1
|
Julio AR, Shikwana F, Truong C, Burton NR, Dominguez ER, Turmon AC, Cao J, Backus KM. Delineating cysteine-reactive compound modulation of cellular proteostasis processes. Nat Chem Biol 2025; 21:693-705. [PMID: 39448844 DOI: 10.1038/s41589-024-01760-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
Covalent modulators and covalent degrader molecules have emerged as drug modalities with tremendous therapeutic potential. Toward realizing this potential, mass spectrometry-based chemoproteomic screens have generated proteome-wide maps of potential druggable cysteine residues. However, beyond these direct cysteine-target maps, the full scope of direct and indirect activities of these molecules on cellular processes and how such activities contribute to reported modes of action, such as degrader activity, remains to be fully understood. Using chemoproteomics, we identified a cysteine-reactive small molecule degrader of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nonstructural protein 14 (nsp14), which effects degradation through direct modification of cysteines in both nsp14 and in host protein disulfide isomerases. This degrader activity was further potentiated by generalized electrophile-induced global protein ubiquitylation, proteasome activation and widespread aggregation and depletion of host proteins, including the formation of stress granules. Collectively, we delineate the wide-ranging impacts of cysteine-reactive electrophilic compounds on cellular proteostasis processes.
Collapse
Affiliation(s)
- Ashley R Julio
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - Flowreen Shikwana
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - Cindy Truong
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Nikolas R Burton
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - Emil R Dominguez
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Alexandra C Turmon
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - Jian Cao
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Keriann M Backus
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA.
- DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Petri L, Gabizon R, Ferenczy GG, Péczka N, Egyed A, Ábrányi-Balogh P, Takács T, Keserű GM. Size-Dependent Target Engagement of Covalent Probes. J Med Chem 2025; 68:6616-6632. [PMID: 40099438 PMCID: PMC11956015 DOI: 10.1021/acs.jmedchem.5c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 03/19/2025]
Abstract
Labeling proteins with covalent ligands is finding increasing use in proteomics applications, including identifying nucleophilic residues amenable for labeling and in the development of targeted covalent inhibitors (TCIs). Labeling efficiency is measured by the covalent occupancy of the target or by biochemical activity. Here, we investigate how these observed quantities relate to the intrinsic parameters of complex formation, namely, noncovalent affinity and covalent reactivity, and to experimental conditions, including incubation time and ligand concentration. It is shown that target engagement is beneficially driven by noncovalent recognition for lead-like compounds, which are appropriate starting points for targeted covalent inhibitors owing to their easily detectable occupancy and fixed binding mode, facilitating optimization. In contrast, labeling by fragment-sized compounds is inevitably reactivity-driven as their small size limits noncovalent affinity. They are well-suited for exploring ligandable nucleophilic residues, while small fragments are less appropriate starting points for TCI development.
Collapse
Affiliation(s)
- László Petri
- Medicinal
Chemistry Research Group and National Drug Discovery and Development
Laboratory, HUN-REN Research Centre for
Natural Sciences, 2 Magyar
tudósok krt, Budapest 1117, Hungary
| | - Ronen Gabizon
- Department
of Chemical and Structural Biology, Weizmann
Institute of Science, Helen and Milton A. Kimmelman bldg, Rehovot 76100, Israel
| | - György G. Ferenczy
- Medicinal
Chemistry Research Group and National Drug Discovery and Development
Laboratory, HUN-REN Research Centre for
Natural Sciences, 2 Magyar
tudósok krt, Budapest 1117, Hungary
| | - Nikolett Péczka
- Medicinal
Chemistry Research Group and National Drug Discovery and Development
Laboratory, HUN-REN Research Centre for
Natural Sciences, 2 Magyar
tudósok krt, Budapest 1117, Hungary
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics, 8 Budafoki út, Budapest 1111, Hungary
| | - Attila Egyed
- Medicinal
Chemistry Research Group and National Drug Discovery and Development
Laboratory, HUN-REN Research Centre for
Natural Sciences, 2 Magyar
tudósok krt, Budapest 1117, Hungary
| | - Péter Ábrányi-Balogh
- Medicinal
Chemistry Research Group and National Drug Discovery and Development
Laboratory, HUN-REN Research Centre for
Natural Sciences, 2 Magyar
tudósok krt, Budapest 1117, Hungary
| | - Tamás Takács
- HUN-REN
Research Centre for Natural Sciences, Signal
Transduction and Functional Genomics Research Group, 2 Magyar tudósok krt, Budapest 1117, Hungary
- Doctoral
School of Biology, Institute of Biology,
ELTE Eötvös Loránd University, Pázmány Péter sétány
1/A, Budapest 1117, Hungary
| | - György M. Keserű
- Medicinal
Chemistry Research Group and National Drug Discovery and Development
Laboratory, HUN-REN Research Centre for
Natural Sciences, 2 Magyar
tudósok krt, Budapest 1117, Hungary
- Department
of Organic Chemistry and Technology, Budapest
University of Technology and Economics, 8 Budafoki út, Budapest 1111, Hungary
| |
Collapse
|
3
|
Liang J, Tian J, Zhang H, Li H, Chen L. Proteomics: An In-Depth Review on Recent Technical Advances and Their Applications in Biomedicine. Med Res Rev 2025. [PMID: 39789883 DOI: 10.1002/med.22098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/11/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025]
Abstract
Proteins hold pivotal importance since many diseases manifest changes in protein activity. Proteomics techniques provide a comprehensive exploration of protein structure, abundance, and function in biological samples, enabling the holistic characterization of overall changes in organisms. Nowadays, the breadth of emerging methodologies in proteomics is unprecedentedly vast, with constant optimization of technologies in sample processing, data collection, data analysis, and its scope of application is steadily transitioning from the bench to the clinic. Here, we offer an insightful review of the technical developments in proteomics and its applications in biomedicine over the past 5 years. We focus on its profound contributions in profiling disease spectra, discovering new biomarkers, identifying promising drug targets, deciphering alterations in protein conformation, and unearthing protein-protein interactions. Moreover, we summarize the cutting-edge technologies and potential breakthroughs in the proteomics pipeline and provide the principal challenges in proteomics. Based on these, we aspire to broaden the applicability of proteomics and inspire researchers to enhance our understanding of complex biological systems by utilizing such techniques.
Collapse
Affiliation(s)
- Jing Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Jundan Tian
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Huadong Zhang
- College of Pharmacy, Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
- College of Pharmacy, Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
4
|
Shikwana F, Heydari BS, Ofori S, Truong C, Turmon AC, Darrouj J, Holoidovsky L, Gustafson JL, Backus KM. CySP3-96 enables scalable, streamlined, and low-cost sample preparation for cysteine chemoproteomic applications. Mol Cell Proteomics 2024:100898. [PMID: 39706478 DOI: 10.1016/j.mcpro.2024.100898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/19/2024] [Accepted: 12/06/2024] [Indexed: 12/23/2024] Open
Abstract
Cysteine chemoproteomic screening platforms are widely utilized for chemical probe and drug discovery campaigns. Chemoproteomic compound screens, which use a mass spectrometry-based proteomic readout, can interrogate the structure activity relationship (SAR) for thousands of proteins in parallel across the proteome. The versatility of chemoproteomic screens has been demonstrated across electrophilic, nucleophilic, and reversible classes of molecules. However, a key bottleneck that remains for these approaches is the low throughput nature of most established sample preparation workflows, which rely on many time-intensive and often error prone steps. Addressing these challenges, here we establish a novel workflow, termed CySP3-96, that pairs single-pot, solid-phase-enhanced, sample preparation (SP3) with a customized 96-well sample cleanup workflow to achieve streamlined multiplexed sample preparation. Our CySP3-96 method addresses prior volume limitations of SP3, which allows for seamless 96-well chemoproteomic sample preparation, including for large input amounts that are incompatible with prior methods. By deploying CySP3-96 to screen a focused set of 16 cysteine-reactive compounds, we identify 2633 total ligandable cysteines, including 21 not captured in CysDB. Chemoproteomic analysis of a pair of atropisomeric electrophilic kinase inhibitors reveals striking stereoselective cysteine ligandability for 67 targets across the proteome. When paired with our innovative budget friendly magnetic resin, CySP3-96 represents a versatile, low cost, and highly reproducible screening platform with widespread applications spanning all types of chemoproteomic studies.
Collapse
Affiliation(s)
- Flowreen Shikwana
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
| | - Beeta S Heydari
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA. 92182, USA
| | - Samuel Ofori
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Cindy Truong
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
| | - Alexandra C Turmon
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
| | - Joelle Darrouj
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
| | - Lara Holoidovsky
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Jeffrey L Gustafson
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA. 92182, USA; Stony Brook University, Stony Brook NY, 11794, USA
| | - Keriann M Backus
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA; DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA, 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
5
|
Desai H, Andrews KH, Bergersen KV, Ofori S, Yu F, Shikwana F, Arbing MA, Boatner LM, Villanueva M, Ung N, Reed EF, Nesvizhskii AI, Backus KM. Chemoproteogenomic stratification of the missense variant cysteinome. Nat Commun 2024; 15:9284. [PMID: 39468056 PMCID: PMC11519605 DOI: 10.1038/s41467-024-53520-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
Cancer genomes are rife with genetic variants; one key outcome of this variation is widespread gain-of-cysteine mutations. These acquired cysteines can be both driver mutations and sites targeted by precision therapies. However, despite their ubiquity, nearly all acquired cysteines remain unidentified via chemoproteomics; identification is a critical step to enable functional analysis, including assessment of potential druggability and susceptibility to oxidation. Here, we pair cysteine chemoproteomics-a technique that enables proteome-wide pinpointing of functional, redox sensitive, and potentially druggable residues-with genomics to reveal the hidden landscape of cysteine genetic variation. Our chemoproteogenomics platform integrates chemoproteomic, whole exome, and RNA-seq data, with a customized two-stage false discovery rate (FDR) error controlled proteomic search, which is further enhanced with a user-friendly FragPipe interface. Chemoproteogenomics analysis reveals that cysteine acquisition is a ubiquitous feature of both healthy and cancer genomes that is further elevated in the context of decreased DNA repair. Reference cysteines proximal to missense variants are also found to be pervasive, supporting heretofore untapped opportunities for variant-specific chemical probe development campaigns. As chemoproteogenomics is further distinguished by sample-matched combinatorial variant databases and is compatible with redox proteomics and small molecule screening, we expect widespread utility in guiding proteoform-specific biology and therapeutic discovery.
Collapse
Affiliation(s)
- Heta Desai
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Katrina H Andrews
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Kristina V Bergersen
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Samuel Ofori
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Flowreen Shikwana
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - Mark A Arbing
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- UCLA-DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA, USA
| | - Lisa M Boatner
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - Miranda Villanueva
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Nicholas Ung
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Keriann M Backus
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA.
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA.
- UCLA-DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Kennelly JP, Xiao X, Gao Y, Kim S, Hong SG, Villanueva M, Ferrari A, Vanharanta L, Nguyen A, Nagari RT, Burton NR, Tol MJ, Becker AP, Lee MJ, Ikonen E, Backus KM, Mack JJ, Tontonoz P. Cholesterol binding to VCAM-1 promotes vascular inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613543. [PMID: 39345495 PMCID: PMC11429921 DOI: 10.1101/2024.09.17.613543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Hypercholesterolemia has long been implicated in endothelial cell (EC) dysfunction, but the mechanisms by which excess cholesterol causes vascular pathology are incompletely understood. Here we used a cholesterol-mimetic probe to map cholesterol-protein interactions in primary human ECs and discovered that cholesterol binds to and stabilizes the adhesion molecule VCAM-1. We show that accessible plasma membrane (PM) cholesterol in ECs is acutely responsive to inflammatory stimuli and that the nonvesicular cholesterol transporter Aster-A regulates VCAM-1 stability in activated ECs by controlling the size of this pool. Deletion of Aster-A in ECs increases VCAM-1 protein, promotes immune cell recruitment to vessels, and impairs pulmonary immune homeostasis. Conversely, depleting cholesterol from the endothelium in vivo dampens VCAM-1 induction in response to inflammatory stimuli. These findings identify cholesterol binding to VCAM-1 as a key step during EC activation and provide a biochemical explanation for the ability of excess membrane cholesterol to promote immune cell recruitment to the endothelium.
Collapse
Affiliation(s)
- John P. Kennelly
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
- These authors contributed equally
| | - Xu Xiao
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
- These authors contributed equally
| | - Yajing Gao
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
| | - Sumin Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Soon-Gook Hong
- Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
- Department of Medicine, Division of Cardiology, UCLA, Los Angeles, CA, USA
| | | | - Alessandra Ferrari
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
| | - Lauri Vanharanta
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
| | - Alexander Nguyen
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Rohith T. Nagari
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
| | - Nikolas R. Burton
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Marcus J. Tol
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
| | - Andrew P. Becker
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
| | - Min Jae Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Elina Ikonen
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
| | - Keriann M. Backus
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
- DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California 90095, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California 90095, United States
| | - Julia J. Mack
- Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
- Department of Medicine, Division of Cardiology, UCLA, Los Angeles, CA, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
- Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Zhai Y, Zhang X, Chen Z, Yan D, Zhu L, Zhang Z, Wang X, Tian K, Huang Y, Yang X, Sun W, Wang D, Tsai YH, Luo T, Li G. Global profiling of functional histidines in live cells using small-molecule photosensitizer and chemical probe relay labelling. Nat Chem 2024; 16:1546-1557. [PMID: 38834725 DOI: 10.1038/s41557-024-01545-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 04/26/2024] [Indexed: 06/06/2024]
Abstract
Recent advances in chemical proteomics have focused on developing chemical probes that react with nucleophilic amino acid residues. Although histidine is an attractive candidate due to its importance in enzymatic catalysis, metal binding and protein-protein interaction, its moderate nucleophilicity poses challenges. Its modification is frequently influenced by cysteine and lysine, which results in poor selectivity and narrow proteome coverage. Here we report a singlet oxygen and chemical probe relay labelling method that achieves high selectivity towards histidine. Libraries of small-molecule photosensitizers and chemical probes were screened to optimize histidine labelling, enabling histidine profiling in live cells with around 7,200 unique sites. Using NMR spectroscopy and X-ray crystallography, we characterized the reaction mechanism and the structures of the resulting products. We then applied this method to discover unannotated histidine sites key to enzymatic activity and metal binding in select metalloproteins. This method also revealed the accessibility change of histidine mediated by protein-protein interaction that influences select protein subcellular localization, underscoring its capability in discovering functional histidines.
Collapse
Affiliation(s)
- Yansheng Zhai
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Xinyu Zhang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, China
| | - Zijing Chen
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | | | - Lin Zhu
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Zhe Zhang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xianghe Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Kailu Tian
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yan Huang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Xi Yang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Dong Wang
- Shenzhen University, Shenzhen, China
| | - Yu-Hsuan Tsai
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Tuoping Luo
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Gang Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
8
|
Jiang Y, Rex DA, Schuster D, Neely BA, Rosano GL, Volkmar N, Momenzadeh A, Peters-Clarke TM, Egbert SB, Kreimer S, Doud EH, Crook OM, Yadav AK, Vanuopadath M, Hegeman AD, Mayta M, Duboff AG, Riley NM, Moritz RL, Meyer JG. Comprehensive Overview of Bottom-Up Proteomics Using Mass Spectrometry. ACS MEASUREMENT SCIENCE AU 2024; 4:338-417. [PMID: 39193565 PMCID: PMC11348894 DOI: 10.1021/acsmeasuresciau.3c00068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 08/29/2024]
Abstract
Proteomics is the large scale study of protein structure and function from biological systems through protein identification and quantification. "Shotgun proteomics" or "bottom-up proteomics" is the prevailing strategy, in which proteins are hydrolyzed into peptides that are analyzed by mass spectrometry. Proteomics studies can be applied to diverse studies ranging from simple protein identification to studies of proteoforms, protein-protein interactions, protein structural alterations, absolute and relative protein quantification, post-translational modifications, and protein stability. To enable this range of different experiments, there are diverse strategies for proteome analysis. The nuances of how proteomic workflows differ may be challenging to understand for new practitioners. Here, we provide a comprehensive overview of different proteomics methods. We cover from biochemistry basics and protein extraction to biological interpretation and orthogonal validation. We expect this Review will serve as a handbook for researchers who are new to the field of bottom-up proteomics.
Collapse
Affiliation(s)
- Yuming Jiang
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Devasahayam Arokia
Balaya Rex
- Center for
Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Dina Schuster
- Department
of Biology, Institute of Molecular Systems
Biology, ETH Zurich, Zurich 8093, Switzerland
- Department
of Biology, Institute of Molecular Biology
and Biophysics, ETH Zurich, Zurich 8093, Switzerland
- Laboratory
of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Benjamin A. Neely
- Chemical
Sciences Division, National Institute of
Standards and Technology, NIST, Charleston, South Carolina 29412, United States
| | - Germán L. Rosano
- Mass
Spectrometry
Unit, Institute of Molecular and Cellular
Biology of Rosario, Rosario, 2000 Argentina
| | - Norbert Volkmar
- Department
of Biology, Institute of Molecular Systems
Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Amanda Momenzadeh
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Trenton M. Peters-Clarke
- Department
of Pharmaceutical Chemistry, University
of California—San Francisco, San Francisco, California, 94158, United States
| | - Susan B. Egbert
- Department
of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada
| | - Simion Kreimer
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Emma H. Doud
- Center
for Proteome Analysis, Indiana University
School of Medicine, Indianapolis, Indiana, 46202-3082, United States
| | - Oliver M. Crook
- Oxford
Protein Informatics Group, Department of Statistics, University of Oxford, Oxford OX1 3LB, United
Kingdom
| | - Amit Kumar Yadav
- Translational
Health Science and Technology Institute, NCR Biotech Science Cluster 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad, Haryana 121001, India
| | | | - Adrian D. Hegeman
- Departments
of Horticultural Science and Plant and Microbial Biology, University of Minnesota, Twin Cities, Minnesota 55108, United States
| | - Martín
L. Mayta
- School
of Medicine and Health Sciences, Center for Health Sciences Research, Universidad Adventista del Plata, Libertador San Martin 3103, Argentina
- Molecular
Biology Department, School of Pharmacy and Biochemistry, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Anna G. Duboff
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Nicholas M. Riley
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Robert L. Moritz
- Institute
for Systems biology, Seattle, Washington 98109, United States
| | - Jesse G. Meyer
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| |
Collapse
|
9
|
Auger SA, Venkatachalapathy S, Suazo KFG, Wang Y, Sarkis AW, Bernhagen K, Justyna K, Schaefer JV, Wollack JW, Plückthun A, Li L, Distefano MD. Broadening the Utility of Farnesyltransferase-Catalyzed Protein Labeling Using Norbornene-Tetrazine Click Chemistry. Bioconjug Chem 2024; 35:922-933. [PMID: 38654427 PMCID: PMC11619650 DOI: 10.1021/acs.bioconjchem.4c00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Bioorthogonal chemistry has gained widespread use in the study of many biological systems of interest, including protein prenylation. Prenylation is a post-translational modification, in which one or two 15- or 20-carbon isoprenoid chains are transferred onto cysteine residues near the C-terminus of a target protein. The three main enzymes─protein farnesyltransferase (FTase), geranylgeranyl transferase I (GGTase I), and geranylgeranyl transferase II (GGTase II)─that catalyze this process have been shown to tolerate numerous structural modifications in the isoprenoid substrate. This feature has previously been exploited to transfer an array of farnesyl diphosphate analogues with a range of functionalities, including an alkyne-containing analogue for copper-catalyzed bioconjugation reactions. Reported here is the synthesis of an analogue of the isoprenoid substrate embedded with norbornene functionality (C10NorOPP) that can be used for an array of applications, ranging from metabolic labeling to selective protein modification. The probe was synthesized in seven steps with an overall yield of 7% and underwent an inverse electron demand Diels-Alder (IEDDA) reaction with tetrazine-containing tags, allowing for copper-free labeling of proteins. The use of C10NorOPP for the study of prenylation was explored in the metabolic labeling of prenylated proteins in HeLa, COS-7, and astrocyte cells. Furthermore, in HeLa cells, these modified prenylated proteins were identified and quantified using label-free quantification (LFQ) proteomics with 25 enriched prenylated proteins. Additionally, the unique chemistry of C10NorOPP was utilized for the construction of a multiprotein-polymer conjugate for the targeted labeling of cancer cells. That construct was prepared using a combination of norbornene-tetrazine conjugation and azide-alkyne cycloaddition, highlighting the utility of the additional degree of orthogonality for the facile assembly of new protein conjugates with novel structures and functions.
Collapse
Affiliation(s)
- Shelby A. Auger
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | | | | | - Yiao Wang
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Alexander W. Sarkis
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Kaitlyn Bernhagen
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Katarzyna Justyna
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jonas V. Schaefer
- Department of Biochemistry, University of Zurich, Zurich, CH-8057, Switzerland
| | - James W. Wollack
- Department of Chemistry and Biochemistry, St. Catherine University, St. Paul MN, 55105, USA
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Zurich, CH-8057, Switzerland
| | - Ling Li
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mark D. Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
10
|
Castellón JO, Ofori S, Burton NR, Julio AR, Turmon AC, Armenta E, Sandoval C, Boatner LM, Takayoshi EE, Faragalla M, Taylor C, Zhou AL, Tran K, Shek J, Yan T, Desai HS, Fregoso OI, Damoiseaux R, Backus KM. Chemoproteomics Identifies State-Dependent and Proteoform-Selective Caspase-2 Inhibitors. J Am Chem Soc 2024; 146:14972-14988. [PMID: 38787738 PMCID: PMC11832190 DOI: 10.1021/jacs.3c12240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Caspases are a highly conserved family of cysteine-aspartyl proteases known for their essential roles in regulating apoptosis, inflammation, cell differentiation, and proliferation. Complementary to genetic approaches, small-molecule probes have emerged as useful tools for modulating caspase activity. However, due to the high sequence and structure homology of all 12 human caspases, achieving selectivity remains a central challenge for caspase-directed small-molecule inhibitor development efforts. Here, using mass spectrometry-based chemoproteomics, we first identify a highly reactive noncatalytic cysteine that is unique to caspase-2. By combining both gel-based activity-based protein profiling (ABPP) and a tobacco etch virus (TEV) protease activation assay, we then identify covalent lead compounds that react preferentially with this cysteine and afford a complete blockade of caspase-2 activity. Inhibitory activity is restricted to the zymogen or precursor form of monomeric caspase-2. Focused analogue synthesis combined with chemoproteomic target engagement analysis in cellular lysates and in cells yielded both pan-caspase-reactive molecules and caspase-2 selective lead compounds together with a structurally matched inactive control. Application of this focused set of tool compounds to stratify the functions of the zymogen and partially processed (p32) forms of caspase-2 provide evidence to support that caspase-2-mediated response to DNA damage is largely driven by the partially processed p32 form of the enzyme. More broadly, our study highlights future opportunities for the development of proteoform-selective caspase inhibitors that target nonconserved and noncatalytic cysteine residues.
Collapse
Affiliation(s)
- José O Castellón
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
| | - Samuel Ofori
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
| | - Nikolas R Burton
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Ashley R Julio
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Alexandra C Turmon
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Ernest Armenta
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Carina Sandoval
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, United States
| | - Lisa M Boatner
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Evan E Takayoshi
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Marina Faragalla
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Cameron Taylor
- California NanoSystems Institute (CNSI), UCLA, Los Angeles, California 90095, United States
| | - Ann L Zhou
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Ky Tran
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Jeremy Shek
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Tianyang Yan
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Heta S Desai
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
| | - Oliver I Fregoso
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, United States
| | - Robert Damoiseaux
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California 90095, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), UCLA, Los Angeles, California 90095, United States
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California 90095, United States
- Department of Bioengineering, Samueli School of Engineering, UCLA, Los Angeles, California 90095, United States
| | - Keriann M Backus
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
- DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California 90095, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California 90095, United States
| |
Collapse
|
11
|
Kim HR, Byun DP, Thakur K, Ritchie J, Xie Y, Holewinski R, Suazo KF, Stevens M, Liechty H, Tagirasa R, Jing Y, Andresson T, Johnson SM, Yoo E. Discovery of a Tunable Heterocyclic Electrophile 4-Chloro-pyrazolopyridine That Defines a Unique Subset of Ligandable Cysteines. ACS Chem Biol 2024; 19:1082-1092. [PMID: 38629450 PMCID: PMC11107811 DOI: 10.1021/acschembio.4c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 05/18/2024]
Abstract
Electrophilic small molecules with novel reactivity are powerful tools that enable activity-based protein profiling and covalent inhibitor discovery. Here, we report a reactive heterocyclic scaffold, 4-chloro-pyrazolopyridine (CPzP) for selective modification of proteins via a nucleophilic aromatic substitution (SNAr) mechanism. Chemoproteomic profiling reveals that CPzPs engage cysteines within functionally diverse protein sites including ribosomal protein S5 (RPS5), inosine monophosphate dehydrogenase 2 (IMPDH2), and heat shock protein 60 (HSP60). Through the optimization of appended recognition elements, we demonstrate the utility of CPzP for covalent inhibition of prolyl endopeptidase (PREP) by targeting a noncatalytic active-site cysteine. This study suggests that the proteome reactivity of CPzPs can be modulated by both electronic and steric features of the ring system, providing a new tunable electrophile for applications in chemoproteomics and covalent inhibitor design.
Collapse
Affiliation(s)
- Hong-Rae Kim
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - David P. Byun
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Kalyani Thakur
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Jennifer Ritchie
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Yixin Xie
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Ronald Holewinski
- Protein
Characterization Laboratory, Frederick National Laboratory for Cancer
Research, Leidos Biomedical Research, Frederick, Maryland 21702, United States
| | - Kiall F. Suazo
- Protein
Characterization Laboratory, Frederick National Laboratory for Cancer
Research, Leidos Biomedical Research, Frederick, Maryland 21702, United States
| | - Mckayla Stevens
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Hope Liechty
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Ravichandra Tagirasa
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Yihang Jing
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Thorkell Andresson
- Protein
Characterization Laboratory, Frederick National Laboratory for Cancer
Research, Leidos Biomedical Research, Frederick, Maryland 21702, United States
| | - Steven M. Johnson
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Euna Yoo
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
12
|
Takahashi M, Chong HB, Zhang S, Yang TY, Lazarov MJ, Harry S, Maynard M, Hilbert B, White RD, Murrey HE, Tsou CC, Vordermark K, Assaad J, Gohar M, Dürr BR, Richter M, Patel H, Kryukov G, Brooijmans N, Alghali ASO, Rubio K, Villanueva A, Zhang J, Ge M, Makram F, Griesshaber H, Harrison D, Koglin AS, Ojeda S, Karakyriakou B, Healy A, Popoola G, Rachmin I, Khandelwal N, Neil JR, Tien PC, Chen N, Hosp T, van den Ouweland S, Hara T, Bussema L, Dong R, Shi L, Rasmussen MQ, Domingues AC, Lawless A, Fang J, Yoda S, Nguyen LP, Reeves SM, Wakefield FN, Acker A, Clark SE, Dubash T, Kastanos J, Oh E, Fisher DE, Maheswaran S, Haber DA, Boland GM, Sade-Feldman M, Jenkins RW, Hata AN, Bardeesy NM, Suvà ML, Martin BR, Liau BB, Ott CJ, Rivera MN, Lawrence MS, Bar-Peled L. DrugMap: A quantitative pan-cancer analysis of cysteine ligandability. Cell 2024; 187:2536-2556.e30. [PMID: 38653237 PMCID: PMC11143475 DOI: 10.1016/j.cell.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/15/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024]
Abstract
Cysteine-focused chemical proteomic platforms have accelerated the clinical development of covalent inhibitors for a wide range of targets in cancer. However, how different oncogenic contexts influence cysteine targeting remains unknown. To address this question, we have developed "DrugMap," an atlas of cysteine ligandability compiled across 416 cancer cell lines. We unexpectedly find that cysteine ligandability varies across cancer cell lines, and we attribute this to differences in cellular redox states, protein conformational changes, and genetic mutations. Leveraging these findings, we identify actionable cysteines in NF-κB1 and SOX10 and develop corresponding covalent ligands that block the activity of these transcription factors. We demonstrate that the NF-κB1 probe blocks DNA binding, whereas the SOX10 ligand increases SOX10-SOX10 interactions and disrupts melanoma transcriptional signaling. Our findings reveal heterogeneity in cysteine ligandability across cancers, pinpoint cell-intrinsic features driving cysteine targeting, and illustrate the use of covalent probes to disrupt oncogenic transcription-factor activity.
Collapse
Affiliation(s)
- Mariko Takahashi
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA.
| | - Harrison B Chong
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Siwen Zhang
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Tzu-Yi Yang
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Matthew J Lazarov
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Stefan Harry
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | | - Kira Vordermark
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Jonathan Assaad
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Magdy Gohar
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Benedikt R Dürr
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Marianne Richter
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Himani Patel
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | | | | | | | - Karla Rubio
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Antonio Villanueva
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Junbing Zhang
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Maolin Ge
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Farah Makram
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Hanna Griesshaber
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Drew Harrison
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Ann-Sophie Koglin
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Samuel Ojeda
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Barbara Karakyriakou
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Alexander Healy
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - George Popoola
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Inbal Rachmin
- Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Neha Khandelwal
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | | | - Pei-Chieh Tien
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Nicholas Chen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Tobias Hosp
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Sanne van den Ouweland
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Toshiro Hara
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lillian Bussema
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Rui Dong
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lei Shi
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Martin Q Rasmussen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Ana Carolina Domingues
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Aleigha Lawless
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jacy Fang
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Satoshi Yoda
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Linh Phuong Nguyen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Sarah Marie Reeves
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Farrah Nicole Wakefield
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Adam Acker
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Sarah Elizabeth Clark
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Taronish Dubash
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - John Kastanos
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Eugene Oh
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - David E Fisher
- Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Shyamala Maheswaran
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Daniel A Haber
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Genevieve M Boland
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Moshe Sade-Feldman
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Russell W Jenkins
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Aaron N Hata
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Nabeel M Bardeesy
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Mario L Suvà
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | | | - Brian B Liau
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Christopher J Ott
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Miguel N Rivera
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Michael S Lawrence
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA.
| | - Liron Bar-Peled
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
13
|
Burton NR, Backus KM. Functionalizing tandem mass tags for streamlining click-based quantitative chemoproteomics. Commun Chem 2024; 7:80. [PMID: 38600184 PMCID: PMC11006884 DOI: 10.1038/s42004-024-01162-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Mapping the ligandability or potential druggability of all proteins in the human proteome is a central goal of mass spectrometry-based covalent chemoproteomics. Achieving this ambitious objective requires high throughput and high coverage sample preparation and liquid chromatography-tandem mass spectrometry analysis for hundreds to thousands of reactive compounds and chemical probes. Conducting chemoproteomic screens at this scale benefits from technical innovations that achieve increased sample throughput. Here we realize this vision by establishing the silane-based cleavable linkers for isotopically-labeled proteomics-tandem mass tag (sCIP-TMT) proteomic platform, which is distinguished by early sample pooling that increases sample preparation throughput. sCIP-TMT pairs a custom click-compatible sCIP capture reagent that is readily functionalized in high yield with commercially available TMT reagents. Synthesis and benchmarking of a 10-plex set of sCIP-TMT reveal a substantial decrease in sample preparation time together with high coverage and high accuracy quantification. By screening a focused set of four cysteine-reactive electrophiles, we demonstrate the utility of sCIP-TMT for chemoproteomic target hunting, identifying 789 total liganded cysteines. Distinguished by its compatibility with established enrichment and quantification protocols, we expect sCIP-TMT will readily translate to a wide range of covalent chemoproteomic applications.
Collapse
Affiliation(s)
- Nikolas R Burton
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles CA, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - Keriann M Backus
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles CA, USA.
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA.
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA.
- DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Marinus N, Reintjens NRM, Haldimann K, Mouthaan MLMC, Hobbie SN, Witte MD, Minnaard AJ. Site-Selective Palladium-catalyzed Oxidation of Unprotected Aminoglycosides and Sugar Phosphates. Chemistry 2024; 30:e202400017. [PMID: 38284753 DOI: 10.1002/chem.202400017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 01/30/2024]
Abstract
The site-selective modification of complex biomolecules by transition metal-catalysis is highly warranted, but often thwarted by the presence of Lewis basic functional groups. This study demonstrates that protonation of amines and phosphates in carbohydrates circumvents catalyst inhibition in palladium-catalyzed site-selective oxidation. Both aminoglycosides and sugar phosphates, compound classes that up till now largely escaped direct modification, are oxidized with good efficiency. Site-selective oxidation of kanamycin and amikacin was used to prepare a set of 3'-modified aminoglycoside derivatives of which two showed promising activity against antibiotic-resistant E. coli strains.
Collapse
Affiliation(s)
- Nittert Marinus
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The, Netherlands
| | - Niels R M Reintjens
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The, Netherlands
| | - Klara Haldimann
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 28/30, Zürich, Switzerland
| | - Marc L M C Mouthaan
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The, Netherlands
| | - Sven N Hobbie
- Institute of Medical Microbiology, University of Zürich, Gloriastrasse 28/30, Zürich, Switzerland
| | - Martin D Witte
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The, Netherlands
| | - Adriaan J Minnaard
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The, Netherlands
| |
Collapse
|
15
|
Burger N, Chouchani ET. A new era of cysteine proteomics - Technological advances in thiol biology. Curr Opin Chem Biol 2024; 79:102435. [PMID: 38382148 DOI: 10.1016/j.cbpa.2024.102435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024]
Abstract
Cysteines are amenable to a diverse set of modifications that exhibit critical regulatory functions over the proteome and thereby control a wide range of cellular processes. Proteomic technologies have emerged as a powerful strategy to interrogate cysteine modifications across the proteome. Recent advancements in enrichment strategies, multiplexing capabilities and increased analytical sensitivity have enabled deeper quantitative cysteine profiling, capturing a substantial proportion of the cysteine proteome. This is complemented by a rapidly growing repertoire of analytical strategies illuminating the diverse landscape of cysteine modifications. Cysteine chemoproteomics technologies have evolved into a powerful strategy to facilitate the development of covalent drugs, opening unprecedented opportunities to target the extensive undrugged proteome. Herein we review recent technological and scientific advances that shape the cysteine proteomics field.
Collapse
Affiliation(s)
- Nils Burger
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Julio AR, Yan T, Backus KM. Protocol for organelle-specific cysteine capture and quantification of cysteine oxidation state. STAR Protoc 2024; 5:102865. [PMID: 38329879 PMCID: PMC10862403 DOI: 10.1016/j.xpro.2024.102865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/01/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
Pinpointing functional, structural, and redox-sensitive cysteines is a central challenge of chemoproteomics. Here, we present a protocol comprising two dual-enrichment cysteine chemoproteomic techniques that enable capture of cysteines (Cys-LoC) and quantification of cysteine oxidation state (Cys-LOx) in a localization-specific manner. We describe steps for utilizing TurboID-mediated protein biotinylation for enrichment of compartment-specific proteins, followed by click-mediated biotinylation and enrichment of cysteine-containing peptides. Thus, changes to compartment-specific cysteine identification and redox state can be assessed in a variety of contexts. For complete details on the use and execution of this protocol, please refer to Yan et al. (2023).1.
Collapse
Affiliation(s)
- Ashley R Julio
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA.
| | - Tianyang Yan
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Keriann M Backus
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
17
|
Wang S, Xia X, Chen Q, Li K, Xiao X, Chen FE. Accelerated Diffusion of a Copper(I)-Functionalized COF Packed Bed Reactor for Efficient Continuous Flow Catalysis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5158-5167. [PMID: 38238929 DOI: 10.1021/acsami.3c17607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Flow chemistry provides a neo-orientation for the research and development of chemical technology, in which heterogeneous continuous catalysis based on packed beds can realize rapid separation and recycling. However, options for heterogeneous catalysts are still limited. In this work, we gradually grow covalent organic frameworks (COFs, TpBpy) on the surface of a silica gel (SiO2)-supported substrate to obtain a stable copper(I)-chelated high-loading heterogeneous catalyst (SiO2@CuI-TpBpy). SiO2@CuI-TpBpy shows high catalytic activity in three-component Huisgen 1,3-dipolar cycloaddition, giving the corresponding triazoles with excellent yields and reposeful recyclability under batch conditions. The structures of the catalysts remain steady, and the copper contents are basically unchanged after five cycles. Then, the catalysts are successfully applied for three-component heterogeneous catalysis in a one-pot continuous flow to prepare rufinamide in 89% yield for 24 h stably and efficiently with mere traces of copper ions remaining. More importantly, the catalytic system reveals a minuscule effect of catalyst particle size on internal diffusion. This COF encapsulation strategy presents a new possibility for the design of industrial heterogeneous catalysts with high metal loading and low internal diffusion resistance.
Collapse
Affiliation(s)
- Shizhao Wang
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic China
| | - Xiaocong Xia
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic China
| | - Qi Chen
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic China
| | - Ka Li
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic China
| | - Xiao Xiao
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic China
| | - Fen-Er Chen
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People's Republic China
| |
Collapse
|
18
|
Liu R, Clayton J, Shen M, Bhatnagar S, Shen J. Machine Learning Models to Interrogate Proteomewide Covalent Ligandabilities Directed at Cysteines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.17.553742. [PMID: 37662346 PMCID: PMC10473668 DOI: 10.1101/2023.08.17.553742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Machine learning (ML) identification of covalently ligandable sites may accelerate targeted covalent inhibitor design and help expand the druggable proteome space. Here we report the rigorous development and validation of the tree-based models and convolutional neural networks (CNNs) trained on a newly curated database (LigCys3D) of over 1,000 liganded cysteines in nearly 800 proteins represented by over 10,000 three-dimensional structures in the protein data bank. The unseen tests yielded 94% and 93% AUCs (area under the receiver operating characteristic curve) for the tree models and CNNs, respectively. Based on the AlphaFold2 predicted structures, the ML models recapitulated the newly liganded cysteines in the PDB with over 90% recall values. To assist the community of covalent drug discoveries, we report the predicted ligandable cysteines in 392 human kinases and their locations in the sequence-aligned kinase structure including the PH and SH2 domains. Furthermore, we disseminate a searchable online database LigCys3D (https://ligcys.computchem.org/) and a web prediction server DeepCys (https://deepcys.computchem.org/), both of which will be continuously updated and improved by including newly published experimental data. The present work represents a first step towards the ML-led integration of big genome data and structure models to annotate the human proteome space for the next-generation covalent drug discoveries.
Collapse
Affiliation(s)
- Ruibin Liu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Joseph Clayton
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Mingzhe Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Shubham Bhatnagar
- Department of Computer Science, University of Maryland at College Park, College Park, MD 20742, USA
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| |
Collapse
|
19
|
Yan T, Boatner LM, Cui L, Tontonoz PJ, Backus KM. Defining the Cell Surface Cysteinome Using Two-Step Enrichment Proteomics. JACS AU 2023; 3:3506-3523. [PMID: 38155636 PMCID: PMC10751780 DOI: 10.1021/jacsau.3c00707] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023]
Abstract
The plasma membrane proteome is a rich resource of functionally important and therapeutically relevant protein targets. Distinguished by high hydrophobicity, heavy glycosylation, disulfide-rich sequences, and low overall abundance, the cell surface proteome remains undersampled in established proteomic pipelines, including our own cysteine chemoproteomics platforms. Here, we paired cell surface glycoprotein capture with cysteine chemoproteomics to establish a two-stage enrichment method that enables chemoproteomic profiling of cell Surface Cysteinome. Our "Cys-Surf" platform captures >2,800 total membrane protein cysteines in 1,046 proteins, including 1,907 residues not previously captured by bulk proteomic analysis. By pairing Cys-Surf with an isotopic chemoproteomic readout, we uncovered 821 total ligandable cysteines, including known and novel sites. Cys-Surf also robustly delineates redox-sensitive cysteines, including cysteines prone to activation-dependent changes to cysteine oxidation state and residues sensitive to addition of exogenous reductants. Exemplifying the capacity of Cys-Surf to delineate functionally important cysteines, we identified a redox sensitive cysteine in the low-density lipoprotein receptor (LDLR) that impacts both the protein localization and uptake of low-density lipoprotein (LDL) particles. Taken together, the Cys-Surf platform, distinguished by its two-stage enrichment paradigm, represents a tailored approach to delineate the functional and therapeutic potential of the plasma membrane cysteinome.
Collapse
Affiliation(s)
- Tianyang Yan
- Department
of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Lisa M. Boatner
- Department
of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Liujuan Cui
- Department
of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department
of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, Los Angeles, California 90095, United States
| | - Peter J. Tontonoz
- Department
of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department
of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, Los Angeles, California 90095, United States
| | - Keriann M. Backus
- Department
of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
- DOE
Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095, United States
- Jonsson
Comprehensive Cancer Center, UCLA, Los Angeles, California 90095, United States
- Eli
and Edythe
Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California 90095, United States
| |
Collapse
|
20
|
Julio AR, Shikwana F, Truong C, Burton NR, Dominguez E, Turmon AC, Cao J, Backus K. Pervasive aggregation and depletion of host and viral proteins in response to cysteine-reactive electrophilic compounds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564067. [PMID: 38014036 PMCID: PMC10680658 DOI: 10.1101/2023.10.30.564067] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Protein homeostasis is tightly regulated, with damaged or misfolded proteins quickly eliminated by the proteasome and autophagosome pathways. By co-opting these processes, targeted protein degradation technologies enable pharmacological manipulation of protein abundance. Recently, cysteine-reactive molecules have been added to the degrader toolbox, which offer the benefit of unlocking the therapeutic potential of 'undruggable' protein targets. The proteome-wide impact of these molecules remains to be fully understood and given the general reactivity of many classes of cysteine-reactive electrophiles, on- and off-target effects are likely. Using chemical proteomics, we identified a cysteine-reactive small molecule degrader of the SARS-CoV-2 nonstructural protein 14 (nsp14), which effects degradation through direct modification of cysteines in both nsp14 and in host chaperones together with activation of global cell stress response pathways. We find that cysteine-reactive electrophiles increase global protein ubiquitylation, trigger proteasome activation, and result in widespread aggregation and depletion of host proteins, including components of the nuclear pore complex. Formation of stress granules was also found to be a remarkably ubiquitous cellular response to nearly all cysteine-reactive compounds and degraders. Collectively, our study sheds light on complexities of covalent target protein degradation and highlights untapped opportunities in manipulating and characterizing proteostasis processes via deciphering the cysteine-centric regulation of stress response pathways.
Collapse
Affiliation(s)
- Ashley R Julio
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
| | - Flowreen Shikwana
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
| | - Cindy Truong
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
| | - Nikolas R Burton
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
| | - Emil Dominguez
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
| | - Alexandra C Turmon
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
| | - Jian Cao
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
| | - Keriann Backus
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
- DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA 90095 (USA)
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095 (USA)
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095 (USA)
| |
Collapse
|
21
|
Jiang Y, Rex DAB, Schuster D, Neely BA, Rosano GL, Volkmar N, Momenzadeh A, Peters-Clarke TM, Egbert SB, Kreimer S, Doud EH, Crook OM, Yadav AK, Vanuopadath M, Mayta ML, Duboff AG, Riley NM, Moritz RL, Meyer JG. Comprehensive Overview of Bottom-Up Proteomics using Mass Spectrometry. ARXIV 2023:arXiv:2311.07791v1. [PMID: 38013887 PMCID: PMC10680866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Proteomics is the large scale study of protein structure and function from biological systems through protein identification and quantification. "Shotgun proteomics" or "bottom-up proteomics" is the prevailing strategy, in which proteins are hydrolyzed into peptides that are analyzed by mass spectrometry. Proteomics studies can be applied to diverse studies ranging from simple protein identification to studies of proteoforms, protein-protein interactions, protein structural alterations, absolute and relative protein quantification, post-translational modifications, and protein stability. To enable this range of different experiments, there are diverse strategies for proteome analysis. The nuances of how proteomic workflows differ may be challenging to understand for new practitioners. Here, we provide a comprehensive overview of different proteomics methods to aid the novice and experienced researcher. We cover from biochemistry basics and protein extraction to biological interpretation and orthogonal validation. We expect this work to serve as a basic resource for new practitioners in the field of shotgun or bottom-up proteomics.
Collapse
Affiliation(s)
- Yuming Jiang
- Department of Computational Biomedicine, Cedars Sinai Medical Center
| | - Devasahayam Arokia Balaya Rex
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Dina Schuster
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland; Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich 8093, Switzerland; Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Benjamin A. Neely
- Chemical Sciences Division, National Institute of Standards and Technology, NIST Charleston · Funded by NIST
| | - Germán L. Rosano
- Mass Spectrometry Unit, Institute of Molecular and Cellular Biology of Rosario, Rosario, Argentina · Funded by Grant PICT 2019-02971 (Agencia I+D+i)
| | - Norbert Volkmar
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Amanda Momenzadeh
- Department of Computational Biomedicine, Cedars Sinai Medical Center, Los Angeles, California, USA
| | | | - Susan B. Egbert
- Department of Chemistry, University of Manitoba, Winnipeg, Cananda
| | - Simion Kreimer
- Smidt Heart Institute, Cedars Sinai Medical Center; Advanced Clinical Biosystems Research Institute, Cedars Sinai Medical Center
| | - Emma H. Doud
- Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Oliver M. Crook
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom
| | - Amit Kumar Yadav
- Translational Health Science and Technology Institute · Funded by Grant BT/PR16456/BID/7/624/2016 (Department of Biotechnology, India); Grant Translational Research Program (TRP) at THSTI funded by DBT
| | - Muralidharan Vanuopadath
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam-690 525, Kerala, India · Funded by Department of Health Research, Indian Council of Medical Research, Government of India (File No.R.12014/31/2022-HR)
| | - Martín L. Mayta
- School of Medicine and Health Sciences, Center for Health Sciences Research, Universidad Adventista del Plata, Libertador San Martín 3103, Argentina; Molecular Biology Department, School of Pharmacy and Biochemistry, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Anna G. Duboff
- Department of Chemistry, University of Washington · Funded by Summer Research Acceleration Fellowship, Department of Chemistry, University of Washington
| | - Nicholas M. Riley
- Department of Chemistry, University of Washington · Funded by National Institutes of Health Grant R00 GM147304
| | - Robert L. Moritz
- Institute for Systems biology, Seattle, WA, USA, 98109 · Funded by National Institutes of Health Grants R01GM087221, R24GM127667, U19AG023122, S10OD026936; National Science Foundation Award 1920268
| | - Jesse G. Meyer
- Department of Computational Biomedicine, Cedars Sinai Medical Center · Funded by National Institutes of Health Grant R21 AG074234; National Institutes of Health Grant R35 GM142502
| |
Collapse
|
22
|
Castellón JO, Ofori S, Armenta E, Burton N, Boatner LM, Takayoshi EE, Faragalla M, Zhou A, Tran K, Shek J, Yan T, Desai HS, Backus KM. Chemoproteomics identifies proteoform-selective caspase-2 inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.25.563785. [PMID: 37961563 PMCID: PMC10634807 DOI: 10.1101/2023.10.25.563785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Caspases are a highly conserved family of cysteine-aspartyl proteases known for their essential roles in regulating apoptosis, inflammation, cell differentiation, and proliferation. Complementary to genetic approaches, small-molecule probes have emerged as useful tools for modulating caspase activity. However, due to the high sequence and structure homology of all twelve human caspases, achieving selectivity remains a central challenge for caspase-directed small-molecule inhibitor development efforts. Here, using mass spectrometry-based chemoproteomics, we first identify a highly reactive non-catalytic cysteine that is unique to caspase-2. By combining both gel-based activity-based protein profiling (ABPP) and a tobacco etch virus (TEV) protease activation assay, we then identify covalent lead compounds that react preferentially with this cysteine and afford a complete blockade of caspase-2 activity. Inhibitory activity is restricted to the zymogen or precursor form of monomeric caspase-2. Focused analogue synthesis combined with chemoproteomic target engagement analysis in cellular lysates and in cells yielded both pan-caspase reactive molecules and caspase-2 selective lead compounds together with a structurally matched inactive control. Application of this focused set of tool compounds to stratify caspase contributions to initiation of intrinsic apoptosis, supports compensatory caspase-9 activity in the context of caspase-2 inactivation. More broadly, our study highlights future opportunities for the development of proteoform-selective caspase inhibitors that target non-conserved and non-catalytic cysteine residues.
Collapse
|
23
|
Takahashi M, Chong HB, Zhang S, Lazarov MJ, Harry S, Maynard M, White R, Murrey HE, Hilbert B, Neil JR, Gohar M, Ge M, Zhang J, Durr BR, Kryukov G, Tsou CC, Brooijmans N, Alghali ASO, Rubio K, Vilanueva A, Harrison D, Koglin AS, Ojeda S, Karakyriakou B, Healy A, Assaad J, Makram F, Rachman I, Khandelwal N, Tien PC, Popoola G, Chen N, Vordermark K, Richter M, Patel H, Yang TY, Griesshaber H, Hosp T, van den Ouweland S, Hara T, Bussema L, Dong R, Shi L, Rasmussen MQ, Domingues AC, Lawless A, Fang J, Yoda S, Nguyen LP, Reeves SM, Wakefield FN, Acker A, Clark SE, Dubash T, Fisher DE, Maheswaran S, Haber DA, Boland G, Sade-Feldman M, Jenkins R, Hata A, Bardeesy N, Suva ML, Martin B, Liau B, Ott C, Rivera MN, Lawrence MS, Bar-Peled L. DrugMap: A quantitative pan-cancer analysis of cysteine ligandability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563287. [PMID: 37961514 PMCID: PMC10634688 DOI: 10.1101/2023.10.20.563287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cysteine-focused chemical proteomic platforms have accelerated the clinical development of covalent inhibitors of a wide-range of targets in cancer. However, how different oncogenic contexts influence cysteine targeting remains unknown. To address this question, we have developed DrugMap , an atlas of cysteine ligandability compiled across 416 cancer cell lines. We unexpectedly find that cysteine ligandability varies across cancer cell lines, and we attribute this to differences in cellular redox states, protein conformational changes, and genetic mutations. Leveraging these findings, we identify actionable cysteines in NFκB1 and SOX10 and develop corresponding covalent ligands that block the activity of these transcription factors. We demonstrate that the NFκB1 probe blocks DNA binding, whereas the SOX10 ligand increases SOX10-SOX10 interactions and disrupts melanoma transcriptional signaling. Our findings reveal heterogeneity in cysteine ligandability across cancers, pinpoint cell-intrinsic features driving cysteine targeting, and illustrate the use of covalent probes to disrupt oncogenic transcription factor activity.
Collapse
|
24
|
Yan T, Boatner LM, Cui L, Tontonoz P, Backus KM. Defining the Cell Surface Cysteinome using Two-step Enrichment Proteomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562832. [PMID: 37904933 PMCID: PMC10614875 DOI: 10.1101/2023.10.17.562832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
The plasma membrane proteome is a rich resource of functional and therapeutically relevant protein targets. Distinguished by high hydrophobicity, heavy glycosylation, disulfide-rich sequences, and low overall abundance, the cell surface proteome remains undersampled in established proteomic pipelines, including our own cysteine chemoproteomics platforms. Here we paired cell surface glycoprotein capture with cysteine chemoproteomics to establish a two-stage enrichment method that enables chemoproteomic profiling of cell Surface Cysteinome. Our "Cys-Surf" platform captures >2,800 total membrane protein cysteines in 1,046 proteins, including 1,907 residues not previously captured by bulk proteomic analysis. By pairing Cys-Surf with an isotopic chemoproteomic readout, we uncovered 821 total ligandable cysteines, including known and novel sites. Cys-Surf also robustly delineates redox-sensitive cysteines, including cysteines prone to activation-dependent changes to cysteine oxidation state and residues sensitive to addition of exogenous reductants. Exemplifying the capacity of Cys-Surf to delineate functionally important cysteines, we identified a redox sensitive cysteine in the low-density lipoprotein receptor (LDLR) that impacts both the protein localization and uptake of LDL particles. Taken together, the Cys-Surf platform, distinguished by its two-stage enrichment paradigm, represents a tailored approach to delineate the functional and therapeutic potential of the plasma membrane cysteinome.
Collapse
Affiliation(s)
- Tianyang Yan
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
| | - Lisa M. Boatner
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
| | - Liujuan Cui
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles; Los Angeles, CA 90095, USA
| | - Peter Tontonoz
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles; Los Angeles, CA 90095, USA
| | - Keriann M. Backus
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
- DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA 90095 (USA)
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095 (USA)
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095 (USA)
| |
Collapse
|
25
|
Burton NR, Polasky DA, Shikwana F, Ofori S, Yan T, Geiszler DJ, Veiga Leprevost FD, Nesvizhskii AI, Backus KM. Solid-Phase Compatible Silane-Based Cleavable Linker Enables Custom Isobaric Quantitative Chemoproteomics. J Am Chem Soc 2023; 145:21303-21318. [PMID: 37738129 PMCID: PMC11895830 DOI: 10.1021/jacs.3c05797] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Mass spectrometry-based chemoproteomics has emerged as an enabling technology for functional biology and drug discovery. To address limitations of established chemoproteomics workflows, including cumbersome reagent synthesis and low throughput sample preparation, here, we established the silane-based cleavable isotopically labeled proteomics (sCIP) method. The sCIP method is enabled by a high yielding and scalable route to dialkoxydiphenylsilane fluorenylmethyloxycarbonyl (DADPS-Fmoc)-protected amino acid building blocks, which enable the facile synthesis of customizable, isotopically labeled, and chemically cleavable biotin capture reagents. sCIP is compatible with both MS1- and MS2-based quantitation, and the sCIP-MS2 method is distinguished by its click-assembled isobaric tags in which the reporter group is encoded in the sCIP capture reagent and balancer in the pan cysteine-reactive probe. The sCIP-MS2 workflow streamlines sample preparation with early stage isobaric labeling and sample pooling, allowing for high coverage and increased sample throughput via customized low cost six-plex sample multiplexing. When paired with a custom FragPipe data analysis workflow and applied to cysteine-reactive fragment screens, sCIP proteomics revealed established and unprecedented cysteine-ligand pairs, including the discovery that mitochondrial uncoupling agent FCCP acts as a covalent-reversible cysteine-reactive electrophile.
Collapse
Affiliation(s)
- Nikolas R Burton
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Daniel A Polasky
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Flowreen Shikwana
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Samuel Ofori
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Tianyang Yan
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Daniel J Geiszler
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Alexey I Nesvizhskii
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Keriann M Backus
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, California 90095, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
26
|
Desai H, Ofori S, Boatner L, Yu F, Villanueva M, Ung N, Nesvizhskii AI, Backus K. Multi-omic stratification of the missense variant cysteinome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.12.553095. [PMID: 37645963 PMCID: PMC10461992 DOI: 10.1101/2023.08.12.553095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Cancer genomes are rife with genetic variants; one key outcome of this variation is gain-ofcysteine, which is the most frequently acquired amino acid due to missense variants in COSMIC. Acquired cysteines are both driver mutations and sites targeted by precision therapies. However, despite their ubiquity, nearly all acquired cysteines remain uncharacterized. Here, we pair cysteine chemoproteomics-a technique that enables proteome-wide pinpointing of functional, redox sensitive, and potentially druggable residues-with genomics to reveal the hidden landscape of cysteine acquisition. For both cancer and healthy genomes, we find that cysteine acquisition is a ubiquitous consequence of genetic variation that is further elevated in the context of decreased DNA repair. Our chemoproteogenomics platform integrates chemoproteomic, whole exome, and RNA-seq data, with a customized 2-stage false discovery rate (FDR) error controlled proteomic search, further enhanced with a user-friendly FragPipe interface. Integration of CADD predictions of deleteriousness revealed marked enrichment for likely damaging variants that result in acquisition of cysteine. By deploying chemoproteogenomics across eleven cell lines, we identify 116 gain-of-cysteines, of which 10 were liganded by electrophilic druglike molecules. Reference cysteines proximal to missense variants were also found to be pervasive, 791 in total, supporting heretofore untapped opportunities for proteoform-specific chemical probe development campaigns. As chemoproteogenomics is further distinguished by sample-matched combinatorial variant databases and compatible with redox proteomics and small molecule screening, we expect widespread utility in guiding proteoform-specific biology and therapeutic discovery.
Collapse
Affiliation(s)
- Heta Desai
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Samuel Ofori
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Lisa Boatner
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
| | - Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Miranda Villanueva
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Nicholas Ung
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, 90095, USA
| | - Alexey I Nesvizhskii
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Keriann Backus
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, 90095, USA
| |
Collapse
|
27
|
Yan T, Julio AR, Villanueva M, Jones AE, Ball AB, Boatner LM, Turmon AC, Nguyễn KB, Yen SL, Desai HS, Divakaruni AS, Backus KM. Proximity-labeling chemoproteomics defines the subcellular cysteinome and inflammation-responsive mitochondrial redoxome. Cell Chem Biol 2023; 30:811-827.e7. [PMID: 37419112 PMCID: PMC10510412 DOI: 10.1016/j.chembiol.2023.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/01/2023] [Accepted: 06/07/2023] [Indexed: 07/09/2023]
Abstract
Proteinaceous cysteines function as essential sensors of cellular redox state. Consequently, defining the cysteine redoxome is a key challenge for functional proteomic studies. While proteome-wide inventories of cysteine oxidation state are readily achieved using established, widely adopted proteomic methods such as OxICAT, Biotin Switch, and SP3-Rox, these methods typically assay bulk proteomes and therefore fail to capture protein localization-dependent oxidative modifications. Here we establish the local cysteine capture (Cys-LoC) and local cysteine oxidation (Cys-LOx) methods, which together yield compartment-specific cysteine capture and quantitation of cysteine oxidation state. Benchmarking of the Cys-LoC method across a panel of subcellular compartments revealed more than 3,500 cysteines not previously captured by whole-cell proteomic analysis. Application of the Cys-LOx method to LPS-stimulated immortalized murine bone marrow-derived macrophages (iBMDM), revealed previously unidentified, mitochondrially localized cysteine oxidative modifications upon pro-inflammatory activation, including those associated with oxidative mitochondrial metabolism.
Collapse
Affiliation(s)
- Tianyang Yan
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Ashley R Julio
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Miranda Villanueva
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Anthony E Jones
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los A ngeles, CA 90095, USA
| | - Andréa B Ball
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los A ngeles, CA 90095, USA
| | - Lisa M Boatner
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Alexandra C Turmon
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Kaitlyn B Nguyễn
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los A ngeles, CA 90095, USA
| | - Stephanie L Yen
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Heta S Desai
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Ajit S Divakaruni
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los A ngeles, CA 90095, USA
| | - Keriann M Backus
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA; DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
28
|
White MEH, Gil J, Tate EW. Proteome-wide structural analysis identifies warhead- and coverage-specific biases in cysteine-focused chemoproteomics. Cell Chem Biol 2023; 30:828-838.e4. [PMID: 37451266 DOI: 10.1016/j.chembiol.2023.06.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/20/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023]
Abstract
Covalent drug discovery has undergone a resurgence over the past two decades and reactive cysteine profiling has emerged in parallel as a platform for ligand discovery through on- and off-target profiling; however, the scope of this approach has not been fully explored at the whole-proteome level. We combined AlphaFold2-predicted side-chain accessibilities for >95% of the human proteome with a meta-analysis of eighteen public cysteine profiling datasets, totaling 44,187 unique cysteine residues, revealing accessibility biases in sampled cysteines primarily dictated by warhead chemistry. Analysis of >3.5 million cysteine-fragment interactions further showed that hit elaboration and optimization drives increased bias against buried cysteine residues. Based on these data, we suggest that current profiling approaches cover a small proportion of potential ligandable cysteine residues and propose future directions for increasing coverage, focusing on high-priority residues and depth. All analysis and produced resources are freely available and extendable to other reactive amino acids.
Collapse
Affiliation(s)
- Matthew E H White
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK; MRC London Institute of Medical Sciences (LMS), London W12 0NN, UK
| | - Jesús Gil
- MRC London Institute of Medical Sciences (LMS), London W12 0NN, UK; Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Edward W Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK; The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
29
|
Boatner LM, Palafox MF, Schweppe DK, Backus KM. CysDB: a human cysteine database based on experimental quantitative chemoproteomics. Cell Chem Biol 2023; 30:683-698.e3. [PMID: 37119813 PMCID: PMC10510411 DOI: 10.1016/j.chembiol.2023.04.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/02/2023] [Accepted: 04/06/2023] [Indexed: 05/01/2023]
Abstract
Cysteine chemoproteomics provides proteome-wide portraits of the ligandability or potential "druggability" for thousands of cysteine residues. Consequently, these studies are facilitating resources for closing the druggability gap, namely, achieving pharmacological manipulation of ∼96% of the human proteome that remains untargeted by U.S. Food and Drug Administration (FDA) approved small molecules. Recent interactive datasets have enabled users to interface more readily with cysteine chemoproteomics datasets. However, these resources remain limited to single studies and therefore do not provide a mechanism to perform cross-study analyses. Here we report CysDB as a curated community-wide repository of human cysteine chemoproteomics data derived from nine high-coverage studies. CysDB is publicly available at https://backuslab.shinyapps.io/cysdb/ and features measures of identification for 62,888 cysteines (24% of the cysteinome), as well as annotations of functionality, druggability, disease relevance, genetic variation, and structural features. Most importantly, we have designed CysDB to incorporate new datasets to further support the continued growth of the druggable cysteinome.
Collapse
Affiliation(s)
- Lisa M Boatner
- Biological Chemistry Department, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Maria F Palafox
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Devin K Schweppe
- Department of Genome Sciences, University of Washington, Seattle, WA 98185, USA
| | - Keriann M Backus
- Biological Chemistry Department, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
30
|
Enhancement of Immune Response of Bioconjugate Nanovaccine by Loading of CpG through Click Chemistry. J Pers Med 2023; 13:jpm13030507. [PMID: 36983689 PMCID: PMC10052328 DOI: 10.3390/jpm13030507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
CpG is a widely used adjuvant that enhances the cellular immune response by entering antigen-presenting cells and binding with receptors. The traditional physical mixing of the antigen and CpG adjuvant results in a low adjuvant utilization rate. Considering the efficient delivery capacity of nanovaccines, we developed an attractive strategy to covalently load CpG onto the nanovaccine, which realized the co-delivery of both CpG and the antigen. Briefly, the azide-modified CpG was conjugated to a bioconjugate nanovaccine (NP-OPS) against Shigella flexneri through a simple two-step reaction. After characterization of the novel vaccine (NP-OPS-CpG), a series of in vitro and in vivo experiments were performed, including in vivo imaging, lymph node sectioning, and dendritic cell stimulation, and the results showed that more CpG reached the lymph nodes after covalent coupling. Subsequent flow cytometry analysis of lymph nodes from immunized mice showed that the cellular immune response was greatly promoted by the nanovaccine coupled with CpG. Moreover, by analyzing the antibody subtypes of immunized mice, NP-OPS-CpG was found to further promote a Th1-biased immune response. Thus, we developed an attractive method to load CpG on a nanovaccine that is simple, convenient, and is especially suitable for immune enhancement of vaccines against intracellular bacteria.
Collapse
|
31
|
Yan T, Julio AR, Villanueva M, Jones AE, Ball AB, Boatner LM, Turmon AC, Yen SL, Desai HS, Divakaruni AS, Backus KM. Proximity-labeling chemoproteomics defines the subcellular cysteinome and inflammation-responsive mitochondrial redoxome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.22.525042. [PMID: 36711448 PMCID: PMC9882296 DOI: 10.1101/2023.01.22.525042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Proteinaceous cysteines function as essential sensors of cellular redox state. Consequently, defining the cysteine redoxome is a key challenge for functional proteomic studies. While proteome-wide inventories of cysteine oxidation state are readily achieved using established, widely adopted proteomic methods such as OxiCat, Biotin Switch, and SP3-Rox, they typically assay bulk proteomes and therefore fail to capture protein localization-dependent oxidative modifications. To obviate requirements for laborious biochemical fractionation, here, we develop and apply an unprecedented two step cysteine capture method to establish the Local Cysteine Capture (Cys-LoC), and Local Cysteine Oxidation (Cys-LOx) methods, which together yield compartment-specific cysteine capture and quantitation of cysteine oxidation state. Benchmarking of the Cys-LoC method across a panel of subcellular compartments revealed more than 3,500 cysteines not previously captured by whole cell proteomic analysis. Application of the Cys-LOx method to LPS stimulated murine immortalized bone marrow-derived macrophages (iBMDM), revealed previously unidentified mitochondria-specific inflammation-induced cysteine oxidative modifications including those associated with oxidative phosphorylation. These findings shed light on post-translational mechanisms regulating mitochondrial function during the cellular innate immune response.
Collapse
Affiliation(s)
- Tianyang Yan
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
| | - Ashley R. Julio
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
| | - Miranda Villanueva
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Anthony E. Jones
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Andréa B. Ball
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Lisa M. Boatner
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
| | - Alexandra C. Turmon
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
| | - Stephanie L. Yen
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Heta S. Desai
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Ajit S. Divakaruni
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Keriann M. Backus
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
- DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, 90095, USA
| |
Collapse
|
32
|
Desai HS, Yan T, Backus KM. SP3-FAIMS-Enabled High-Throughput Quantitative Profiling of the Cysteinome. Curr Protoc 2022; 2:e492. [PMID: 35895291 DOI: 10.1002/cpz1.492] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cysteine-directed chemoproteomic profiling methods yield high-throughput inventories of redox-sensitive and ligandable cysteine residues and therefore are enabling techniques for functional biology and drug discovery. However, the cumbersome nature of many sample preparation workflows, the requirements for large amounts of input material, and the modest yields of labeled peptides are limitations that hinder most chemoproteomics studies. Here, we report an optimized chemoproteomic sample-preparation workflow that combines enhanced peptide labeling with single-pot, solid-phase-enhanced sample preparation (SP3) to improve the recovery of biotinylated peptides, even from small samples. We further tailor our SP3 method to specifically probe the redox proteome, which showcases the utility of the SP3 platform in multistep sample-preparation workflows. By implementing a customized workflow in the FragPipe computational pipeline, we achieve accurate MS1-based quantification, including for peptides containing multiple cysteine residues. Collectively these innovations enable enhanced high-throughput quantitative analysis of the cysteinome. This article includes detailed protocols for cysteine labeling with isotopically labeled iodoacetamide alkyne probes, biotinylation with CuAAC, sample cleanup with SP3, enrichment of cysteines with NeutrAvidin agarose beads, LC-FAIMS-MS/MS analysis, and FragPipe-IonQuant analysis. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Labeling of cysteines in human proteome and SP3-based sample cleanup Alternate Protocol 1: Labeling of cysteines in human proteome, SP3-based sample cleanup, and enrichment of cysteines for isoTOP-ABPP analysis Alternate Protocol 2: Labeling of cysteines in human proteome and SP3-based sample cleanup for redox proteome analysis Basic Protocol 2: Peptide-level cysteine enrichment Basic Protocol 3: LC-FAIMS-MS/MS analysis Basic Protocol 4: FragPipe data analysis.
Collapse
Affiliation(s)
- Heta S Desai
- Biological Chemistry Department, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California
| | - Tianyang Yan
- Biological Chemistry Department, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California
| | - Keriann M Backus
- Biological Chemistry Department, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
33
|
Yan T, Palmer AB, Geiszler DJ, Polasky DA, Boatner LM, Burton NR, Armenta E, Nesvizhskii AI, Backus KM. Enhancing Cysteine Chemoproteomic Coverage through Systematic Assessment of Click Chemistry Product Fragmentation. Anal Chem 2022; 94:3800-3810. [PMID: 35195394 PMCID: PMC11832189 DOI: 10.1021/acs.analchem.1c04402] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mass spectrometry-based chemoproteomics has enabled functional analysis and small molecule screening at thousands of cysteine residues in parallel. Widely adopted chemoproteomic sample preparation workflows rely on the use of pan cysteine-reactive probes such as iodoacetamide alkyne combined with biotinylation via copper-catalyzed azide-alkyne cycloaddition (CuAAC) or "click chemistry" for cysteine capture. Despite considerable advances in both sample preparation and analytical platforms, current techniques only sample a small fraction of all cysteines encoded in the human proteome. Extending the recently introduced labile mode of the MSFragger search engine, here we report an in-depth analysis of cysteine biotinylation via click chemistry (CBCC) reagent gas-phase fragmentation during MS/MS analysis. We find that CBCC conjugates produce both known and novel diagnostic fragments and peptide remainder ions. Among these species, we identified a candidate signature ion for CBCC peptides, the cyclic oxonium-biotin fragment ion that is generated upon fragmentation of the N(triazole)-C(alkyl) bond. Guided by our empirical comparison of fragmentation patterns of six CBCC reagent combinations, we achieved enhanced coverage of cysteine-labeled peptides. Implementation of labile searches afforded unique PSMs and provides a roadmap for the utility of such searches in enhancing chemoproteomic peptide coverage.
Collapse
Affiliation(s)
- Tianyang Yan
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Andrew B Palmer
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Daniel J Geiszler
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Daniel A Polasky
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lisa M Boatner
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Nikolas R Burton
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Ernest Armenta
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Alexey I Nesvizhskii
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Keriann M Backus
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| |
Collapse
|
34
|
Tang KC, Cao J, Boatner LM, Li L, Farhi J, Houk KN, Spangle J, Backus KM, Raj M. Tunable Amine-Reactive Electrophiles for Selective Profiling of Lysine. Angew Chem Int Ed Engl 2022; 61:e202112107. [PMID: 34762358 PMCID: PMC10111338 DOI: 10.1002/anie.202112107] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/19/2021] [Indexed: 12/26/2022]
Abstract
Proteome profiling by activated esters identified >9000 ligandable lysines but they are limited as covalent inhibitors due to poor hydrolytic stability. Here we report our efforts to design and discover a new series of tunable amine-reactive electrophiles (TAREs) for selective and robust labeling of lysine. The major challenges in developing selective probes for lysine are the high nucleophilicity of cysteines and poor hydrolytic stability. Our work circumvents these challenges by a unique design of the TAREs that form stable adducts with lysine and on reaction with cysteine generate another reactive electrophiles for lysine. We highlight that TAREs exhibit substantially high hydrolytic stability as compared to the activated esters and are non-cytotoxic thus have the potential to act as covalent ligands. We applied these alternative TAREs for the intracellular labeling of proteins in different cell lines, and for the selective identification of lysines in the human proteome on a global scale.
Collapse
Affiliation(s)
- Kuei-Chien Tang
- Present address: Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Jian Cao
- Department of Chemistry and Biochemistry, College of Arts and Sciences, UCLA, Los Angeles, CA, 90095, USA
| | - Lisa M Boatner
- Department of Chemistry and Biochemistry, College of Arts and Sciences, UCLA, Los Angeles, CA, 90095, USA
- Present address: Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Linwei Li
- Department of Chemistry and Biochemistry, College of Arts and Sciences, UCLA, Los Angeles, CA, 90095, USA
| | - Jonathan Farhi
- Department of Radiation Oncology, Emory University, Atlanta, GA, 30322, USA
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, College of Arts and Sciences, UCLA, Los Angeles, CA, 90095, USA
| | - Jennifer Spangle
- Department of Radiation Oncology, Emory University, Atlanta, GA, 30322, USA
| | - Keriann M Backus
- Department of Chemistry and Biochemistry, College of Arts and Sciences, UCLA, Los Angeles, CA, 90095, USA
- Present address: Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Monika Raj
- Present address: Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
35
|
Tang K, Cao J, Boatner LM, Li L, Farhi J, Houk KN, Spangle J, Backus KM, Raj M. Tunable Amine‐Reactive Electrophiles for Selective Profiling of Lysine. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kuei‐Chien Tang
- Present address: Department of Chemistry Emory University Atlanta GA 30322 USA
| | - Jian Cao
- Department of Chemistry and Biochemistry College of Arts and Sciences UCLA Los Angeles CA 90095 USA
| | - Lisa M. Boatner
- Department of Chemistry and Biochemistry College of Arts and Sciences UCLA Los Angeles CA 90095 USA
- Present address: Department of Biological Chemistry David Geffen School of Medicine UCLA Los Angeles CA 90095 USA
| | - Linwei Li
- Department of Chemistry and Biochemistry College of Arts and Sciences UCLA Los Angeles CA 90095 USA
| | - Jonathan Farhi
- Department of Radiation Oncology Emory University Atlanta GA 30322 USA
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry College of Arts and Sciences UCLA Los Angeles CA 90095 USA
| | - Jennifer Spangle
- Department of Radiation Oncology Emory University Atlanta GA 30322 USA
| | - Keriann M. Backus
- Department of Chemistry and Biochemistry College of Arts and Sciences UCLA Los Angeles CA 90095 USA
- Present address: Department of Biological Chemistry David Geffen School of Medicine UCLA Los Angeles CA 90095 USA
| | - Monika Raj
- Present address: Department of Chemistry Emory University Atlanta GA 30322 USA
| |
Collapse
|
36
|
Yan T, Desai HS, Boatner LM, Yen SL, Cao J, Palafox MF, Jami-Alahmadi Y, Backus KM. SP3-FAIMS Chemoproteomics for High-Coverage Profiling of the Human Cysteinome*. Chembiochem 2021; 22:1841-1851. [PMID: 33442901 DOI: 10.1002/cbic.202000870] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/12/2021] [Indexed: 12/23/2022]
Abstract
Chemoproteomics has enabled the rapid and proteome-wide discovery of functional, redox-sensitive, and ligandable cysteine residues. Despite widespread adoption and considerable advances in both sample-preparation workflows and MS instrumentation, chemoproteomics experiments still typically only identify a small fraction of all cysteines encoded by the human genome. Here, we develop an optimized sample-preparation workflow that combines enhanced peptide labeling with single-pot, solid-phase-enhanced sample-preparation (SP3) to improve the recovery of biotinylated peptides, even from small sample sizes. By combining this improved workflow with on-line high-field asymmetric waveform ion mobility spectrometry (FAIMS) separation of labeled peptides, we achieve unprecedented coverage of >14000 unique cysteines in a single-shot 70 min experiment. Showcasing the wide utility of the SP3-FAIMS chemoproteomic method, we find that it is also compatible with competitive small-molecule screening by isotopic tandem orthogonal proteolysis-activity-based protein profiling (isoTOP-ABPP). In aggregate, our analysis of 18 samples from seven cell lines identified 34225 unique cysteines using only ∼28 h of instrument time. The comprehensive spectral library and improved coverage provided by the SP3-FAIMS chemoproteomics method will provide the technical foundation for future studies aimed at deciphering the functions and druggability of the human cysteineome.
Collapse
Affiliation(s)
- Tianyang Yan
- Department of Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.,Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Heta S Desai
- Department of Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.,Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Lisa M Boatner
- Department of Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.,Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Stephanie L Yen
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Jian Cao
- Department of Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Maria F Palafox
- Department of Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.,Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Keriann M Backus
- Department of Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.,Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA.,Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA.,DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA 90095, USA.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|