conjugates directly, we validate this modified TFA approach as a novel tool to elucidate the probe valency, clearly distinguishing between monovalent and multivalent AbOs and reducing the reagent amounts by 12-fold.
Collapse
Affiliation(s)
- Amanda S. N. Kurian
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849
| | - Asanka Gurukandure
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849
| | | | | | | |
Collapse
|
15
|
Li Y, Sun Y, Yang W, Yang L, Su M, Fang L, Zheng J, Yuan R, Liang W. A novel photoelectrochemical strategy for sequence-spot bispecific analysis of N 6-methyladenosine modification based on proximity ligation-triggered cascade amplification. Anal Chim Acta 2023; 1265:341287. [PMID: 37230570 DOI: 10.1016/j.aca.2023.341287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
N6-methyladenosine (m6A) modification as the most prevalent mammalian RNA internal modification has been considered as the invasive biomarkers in clinical diagnosis and biological mechanism researches. It is still challenged to explore m6A functions due to technical limitations on base- and location-resolved m6A modification. Herein, we firstly proposed a sequence-spot bispecific photoelectrochemical (PEC) strategy based on in situ hybridization mediated proximity ligation assay for m6A RNA characterization with high sensitivity and accuracy. Firstly, the target m6A methylated RNA could be transferred to the exposed cohesive terminus of H1 based on the special self-designed auxiliary proximity ligation assay (PLA) with sequence-spot bispecific recognition. The exposed cohesive terminus of H1 could furtherly trigger the next catalytic hairpin assembly (CHA) amplification and in situ exponential nonlinear hyperbranched hybridization chain reaction for highly sensitive monitoring of m6A methylated RNA. Compared with conventional technologies, the proposed sequence-spot bispecific PEC strategy for m6A methylation of special RNA based on proximity ligation-triggered in situ nHCR performed improved sensitivity and selectivity with a detection limit of 53 fM, providing new insights into highly sensitive monitoring m6A methylation of RNA in bioassay, disease diagnosis and RNA mechanism.
Collapse
Affiliation(s)
- Yan Li
- Analytical & Testing Center, Southwest University, Chongqing, 400715, PR China; Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, PR China
| | - Yumeng Sun
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, PR China
| | - Weiguo Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Lan Yang
- Analytical & Testing Center, Southwest University, Chongqing, 400715, PR China
| | - Mingli Su
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Lichao Fang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, PR China
| | - Junsong Zheng
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, PR China
| | - Ruo Yuan
- Analytical & Testing Center, Southwest University, Chongqing, 400715, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| | - Wenbin Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
16
|
Qian L, Lin X, Gao X, Khan RU, Liao JY, Du S, Ge J, Zeng S, Yao SQ. The Dawn of a New Era: Targeting the "Undruggables" with Antibody-Based Therapeutics. Chem Rev 2023. [PMID: 37186942 DOI: 10.1021/acs.chemrev.2c00915] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The high selectivity and affinity of antibodies toward their antigens have made them a highly valuable tool in disease therapy, diagnosis, and basic research. A plethora of chemical and genetic approaches have been devised to make antibodies accessible to more "undruggable" targets and equipped with new functions of illustrating or regulating biological processes more precisely. In this Review, in addition to introducing how naked antibodies and various antibody conjugates (such as antibody-drug conjugates, antibody-oligonucleotide conjugates, antibody-enzyme conjugates, etc.) work in therapeutic applications, special attention has been paid to how chemistry tools have helped to optimize the therapeutic outcome (i.e., with enhanced efficacy and reduced side effects) or facilitate the multifunctionalization of antibodies, with a focus on emerging fields such as targeted protein degradation, real-time live-cell imaging, catalytic labeling or decaging with spatiotemporal control as well as the engagement of antibodies inside cells. With advances in modern chemistry and biotechnology, well-designed antibodies and their derivatives via size miniaturization or multifunctionalization together with efficient delivery systems have emerged, which have gradually improved our understanding of important biological processes and paved the way to pursue novel targets for potential treatments of various diseases.
Collapse
Affiliation(s)
- Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xuefen Lin
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xue Gao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rizwan Ullah Khan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jia-Yu Liao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shubo Du
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544
| |
Collapse
|
17
|
Gao H, Wang K, Li H, Fan Y, Sun X, Wang X, Sun H. Recent advances in electrochemical proximity ligation assay. Talanta 2023; 254:124158. [PMID: 36502611 DOI: 10.1016/j.talanta.2022.124158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Proximity ligation assay (PLA) is a vigorously developed homogeneous immunoassay assisted by DNA combining dual recognition of target protein by pairs of proximity probes, in which the detection of protein is tactfully converted to the detection of DNA. The booming developments in PLA have enabled a variety of ultrasensitive assays for the detection of protein and this concept of PLA is also extended to the detection of nucleic acids and some small molecule. The association between PLA and electrochemical method, defined as electrochemical proximity ligation assay (ECPLA), has gained much interests in disease diagnosis, food safety and environmental assays with the advantages, such as broad range of targets, simplicity, low cost and rapid response. In this review, we took a different perspective to present the history of PLA, the classical ECPLA biosensing methodology as well as the developments of ECPLA based on several key parameters, such as sensitivity, selectivity, reusability and generalization. In addition, the developments of PLA with electrochemiluminescence as readout are also presented. Finally, perspective and some unresolved challenges in ECPLA that can potentially be addressed have also been discussed.
Collapse
Affiliation(s)
- Hongfang Gao
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China.
| | - Ke Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics & Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Haiyu Li
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China
| | - Yeli Fan
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China
| | - Xiong Sun
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China
| | - Xia Wang
- School of Environmental Engineering, Wuxi University, Wuxi, 214105, PR China
| | - Huiping Sun
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215000, PR China
| |
Collapse
|
18
|
Meng S, Liu D, Li Y, Dong N, Liu S, Liu C, Li X, You T. Photoelectrochemical and visual dual-mode sensor for efficient detection of Cry1Ab protein based on the proximity hybridization driven specific desorption of multifunctional probe. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129759. [PMID: 36058185 DOI: 10.1016/j.jhazmat.2022.129759] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Currently, the development of sensitive and visual strategy for Cry1Ab detection, particularly using a switchable dual-mode detection system based on a single component, remains a great challenge. Here, a photoelectrochemical (PEC) and visual dual-mode sensor was designed for Cry1Ab detection based on a proximity hybridization driven multifunctional probe. In the presence of Cry1Ab, specific desorption of the antibody-DNA conjugate was achieved via sufficient proximity hybridization, leading to the selective release of the multifunctional signal probe, i.e., antibody-labeled single-stranded DNA-gold nanoparticles (Ab1-S1-AuNPs). The released Ab1-S1-AuNPs reduced the photocurrent signal and produced a colored response, thereby achieving PEC and visual dual-mode detection based on a single component. Owing to the different signal generation mechanisms, two independent signals were obtained simultaneously, which provided self-verification to improve reliability and accuracy. Taking advantage of the PEC sensitive detection and visual prediction, the dual-mode sensor achieved efficient detection of the Cry1Ab protein. The developed sensor was successfully used to determine Cry1Ab in corn, wheat, and soil samples with satisfactory results. This method offers a promising biosensing platform for the on-site detection of Cry1Ab protein.
Collapse
Affiliation(s)
- Shuyun Meng
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Dong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Yuye Li
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Na Dong
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Shuda Liu
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Chang Liu
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xia Li
- Department of Chemistry, Liaocheng University, Liaocheng 252059, Shandong, China
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
19
|
Yang P, Zhou R, Hu J, Du L, Li F, Chen J, Hou X. Lanthanide Encoded Logically Gated Micromachine for Simultaneous Detection of Nucleic Acids and Proteins by Elemental Mass Spectrometry. Anal Chem 2022; 94:17746-17750. [PMID: 36480455 DOI: 10.1021/acs.analchem.2c04494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA-based logic computing potentially for analysis of biomarker inputs and generation of oligonucleotide signal outputs is of great interest to scientists in diverse areas. However, its practical use for sensing of multiple biomarkers is limited by the universality and robustness. Based on a proximity assay, a lanthanide encoded logically gated micromachine (LGM-Ln) was constructed in this work, which is capable of responding to multiplex inputs in biological matrices. Under the logic function controls triggered by inputs and a Boolean "AND" algorithm, it is followed by an amplified "ON" signal to indicate the analytes (inputs). In this logically gated sensing system, the whole computational process does not involve strand displacement in an intermolecular reaction, and a threshold-free design is employed to generate the 0 and 1 computation via intraparticle cleavage, which facilitates the computation units and makes the "computed values" more reliable. By simply altering the affinity ligands for inputs' biorecognition, LGM-Ln can also be extended to multi-inputs mode and produce the robust lanthanide encoded outputs in the whole human serum for sensing nucleic acids (with the detection limit of 10 pM) and proteins (with the detection limit of 20 pM). Compared with a logically gated micromachine encoded with fluorophores, the LGM-Ln has higher resolution and no spectral overlaps for multiple inputs, thus holding great promise in multiplex analyses and clinical diagnosis.
Collapse
Affiliation(s)
- Peng Yang
- Biliary Surgical Department of West China Hospital, Sichuan University, Chengdu, Sichuan 610064, China.,Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China
| | - Rongxing Zhou
- Biliary Surgical Department of West China Hospital, Sichuan University, Chengdu, Sichuan 610064, China
| | - Jing Hu
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China
| | - Lijie Du
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China
| | - Feng Li
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Junbo Chen
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xiandeng Hou
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China.,Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
20
|
Hu C, Jin Y, Yang P, Zhou R, Xia L, Du L, Chen J, Cheng N, Hou X. Biomolecule-guided co-localization of intermolecular G-rich strands for the construction of a tetramolecular G-quadruplex sensing strategy. Chem Commun (Camb) 2022; 58:6914-6917. [PMID: 35621922 DOI: 10.1039/d2cc01587k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We herein introduce the principle of proximity assay into tetramolecular G-quadruplexes guided by various biomolecules for the construction of a sensing strategy. Our strategy is based on the co-localization of intermolecular G-rich strands guided by a recognition event of a specific biomolecule to its corresponding affinity ligand. In such case, the local concentration among intermolecular strands is significantly increased to trigger the following self-assembly that served as the peroxidase-mimicking activity. This strategy is versatile, homogenous and adaptable to different types of biomolecules.
Collapse
Affiliation(s)
- Changjia Hu
- Biliary Surgical Department, West China Hospital, Sichuan University, Chengdu, Sichuan, 610225, China. .,Analytical & Testing Center, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Yanwen Jin
- Biliary Surgical Department, West China Hospital, Sichuan University, Chengdu, Sichuan, 610225, China.
| | - Peng Yang
- Analytical & Testing Center, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Rongxing Zhou
- Biliary Surgical Department, West China Hospital, Sichuan University, Chengdu, Sichuan, 610225, China.
| | - Lingying Xia
- Biliary Surgical Department, West China Hospital, Sichuan University, Chengdu, Sichuan, 610225, China. .,Analytical & Testing Center, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Lijie Du
- Analytical & Testing Center, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Junbo Chen
- Analytical & Testing Center, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Nansheng Cheng
- Biliary Surgical Department, West China Hospital, Sichuan University, Chengdu, Sichuan, 610225, China.
| | - Xiandeng Hou
- Analytical & Testing Center, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| |
Collapse
|
21
|
Wang L, Wang X, Chen Z, Liu S. Electrochemical DNA Scaffold-Based Sensing Platform for Multiple Modes of Protein Assay and a Keypad Lock System. Anal Chem 2022; 94:8317-8326. [PMID: 35649122 DOI: 10.1021/acs.analchem.2c00800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Development of a flexible, easy-to-use, and well-controllable DNA-based sensing platform would provide enormous opportunities to boost molecular diagnosis and signal transduction or information processing. Herein, a duplex DNA scaffold containing a bulge was deployed for the fabrication of a simple and general DNA-based electrochemical sensing platform. It could be harnessed for different signal output behaviors (one signal-off and two signal-on modes) toward a single-step analysis of the target protein. The detection limit toward the target protein could reach about 0.1 nM. Also, it could be used as a streamlined electrochemical workflow for the successive monitoring of protein binding. Furthermore, such an electrochemical sensing platform could be explored for the operation of the concatenated AND logic gates as a molecular keypad lock system. The current sensing platform based on only one duplex DNA scaffold presented features such as simple biosensor design and fabrication, flexible operation for different signal outputs, sensitive and selective protein detection, and expandable logic operation. It thus would pave a broad road toward the development of high-performance biosensors or logic devices to be applied for molecular diagnosis or computing.
Collapse
Affiliation(s)
- Li Wang
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Xu Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Zhiqiang Chen
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Shufeng Liu
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China
| |
Collapse
|
22
|
Hu C, Zhang J, Jin Y, Ma W, Zhou R, Du H, Yang P, Hou X, Cheng N, Chen J. Protein recognition-initiated exponential amplification reaction (PRIEAR) and its application in clinical diagnosis. Chembiochem 2022; 23:e202100548. [PMID: 34989090 DOI: 10.1002/cbic.202100548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/04/2022] [Indexed: 02/05/2023]
Abstract
The isothermal exponential amplification technology have rarely been fabricated as the universal sensing platform for the detection of various proteins. To broaden its application, we here developed a strategy named protein recognition-initiated exponential amplification reaction (PRIEAR) using protein recognition to induce the DNA assembly which converts protein recognition events into ssDNA amplicons and combining two-stage amplification to achieve exponential amplification technology. Taking advantage of this principle, diverse biomarkers can be quantified at sub-picomolar concentrations in the homogenous manner, making the PRIEAR suitable for clinical practice. Therefore, this strategy can expand the powerful isothermal exponential amplification technology to protein targets and thus provide a new toolbox into the clinical and biomedical applications.
Collapse
Affiliation(s)
- Changjia Hu
- Sichuan University, West China hospital, CHINA
| | - Jie Zhang
- Sichuan University, West China hospital, CHINA
| | - Yanwen Jin
- Sichuan University, West China hospital, CHINA
| | - Wenjie Ma
- Sichuan University, West China hospital, CHINA
| | | | - Huan Du
- Sichuan University, College of Chemistry, CHINA
| | - Peng Yang
- Sichuan University, College of Chemistry, CHINA
| | | | | | - Junbo Chen
- Sichuan University, Analytical & Testing Centre, No.29 Wangjiang Road, 610064, Chengdu, CHINA
| |
Collapse
|
23
|
Dillen A, Vandezande W, Daems D, Lammertyn J. Unraveling the effect of the aptamer complementary element on the performance of duplexed aptamers: a thermodynamic study. Anal Bioanal Chem 2021; 413:4739-4750. [PMID: 34109445 DOI: 10.1007/s00216-021-03444-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022]
Abstract
Duplexed aptamers (DAs) are widespread aptasensor formats that simultaneously recognize and signal the concentration of target molecules. They are composed of an aptamer and aptamer complementary element (ACE) which consists of a short oligonucleotide that partially inhibits the aptamer sequence. Although the design principles to engineer DAs are straightforward, the tailored development of DAs for a particular target is currently based on trial and error due to limited knowledge of how the ACE sequence affects the final performance of DA biosensors. Therefore, we have established a thermodynamic model describing the influence of the ACE on the performance of DAs applied in equilibrium assays and demonstrated that this relationship can be described by the binding strength between the aptamer and ACE. To validate our theoretical findings, the model was applied to the 29-mer anti-thrombin aptamer as a case study, and an experimental relation between the aptamer-ACE binding strength and performance of DAs was established. The obtained results indicated that our proposed model could accurately describe the effect of the ACE sequence on the performance of the established DAs for thrombin detection, applied for equilibrium assays. Furthermore, to characterize the binding strength between the aptamer and ACEs evaluated in this work, a set of fitting equations was derived which enables thermodynamic characterization of DNA-based interactions through thermal denaturation experiments, thereby overcoming the limitations of current predictive software and chemical denaturation experiments. Altogether, this work encourages the development, characterization, and use of DAs in the field of biosensing.
Collapse
Affiliation(s)
- Annelies Dillen
- Department of Biosystems - Biosensors Group, KU Leuven, Willem de Croylaan 42, Box 2428, 3001, Leuven, Belgium
| | - Wouter Vandezande
- Department of Microbial and Molecular Systems - Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions, KU Leuven, Celestijnenlaan 200F, Box 2454, 3001, Leuven, Belgium
| | - Devin Daems
- Department of Chemistry - AXES research group, University of Antwerp, Groenenborgerlaan 171, 2010, Antwerpen, Belgium
| | - Jeroen Lammertyn
- Department of Biosystems - Biosensors Group, KU Leuven, Willem de Croylaan 42, Box 2428, 3001, Leuven, Belgium.
| |
Collapse
|