1
|
Wen X, He Y, Yuan R, Chen S. Conjugated polymer-boosted near-infrared electrochemiluminescence of organic dye for detecting acetamiprid. Anal Chim Acta 2025; 1335:343417. [PMID: 39643290 DOI: 10.1016/j.aca.2024.343417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND The near-infrared electrochemiluminescence (NIR-ECL) has excellent penetration and near zero background interference, and has shown unique advantages in clinical medicine and bioimaging. Among various types of NIR-ECL emitters, NIR organic dyes have arouse the concern of researchers due to their adjustable structure and diverse optical properties. However, the currently available NIR dyes usually have inherent self-quenching effect and poor photostability, so their ECL efficiency is low, and it is a great challenge to improve their ECL performance. RESULT Conjugated polymer-boosted NIR-ECL strategy was creatively developed to overcome ECL performance limitations of NIR dyes. IR 783, as one of heptamethine cyanine dyes, was performed a nanoprecipitation in the presence of poly[(9,9-dlhexyfluoren-2,7-dlyl)-co-(anthracen-9,10-dlyl)] (PFAD) to prepare IR polymer nanoparticles (IR PNPs). Due to resonance energy transfer (RET) from PFAD to IR 783 and encapsulation of IR 783 by PFAD, the resulting IR PNPs exhibited a strong and stable NIR-ECL emission with a maximum ECL wavelength of 802 nm under coreactant tripropylamine (TPrA) and H2O2 can effectively quench it. IR PNPs coupled proximity ligation assay (PLA)-induced DNA walker to achieve acetamiprid (ACE) analysis. ACE triggered PLA to form bipedal DNA walker, and further release G-rich secondary target (ST). With ST and hemin being captured on IR PNPs modified electrode, hemin/G-quadruplex was assembled to consume H2O2, thereby restoring ECL signal for ACE detection with a limit of detection of 4.74 × 10-15 M. SIGNIFICANCE This work opens up a new and simple way to boost NIR-ECL of organic dyes, and IR PNPs create a promising NIR-ECL platform for pesticide detection.
Collapse
Affiliation(s)
- Xin Wen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ying He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Shihong Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
2
|
Zhao J, Guo Q, Li R, Yang G, Yuan R, Chen S. Step Pulse-Mediated Low-Triggering Potential Electrochemiluminescence of Polyfluorene Nanoparticles for Bioassay. Anal Chem 2024; 96:17993-18001. [PMID: 39468391 DOI: 10.1021/acs.analchem.4c03029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
When the electrochemiluminescence (ECL) reaction occurs at a triggering potential beyond ±1.0 V, the interference from the adverse oxidation-reduction reaction cannot be ignored. However, currently reported anode ECL usually occurs above +1.0 V. This study innovatively developed a convenient and simple step pulse (SP) method to modulate the low ECL triggering potential of poly [(9,9-dioctyl-fluorenyl-2,7-diacyl)-alt-co-(9-hexyl-3,6-carbazole)] (PFA) nanoparticles (NPs). Compared to cyclic voltammetry with a triggering potential exceeding +1.25 V for PFA NPs, SP scanning enabled PFA NPs to exhibit a strong and stable ECL emission with a triggering potential as low as +0.75 V and tripropylamine (TPrA) as a coreactant. PFA NPs coupled an efficient aptameric recognition-driven cascade nucleic acid amplification strategy to construct a sensitive biosensing platform for measuring phosphorylated Tau (p-Tau) protein as an Alzheimer's disease biomarker. p-Tau could release the secondary target (ST) chain through the aptameric recognition reaction with the aptamer, and the released ST could further trigger cascade catalytic hairpin assembly (CHA) and rolling circle amplification (RCA) at the PFA NP-modified electrode, producing a large number of long chains. The large amount of G-quadruplex/hemin formed by long chains and hemin will consume the ECL quencher H2O2 added in detection solution, thereby restoring the ECL signal and enabling the low potential quantitative analysis of p-Tau with a limit of detection of 4.15 fg/mL. SP technique provides a new way to reduce ECL triggering potential, and PFA NPs create a promising low-triggering potential ECL-sensing platform for bioanalysis.
Collapse
Affiliation(s)
- Jinwen Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Qin Guo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Rongfang Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Guomin Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Shihong Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
3
|
He Y, Zhao J, Yang G, Yuan R, Chen S. Interfacial Conductor-Modulated Low-Triggered Potential Electrochemiluminescence from Conjugated Polymers for Bioanalysis. Anal Chem 2024; 96:17377-17386. [PMID: 39425771 DOI: 10.1021/acs.analchem.4c04146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Polyfluorene and its derivatives (PFs) are extremely appealing electrochemiluminescence (ECL) illuminants thanks to their easy modification, high quantum yield, excellent photostability, and nontoxicity, exhibiting great application potential in ECL sensing and imaging. Unfortunately, most reported PFs-based ECL bioanalysis generally exhibited high triggering potential (>1.0 V vs Ag/AgCl), which introduced undesirable electrochemical interference to adversely affect the sensitivity and accuracy of biological analysis. This work innovatively exploited poly(3,4-ethylenedioxythiophene) (PEDOT) as an interfacial conductor to modulate the low ECL triggering potential of poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-{2,1',3}-thiadazole)] (PFBT) nanoparticles (NPs). The unique conductivity of in situ electrodeposited PEDOT promoted electron transfer between PFBT NPs and coreactant tripropylamine (TPrA), negatively shifting the ECL triggering potential of PFBT NPs from +1.22 to +0.78 V. The PFBT NPs/PEDOT coupled the localized hybridization chain reaction (LHCR) circuits to achieve a specific and sensitive ECL detection of malathion (MAL), and a low limit of detection (LOD) of 22 fg/mL was obtained. The interfacial conductor provides inspiration for creating the low ECL triggering potential. PFBT NPs-coupled PEDOT builds a low ECL triggering potential of the PFs-based platform for pesticide residue analysis with low interference and high sensitivity.
Collapse
Affiliation(s)
- Ying He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Jinwen Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Guomin Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Shihong Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
4
|
Wu H, Wang Q, Dong M, Liu X, Tang Y. pH-responsive dual-emission carbon dots for the ratiometric detection of organophosphorus pesticides in Brassica chinensis and Hg 2+ in water. Food Chem 2024; 454:139755. [PMID: 38810445 DOI: 10.1016/j.foodchem.2024.139755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 05/31/2024]
Abstract
Accurate and rapid monitoring of organophosphorus pesticides (OPs) residues is crucial for regulating food safety. Herein, dual-emission carbon dots (de-CDs) were fabricated for the ratiometric detection of OPs and Hg2+. The de-CDs exhibited two emission peaks at 678 and 485 nm when excited with visible light. Interestingly, the fluorescence at 678 nm was significantly quenched by Hg2+ mainly because of the static quenching effect, whereas that at 485 nm exhibited a slight change. More significantly, the quenched fluorescence of the de-CDs recovered remarkably after introducing omethoate, diazinon and malathion. Accordingly, the ratiometric detection of the three OPs and Hg2+ was achieved with high selectivity and robust performance. In addition, the OPs residues assay in Brassica chinensis was successfully performed with satisfactory results. This study not only provides an attractive tool for the simple and rapid assay of OPs but also offers new insights into the fabrication of multi-functional carbon dots.
Collapse
Affiliation(s)
- Huifang Wu
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| | - Qiqi Wang
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Miaochen Dong
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Xinyue Liu
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yanfeng Tang
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| |
Collapse
|
5
|
Wang YL, Liu XM, Ren SW, Cao JT, Liu YM. Etching of Ag nanoparticles triggered bidirectional regulation for electrochemiluminescence ratiometric immunoassay. Anal Bioanal Chem 2024; 416:4759-4767. [PMID: 38647693 DOI: 10.1007/s00216-024-05277-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/07/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024]
Abstract
A highly efficient ratiometric electrochemiluminescence (ECL) immunoassay was explored by bidirectionally regulating the ECL intensity of two luminophors. The immunoassay was conducted in a split-type mode consisting of an ECL detection procedure and a sandwich immunoreaction. The ECL detection was executed using a dual-disk glassy carbon electrode modified with two potential-resolved luminophors (g-C3N4-Ag and Ru-MOF-Ag nanocomposites), and the sandwich immunoreaction using glucose oxidase (GOx)-modified SiO2 nanospheres as labels was carried out in a 96-well plate. The Ag nanoparticles (NPs) acted as bifunctional units both for triggering the resonance energy transfer (RET) with g-C3N4 and for accelerating the electron transfer rate of the Ru-MOF-Ag ECL reaction. When the H2O2 catalyzed by GOx in the 96-well plate was transferred to the dual-disk glass carbon electrode, the doped Ag NPs in the two luminophors could be etched, thus destroying the RET between C3N4 and the accelerated reaction to Ru-MOF, resulting in an opposite trend in the ECL signal outputted from the dual disks. Using the ratio of the two signals for quantification, the constructed immunosensor for a model target, i.e. myoglobin, exhibited a low detection limit of 4.7 × 10-14 g/mL. The ingenious combination of ECL ratiometry, bifunctional Ag NPs, and a split-type strategy effectively reduces environmental and human errors, offering a more precise and sensitive analysis for complex samples.
Collapse
Affiliation(s)
- Yu-Ling Wang
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, NO. 237 in Nanhu Road, Xinyang, 464000, Henan, China
- Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xiang-Mei Liu
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, NO. 237 in Nanhu Road, Xinyang, 464000, Henan, China
| | - Shu-Wei Ren
- Xinyang Central Hospital, Xinyang, 464000, China
| | - Jun-Tao Cao
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, NO. 237 in Nanhu Road, Xinyang, 464000, Henan, China.
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, NO. 237 in Nanhu Road, Xinyang, 464000, Henan, China.
| |
Collapse
|
6
|
Zhu S, Qin S, Wei C, Cen L, Xiong L, Luo X, Wang Y. Acetylcholine triggered enzymatic cascade reaction based on Fe 7S 8 nanoflakes catalysis for organophosphorus pesticides visual detection. Anal Chim Acta 2024; 1301:342464. [PMID: 38553122 DOI: 10.1016/j.aca.2024.342464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/08/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Organophosphorus pesticides (OPs) play important roles in the natural environment, agricultural fields, and biological prevention. The development of OPs detection has gradually become an effective strategy to avoid the dangers of pesticides abuse and solve the severe environmental and health problems in humans. Although conventional assays for OPs analysis such as the bulky instrument required analytical methods have been well-developed, it still remains the limitation of inconvenient, inefficient and lab-dependence analysis in real samples. Hence, there is an urgent demand to develop efficient detection methods for OPs analysis in real scenarios. RESULTS Here, by virtue of the highly efficient catalytic performance in Fe7S8 nanoflakes (Fe7S8 NFs), we propose an OPs detection method that rationally integrated Fe7S8 NFs into the acetylcholine (ACh) triggered enzymatic cascade reaction (ATECR) for proceeding better detection performances. In this method, OPs serve as the enzyme inhibitors for inhibiting ATECR among ACh, acetylcholinesterase (AChE), and choline oxidase (CHO), then reduce the generation of H2O2 to suppress the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) that catalyzed by Fe7S8 NFs. Benefiting from the integration of Fe7S8 NFs and ATECR, it enables a sensitive detection for OPs (e.g. dimethoate). The proposed method has presented good linear ranges of OPs detection ranging from 0.1 to 10 μg mL-1. Compared to the other methods, the comparable limits of detection (LOD) of OPs are as low as 0.05 μg mL-1. SIGNIFICANCE Furthermore, the proposed method has also achieved a favorable visual detection performance of revealing OPs analysis in real samples. The visual signals of OPs can be transformed into RGB values and gathered by using smartphones, indicating the great potential in simple, sensitive, instrument-free and on-site analysis of pesticide residues in environmental monitoring and biosecurity research.
Collapse
Affiliation(s)
- Shu Zhu
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Shangying Qin
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Chonghui Wei
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Li Cen
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Luyun Xiong
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Xingyu Luo
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China.
| | - Yilin Wang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China.
| |
Collapse
|
7
|
Wu L, Guo J, Chen Y, Ye YX, Tong YJ, Zhu F, Xu J, Ouyang G. Rapid analysis of dichlorvos via releasing the phosphate core. Talanta 2024; 269:125404. [PMID: 37980819 DOI: 10.1016/j.talanta.2023.125404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
Monitoring the residual dichlorvos (O,O-dimethyl-O-2,2-dichlorovinylphosphate, DDVP) in food has received extensive attention owing to its large consumption in agriculture. However, the previous sensing methods are not time-efficient enough due to the long incubation time for enzyme inhibition (tens of minutes to hours) or bottlenecked by the complicated procedures for senor fabrication. Herein, a novel sensing strategy is proposed based on the hydrolysis of DDVP into PO43-. By using alkaline phosphatase for hydrolysis, a certain portion of DDVP was transformed to PO43- within only 8 min. Then, the released PO43- was detected by a fluorescent terbium metal-organic framework (Tb-MOF). The coordination of the naked P-O groups to the metal nodes of the Tb-MOF disturbed the antenna effects of its ligands. Thus, DDVP was quantified by the decrease of the fluorescence of Tb ions. Based on this method, DDVP residues on plum surfaces were collected by swabs and successfully detected. The recovery of DDVP was determined in the range from 105 % to 115 %, demonstrating the quantification accuracy of this method. The detection limit reached 4.7 μM, which was lower than the restricted amount in fruit set by the National Standard of China. The present method provides an efficient and user-friendly way for the detection of DDVP and many other organophosphorus pesticides in food.
Collapse
Affiliation(s)
- Lihua Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jing Guo
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yuxin Chen
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yu-Xin Ye
- School of Chemical Engineering and Technology, IGCME, Sun Yat-sen University, Zhuhai, Guangdong, 519082, China
| | - Yuan-Jun Tong
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jianqiao Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
8
|
Wen Y, Yang J, Yang G, Yuan R, Hu S, Chen S. Porous Complex-Mediated Dual Emission of Porphyrins for the Electrochemiluminescence Bioassay. Anal Chem 2024; 96:1427-1435. [PMID: 38226591 DOI: 10.1021/acs.analchem.3c03406] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Although porphyrins make up a promising class of electrochemiluminescence (ECL) luminophors, their aggregation-caused quenching (ACQ) characteristics lead to inferior ECL efficiency (ΦECL). Furthermore, current application of porphyrins is limited to cathodic emission. This work creatively exploited a cage-like porous complex (referred to as SWU-1) as the microreactor to recede the ACQ effect while modulating dual ECL emission of meso-tetra(4-carboxyphenyl)porphine (TCPP), which self-assembled with SWU-1 to form TCPP@SWU-1 nanocapsules (TCPP@SWU-1 NCs). As the microreactor, SWU-1 not only effectively constrained TCPP aggregation to improve electron-hole recombination efficiency but also improved stability of anion and cation radicals, thus significantly enhancing the dual emission of TCPP. Compared with TCPP aggregates, the resulting TCPP@SWU-1 NCs exhibited significantly enhanced anodic and cathodic emission, and their ΦECL was increased by 8.7-fold and 3.9-fold, respectively. Furthermore, black hole quencher-2 (BHQ2) can simultaneously quench anodic and cathodic signals. TCPP@SWU-1 NCs coupling BHQ2 conveniently achieved an ECL ratio detection of miRNA-126, and the limit of detection (S/N = 3) was 4.1 aM. This work pioneered the development of the cage-like porous complex SWU-1 as the microreactor to alleviate defects of the ACQ effect and mediate dual emission of TCPP. The coupling of dual-emitting TCPP@SWU-1 NCs and dual-function moderator BHQ2 created a novel single-luminophor-based ratio system for bioanalysis and provided a promising ECL analysis approach for miRNA-126.
Collapse
Affiliation(s)
- Yu Wen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jun Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Guomin Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Shanshan Hu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Shihong Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
9
|
Li R, Yang G, He Y, Zhao J, Yuan R, Chen S. Coreactant-free dual-emitting conjugated polymer for ratiometric electrochemiluminescence detection of SARS-CoV-2 RdRp gene. Biosens Bioelectron 2023; 237:115539. [PMID: 37487285 DOI: 10.1016/j.bios.2023.115539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/21/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
Constructing mono-luminophor-based electrochemiluminescence (ECL) ratio system is a great challenge due to the limitations of the luminescent species with dual-signal-output, luminescence efficiency and coreactant. This work developed carboxyl-functionalized poly[9,9-bis(3'-(N,N-dimethylamino) propyl)-2,7-fluorene]-alt-2,7-(9,9 dioctylfluorene)] nanoparticles(PFN NPs) as dual-emitting luminophors, which can synchronously output strong cathodic and anodic ECL signals without any exogenous coreactants. The inherent molecular structure enabled efficient intramolecular electron transfer between tertiary amine groups and backbone of PFN to generate strong cathodic and anodic ECL emission. Particularly, H+ in aqueous solution played an irreplaceable role for cathodic ECL emission. The silver nanoparticles (AgNPs) were developed as signal regulator because of their excellent hydrogen evolution reaction (HER) activity, which significantly quenched the cathodic signal while kept the anodic signal unchanged. The dual-emitting PFN NPs cleverly integrated signal regulator AgNPs and bicyclic strand displacement amplification (SDA) to construct a coreactant-free mono-luminophor-based ratiometric ECL sensing for SARS-CoV-2 RdRp gene assay. The strong dual-emitting of PFN NPs and excellent quenching effect of AgNPs on cathodic emission endowed the biosensor with a high detection sensitivity, and the detection limit was as low as 39 aM for RdRp gene. The unique dual-emitting properties of PFN NPs open up a new path to construct coreactant-free mono-luminophor-based ECL ratio platform, and excellent HER activity of AgNPs offers some new thoughts for realizing ECL signal changes.
Collapse
Affiliation(s)
- Rongfang Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Guomin Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ying He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Jinwen Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Shihong Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
10
|
Shelash Al-Hawary SI, Malviya J, Althomali RH, Almalki SG, Kim K, Romero-Parra RM, Fahad Ahmad A, Sanaan Jabbar H, Vaseem Akram S, Hussien Radie A. Emerging Insights into the Use of Advanced Nanomaterials for the Electrochemiluminescence Biosensor of Pesticide Residues in Plant-Derived Foodstuff. Crit Rev Anal Chem 2023; 54:3614-3631. [PMID: 37728973 DOI: 10.1080/10408347.2023.2258971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Pesticides have an important role in rising the overall productivity and yield of agricultural foods by eliminating and controlling insects, pests, fungi, and various plant-related illnesses. However, the overuse of pesticides has caused pesticide pollution of water bodies and food products, along with disruption of environmental and ecological systems. In this regard, developing low-cost, simple, and rapid-detecting approaches for the accurate, rapid, efficient, and on-site screening of pesticide residues is an ongoing challenge. Electrochemiluminescence (ECL) possesses the benefits of great sensitivity, the capability to resolve several analytes using different emission wavelengths or redox potentials, and excellent control over the light radiation in time and space, making it a powerful strategy for sensing various pesticides. Cost-effective and simple ECL systems allow sensitive, selective, and accurate quantification of pesticides in agricultural fields. Particularly, the development and progress of nanomaterials, aptamer/antibody recognition, electric/photo-sensing, and their integration with electrochemiluminescence sensing technology has presented the hopeful potential in reporting the residual amounts of pesticides. Current trends in the application of nanoparticles are debated, with an emphasis on sensor substrates using aptamer, antibodies, enzymes, and molecularly imprinted polymers (MIPs). Different strategies are enclosed in labeled and label-free sensing along with luminescence determination approaches (signal-off, signal-on, and signal-switch modes). Finally, the recent challenges and upcoming prospects in this ground are also put forward.
Collapse
Affiliation(s)
| | - Jitendra Malviya
- Department of Life Sciences & Biological Sciences, IES University, Bhopal, India
| | - Raed H Althomali
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Kibum Kim
- Department of Human-Computer Interaction, Hanyang University, Seoul, South Korea
| | | | - Ahmad Fahad Ahmad
- Department of Radiology, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Hijran Sanaan Jabbar
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Shaik Vaseem Akram
- Division of Research & Innovation, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun, India
| | | |
Collapse
|
11
|
Xue Y, Dong W, Wang B, Jie G. A multifunctional electrochemiluminescence and photoelectrochemical biosensor based on a quantum dot ion-exchange reaction for two-channel detection of thrombin. Analyst 2023; 148:4456-4462. [PMID: 37560929 DOI: 10.1039/d3an01139a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Herein, a multifunctional electrochemiluminescence (ECL) and photoelectrochemical (PEC) biosensor based on exchange of Ag+ with CdTe QDs was developed for dual-mode detection of thrombin. First, CdTe QDs assembled on an electrode displayed superior ECL and PEC signals. At the same time, C-rich hairpin (HP) DNA linked to silicon spheres loaded a large amount of Ag+, and the specific binding of thrombin to an aptamer led to the release of DNA P; then, DNA P interacted with HP DNA to produce numerous Ag+ ions by an enzyme-digestion amplification reaction. Ag+ underwent ion exchange with CdTe QDs to generate AgTe/CdTe QDs, resulting in much reversed PEC and changed ECL signals for dual-mode detection of thrombin. This work takes advantage of outstanding multi-signals of QDs coupled with convenient ion exchange to achieve multi-mode detection of the target, avoiding false positive or false negative signals generated in the traditional detection process, and thus can be used for the rapid detection of various biomolecules in actual samples.
Collapse
Affiliation(s)
- Yali Xue
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Wenshuai Dong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Bing Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Guifen Jie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
12
|
Peng X, He Y, Zhao J, Tan K, Yuan R, Chen S. CRISPR/Cas12a-Mediated Aptasensor Based on Tris-(8-hydroxyquinoline)aluminum Microcrystals with Crystallization-Induced Enhanced Electrochemiluminescence for Acetamiprid Analysis. Anal Chem 2023. [PMID: 37339328 DOI: 10.1021/acs.analchem.3c01485] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Improving the electrochemiluminescence (ECL) efficiency of luminophores has always been the goal of the ECL field. Herein, a novel crystallization-induced enhanced ECL (CIE ECL) strategy was exploited to significantly enhance the ECL efficiency of metal complex tris-(8-hydroxyquinoline)aluminum (Alq3). Alq3 monomers self-assembled and directionally grew to form Alq3 microcrystals (Alq3 MCs) in the presence of sodium dodecyl sulfate. The highly ordered crystal structure of Alq3 MCs not only constrained the intramolecular rotation of Alq3 monomers to decrease nonradiative transition but also accelerated the electron transfer between Alq3 MCs and coreactant tripropylamine to increase radiative transition, thus leading to a CIE ECL effect. Alq3 MCs exhibited brilliant anode ECL emission, which was 210-fold stronger than that of Alq3 monomers. The exceptional CIE ECL performance of Alq3 MCs coupled the efficient trans-cleavage activity of CRISPR/Cas12a assisted by rolling circle amplification and catalytic hairpin assembly to fabricate a CRISPR/Cas12a-mediated aptasensor for acetamiprid (ACE) detection. The limit of detection was as low as 0.79 fM. This work not only innovatively exploited a CIE ECL strategy to enhance the ECL efficiency of metal complexes but also integrated CRISPR/Cas12a with a dual amplification strategy for the ultrasensitive monitoring of pesticides such as ACE.
Collapse
Affiliation(s)
- Xiaoge Peng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, Sichuan 400715, P. R. China
| | - Ying He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, Sichuan 400715, P. R. China
| | - Jinwen Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, Sichuan 400715, P. R. China
| | - Kejun Tan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, Sichuan 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, Sichuan 400715, P. R. China
| | - Shihong Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, Sichuan 400715, P. R. China
| |
Collapse
|
13
|
Choi HK, Yoon J. Enzymatic Electrochemical/Fluorescent Nanobiosensor for Detection of Small Chemicals. BIOSENSORS 2023; 13:bios13040492. [PMID: 37185567 PMCID: PMC10136675 DOI: 10.3390/bios13040492] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023]
Abstract
The detection of small molecules has attracted enormous interest in various fields, including the chemical, biological, and healthcare fields. In order to achieve such detection with high accuracy, up to now, various types of biosensors have been developed. Among those biosensors, enzymatic biosensors have shown excellent sensing performances via their highly specific enzymatic reactions with small chemical molecules. As techniques used to implement the sensing function of such enzymatic biosensors, electrochemical and fluorescence techniques have been mostly used for the detection of small molecules because of their advantages. In addition, through the incorporation of nanotechnologies, the detection property of each technique-based enzymatic nanobiosensors can be improved to measure harmful or important small molecules accurately. This review provides interdisciplinary information related to developing enzymatic nanobiosensors for small molecule detection, such as widely used enzymes, target small molecules, and electrochemical/fluorescence techniques. We expect that this review will provide a broad perspective and well-organized roadmap to develop novel electrochemical and fluorescent enzymatic nanobiosensors.
Collapse
Affiliation(s)
- Hye Kyu Choi
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jinho Yoon
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si 14662, Gyeonggi-do, Republic of Korea
| |
Collapse
|
14
|
Liang Z, Sun Y, Zeng H, Qin H, Yang R, Qu L, Zhang K, Li Z. Broad-Specificity Screening of Pyrethroids Enabled by the Catalytic Function of Human Serum Albumin on Coumarin Hydrolysis. Anal Chem 2023; 95:5678-5686. [PMID: 36952638 DOI: 10.1021/acs.analchem.2c05556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Sensing systems based on cholinesterase and carboxylesterase coupled with different transduction technologies have emerged for pesticide screening owing to their simple operation, fast response, and suitability for on-site analysis. However, the broad spectrum and specificity screening of pyrethroids over organophosphates and carbamates remains an unmet challenge for current enzymatic sensors. Human serum albumin (HSA), a multifunctional protein, can promote various chemical transformations and show a high affinity for pyrethroids, which offer a route for specific and broad-spectrum pyrethroid screening. Herein, for the first time, we evaluated the catalytic hydrolysis function of human serum albumin (HSA) on the coumarin lactone bond and revealed that HSA can act as an enzyme to catalyze the hydrolysis of the coumarin lactone bond. Molecular docking and chemical modifications indicate that lysine 199 and tyrosine 411 serve as the catalytic general base and contribute to most of the catalytic activity. Utilizing this enzymatic activity, a broad specific ratiometric fluorescence pyrethroids sensing system was developed. The binding energetics and binding constants of pesticides and HSA show that pyrethroids bind to HSA more easily than organophosphates and carbamates, which is responsible for the specificity of the sensing system. This study provides a general sensor platform and strategy for screening pesticides and reveals the catalytic activity of HSA on the hydrolysis of the coumarin lactone bond, which may open innovative horizons for the chemical sensing and biomedical applications of HSA.
Collapse
Affiliation(s)
- Zengqiang Liang
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Yuanqiang Sun
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Huajin Zeng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Haimei Qin
- Fujian Provincial Key Lab of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ran Yang
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Lingbo Qu
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Food Safety Quick Testing and Smart Supervision Technology for State Market Regulation, Zhengzhou 450001, China
| | - Ke Zhang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Zhaohui Li
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
15
|
Sensitive detection of organophosphorus pesticides based on the localized surface plasmon resonance and fluorescence dual-signal readout. Anal Chim Acta 2022; 1235:340536. [DOI: 10.1016/j.aca.2022.340536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 11/23/2022]
|
16
|
Tang L, Wang C, Tian S, Zhang Z, Yu Y, Song D, Zhang Z. Label-Free and Ultrasensitive Detection of Butyrylcholinesterase and Organophosphorus Pesticides by Mn(II)-Based Electron Spin Resonance Spectroscopy with a Zero Background Signal. Anal Chem 2022; 94:16189-16195. [DOI: 10.1021/acs.analchem.2c03708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Li Tang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, PR China
| | - Chunyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Qianjin Street 2699, Changchun 130012, PR China
| | - Sizhu Tian
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, PR China
| | - Zhimin Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, PR China
| | - Yong Yu
- College of Instrumentation and Electrical Engineering, Jilin University, West Minzhu Street 938, Changchun 130061, PR China
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, PR China
| | - Ziwei Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, PR China
| |
Collapse
|
17
|
Yang Q, Zhao S, Li H, Li F. Acidic pH and thiol-driven homogeneous cathodic electrochemiluminescence strategy for determining the residue of organophosphorus pesticide in Chinese cabbage. Food Chem 2022; 393:133349. [PMID: 35691064 DOI: 10.1016/j.foodchem.2022.133349] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 11/19/2022]
Abstract
Electrochemiluminescent (ECL) sensors for organophosphorus pesticides (OPs) have received considerable attention, whereas complicated electrode's immobilization, response to single hydrolysate and anodic emission correlated with ECL assays restrict their potential utilization. Herein, we developed a homogeneous dual-response cathodic ECL system for highly sensitive and reliable analysis of OP using CdTe QDs as emitters. CdTe QDs, emitting red light, were fabricated through a hydrothermal reaction and generated anodic and cathodic ECL emission upon stimulation of tripropyl amine and K2S2O8, respectively. Notably, CdTe QDs-K2S2O8 showed a simultaneous response to thiol and acidic pH, and were regarded as a ECL sensor for methidathion with limit of detection of 0.016 ng/mL based on hydrolysis of acetylthiocholine into thiocholine and CH3COOH by acetylcholinesterase (AChE) and OPs' inhibition on AChE activity. This sensor also exhibited good practicability to detect methidathion in Chinese cabbage. Overall, the sensor will supply more useful information for ensuring OPs-related food safety.
Collapse
Affiliation(s)
- Qiaoting Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Suixin Zhao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Haiyin Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China.
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China.
| |
Collapse
|
18
|
Xiao Y, Wu N, Wang L, Chen L. A Novel Paper-Based Electrochemical Biosensor Based on N,O-Rich Covalent Organic Frameworks for Carbaryl Detection. BIOSENSORS 2022; 12:899. [PMID: 36291036 PMCID: PMC9599374 DOI: 10.3390/bios12100899] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 05/28/2023]
Abstract
A new N,O-rich covalent organic framework (COFDHNDA-BTH) was synthesized by an amine-aldehyde condensation reaction between 2,6-dialdehyde-1,5-dihydroxynaphthalene (DHNDA) and 1,3,5-phenyltriformylhydrazine (BTH) for carbaryl detection. The free NH, OH, and C=O groups of COFDHNDA-BTH not only covalently couples with acetylcholinesterase (AChE) into the pores of COFDHNDA-BTH, but also greatly improves the catalytic activity of AChE in the constrained environment of COFDHNDA-BTH's pore. Under the catalysis of AChE, the acetylthiocholine (ATCl) was decomposed into positively charged thiocholine (TCl), which was captured on the COFDHNDA-BTH modified electrode. The positive charges of TCl can attract anionic probe [Fe(CN)6]3-/4- on the COFDHNDA-BTH-modified electrode to show a good oxidation peak at 0.25 V (versus a saturated calomel electrode). The carbaryl detection can inhibit the activity of AChE, resulting in the decrease in the oxidation peak. Therefore, a turn-off electrochemical carbaryl biosensor based on a flexible carbon paper electrode loaded with COFDHNDA-BTH and AChE was constructed using the oxidation peak of an anionic probe [Fe(CN)6]3-/4- as the detection signal. The detection limit was 0.16 μM (S/N = 3), and the linear range was 0.48~35.0 μM. The sensor has good selectivity, repeatability, and stability, and has a good application prospect in pesticide detection.
Collapse
Affiliation(s)
| | | | | | - Lili Chen
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
19
|
Yan C, Shi G, Chen J. Fluorescent Detection of Two Pesticides Based on CRISPR-Cas12a and Its Application for the Construction of Four Molecular Logic Gates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12700-12707. [PMID: 36128975 DOI: 10.1021/acs.jafc.2c04548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An intelligent detection platform was developed through molecular logic gate operation based on CRISPR-Cas12a and signal amplification circuits using two kinds of pesticides [acetamiprid (ACE) and atrazine (ATR)] as inputs. The pesticide-aptamer bindings activate the signal amplification process to produce numerous double-stranded DNA, which can be identified by CRISPR-Cas12a. Under the optimal assay conditions, the sensor exhibits excellent analytical performance, with the detection limits for ACE and ATR of 2.5 and 0.2 pM, respectively. The practicality of the platform was verified by testing pesticide concentrations in food samples. Several molecular logic gates (OR, AND, XOR, and INHIBIT) were constructed using "0" and "1" to encode the target pesticides and the fluorescence readout. The logic detection platform with simple operation, high sensitivity, and multiple logic functions is promising to become a powerful sensing system for the intelligent assay of different pesticides in food samples.
Collapse
Affiliation(s)
- Chong Yan
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, Guangdong 510650, People's Republic of China
| | - Gu Shi
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, Guangdong 510650, People's Republic of China
| | - Junhua Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, Guangdong 510650, People's Republic of China
| |
Collapse
|
20
|
Ratiometric electrochemiluminescence lab-on-paper device for DNA methylation determination based on highly conductive copper paper electrode. Biosens Bioelectron 2022; 214:114522. [DOI: 10.1016/j.bios.2022.114522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/19/2022]
|
21
|
Qian Z, Tan R, Zhang X, Leng Y, Chen Z. MnO2 Nanosheet-Based colorimetric sensor Array: Toward identification of organophosphorus pesticides. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Li Z, Lin H, Wang L, Cao L, Sui J, Wang K. Optical sensing techniques for rapid detection of agrochemicals: Strategies, challenges, and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156515. [PMID: 35667437 DOI: 10.1016/j.scitotenv.2022.156515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/24/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
In recent years, the irrational use of agrochemicals has caused great harm to the environment and public health. Along with the rapid development of optical technology and nanotechnology, the research of optical sensing methods in agrochemical detection has been developed rapidly owing to its advantages of simplicity, fast response, and cost-effectiveness. In this review, the strategies of employing optical systems based on colorimetric sensor, fluorescence, chemiluminescence, terahertz spectroscopy, surface plasmon resonance, and surface-enhanced Raman spectroscopy for sensing agrochemicals were summarized. In addition, the challenges in the practical application of optical sensing technologies for agrochemical detection were discussed in-depth, and potential future trends and prospects of these techniques were addressed. A variety of nanomaterials have been developed for enhancing the sensitivity of optical sensing systems. The optical properties of nanomaterials are governed by their size, shape, and chemical structure. Although each optical sensing system holds its advantages, there are still many challenges that need to be overcome in practical applications. With the continuous developments in novel functional nanomaterials, sample preparation methods, and spectral processing algorithms, optical sensors are expected to have powerful potential for rapid testing of agrochemicals in the environment and foods.
Collapse
Affiliation(s)
- Zhuoran Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Lei Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Limin Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Jianxin Sui
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Kaiqiang Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China; Fujian Provincial Key Laboratory of Breeding Lateolabrax Japonicus, Ningde, Fujian 355299, China.
| |
Collapse
|
23
|
Zhao J, Zhou Y, He Y, Tan X, Yuan R, Chen S. Dual-emitting BP-CdTe QDs coupled with dual-function moderator TiO2 NSs for electrochemiluminescence ratio bioassay. Biosens Bioelectron 2022; 212:114420. [DOI: 10.1016/j.bios.2022.114420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/07/2022] [Accepted: 05/22/2022] [Indexed: 11/02/2022]
|
24
|
Ma H, Yi M, Messinger M, Wang G. Kinetics-Based Ratiometric Electrochemiluminescence Analysis for Signal Specificity: Case Studies of Piperazine Drug Discrimination with Au Nanoclusters. Anal Chem 2022; 94:11760-11766. [PMID: 35973062 DOI: 10.1021/acs.analchem.2c01489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A multi-parameter calibration and analysis strategy has been developed based on the kinetics of charge transfer reactions. Absolute and ratiometric electrochemiluminescence signals are elucidated from single measurements for the detection of hydroxyzine and cetirizine as prototype drugs which greatly enhance the near-infrared electrochemiluminescence from atomically precise Au22 nanoclusters stabilized with lipoic acid ligands on ITO electrodes. The signal-on sensing mechanism eliminates the need for recognition elements and highly excess co-reactants in conventional electrochemiluminescence practice. The rates of sequential charge transfer reactions render specificity in electrochemiluminescence intensity and kinetics toward the target molecular/electronic structures and are conveniently controlled/optimized by operation parameters. Signal kinetic profiles, in stark contrast to steady-state or single-point recordings, not only improve the signal/noise ratio but also offer greater resolving power to differentiate analogue species and nonspecific interference. The fundamental kinetics-based ratiometric concept/strategy is not limited to a specific luminophore or a co-reactant and is thus generalizable. The case studies successfully detect and discriminate drug compounds at sub-nanomolar physiological ranges, with efficacy validated using synthetic urine toward point-of-care applications in therapeutic/abuse drug monitoring.
Collapse
Affiliation(s)
- Hedi Ma
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Meijun Yi
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Michael Messinger
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Gangli Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
25
|
Yang G, Zhang Y, Zhao J, He Y, Yuan R, Chen S. Dual-emitting Iridium nanorods combining dual-regulating coreaction accelerator Ag nanoparticles for electrochemiluminescence ratio determination of amyloid-β oligomers. Biosens Bioelectron 2022; 216:114629. [PMID: 36001932 DOI: 10.1016/j.bios.2022.114629] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/21/2022] [Accepted: 08/06/2022] [Indexed: 11/27/2022]
Abstract
Iridium(III) complexes have been developed as eminent electrochemiluminescence (ECL) luminophores, but their current applications are only limited to anodic ECL emission because of weak cathodic ECL emission. This work explored poly(styrene-co-maleicanhydride) (PSMA) as functional reagent to modulate iridium(III) complexes to simultaneously emit bipolar ECL signals. The prepared iridium(III) nanorods (Ir NRs) were detected strong bipolar ECL emissions at +0.9 V and -2.0 V with N,N-diisopropylethylenediamine (DPEA) and persulfate (S2O82-) as coreactant, respectively. Meanwhile, Ag nanoparticles (Ag NPs) were developed as dual-regulating coreaction accelerator to boost the bipolar emissions of Ir NRs simultaneously. The dual-emitting Ir NRs coupled with dual-regulating coreaction accelerator Ag NPs facilitated the construction of mono-luminophore-based ECL ratio strategy for detecting amyloid-β oligomers (AβO). When the target AβO appeared, the Mg2+-dependent DNAzyme-powered biped walkers were unlocked to cleave single-stranded S1 immobilized on the surface of magnetic beads (MBs), resulting in the production of massive single-stranded ST. Then, the output ST cleaved hairpin H1 captured by Ir NRs modified electrode to produce numerous single strands, which could initiate the hybridization chain reaction (HCR) between Ag NPs-labeled H2 and Ag NPs-labeled H3 to introduce abundant Ag NPs onto the electrode surface. Due to the enhancement effect of Ag NPs on the bipolar ECL emissions from Ir NRs, the ECL ratio detection of AβO was achieved with the detection limit of 0.62 pM. The unique dual-emitting properties of Ir NRs coupled with dual-regulating effect of Ag NPs provided an interesting mono-luminophore-based ECL ratio sensing platform for biological analysis.
Collapse
Affiliation(s)
- Guomin Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yuanyuan Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Jinwen Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ying He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Shihong Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
26
|
Luo Y, Wu N, Wang L, Song Y, Du Y, Ma G. Biosensor Based on Covalent Organic Framework Immobilized Acetylcholinesterase for Ratiometric Detection of Carbaryl. BIOSENSORS 2022; 12:bios12080625. [PMID: 36005021 PMCID: PMC9405660 DOI: 10.3390/bios12080625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 01/03/2023]
Abstract
A ratiometric electrochemical biosensor based on a covalent organic framework (COFThi-TFPB) loaded with acetylcholinesterase (AChE) was developed. First, an electroactive COFThi-TFPB with a two-dimensional sheet structure, positive charge and a pair of inert redox peaks was synthesized via a dehydration condensation reaction between positively charged thionine (Thi) and 1,3,5-triformylphenylbenzene (TFPB). The immobilization of AChE on the positively charged electrode surface was beneficial for maintaining its bioactivity and achieving the best catalytic effect; therefore, the positively charged COFThi-TFPB was an appropriate support material for AChE. Furthermore, the COFThi-TFPB provided a stable internal reference signal for the constructed AChE inhibition-based electrochemical biosensor to eliminate various effects which were unrelated to the detection of carbaryl. The sensor had a linear range of 2.2–60 μM with a detection limit of 0.22 μM, and exhibited satisfactory reproducibility, stability and anti-interference ability for the detection of carbaryl. This work offers a possibility for the application of COF-based materials in the detection of low-level pesticide residues.
Collapse
Affiliation(s)
| | | | | | | | | | - Guangran Ma
- Correspondence: or ; Tel.: +86-0791-88120861
| |
Collapse
|
27
|
Electrochemiluminescence resonance energy transfer system between ruthenium-based nanosheets and CdS quantum dots for detection of chlorogenic acid. Mikrochim Acta 2022; 189:323. [PMID: 35933502 DOI: 10.1007/s00604-022-05428-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/22/2022] [Indexed: 10/15/2022]
Abstract
A new strategy is proposed for ultrasensitive detection of chlorogenic acid (CGA) by fabricating an electrochemiluminescence resonance energy transfer (ECL-RET) sensing platform. The novel system designed by introducing ruthenium-based 2D metal-organic framework nanosheets (Ru@Zn-MOF) as ECL acceptor and L-cysteine capped CdS quantum dots (L-CdS QDs) as ECL donor, exhibited good ECL response. The possible mechanism of the modified electrode surface reaction was discussed. Modifying of the electrode surface by application of L-CdS QDs directly on ultrathin MOF nanosheets greatly shortened the electron-transfer distance and reduce energy loss, therefore significantly improving the ECL efficiency. The prepared sensor demonstrated good stability and highly selective detection of the target molecule. Under optimal conditions, the constructed sensor for the detection of CGA exhibited a wide linear range from 1.0 × 10-10 to 1.0 × 10-4 mol·L-1 and a low detection limit of 3.2 × 10-11 mol·L-1 with a correction coefficient of 0.995. The recovery for spiked samples was calculated to be 94.4-109% and the RSD was 1.07-1.72% in real samples. The obtained sensor is considered to be a promising platform for CGA detection. Electrochemiluminescence resonance energy transfer (ECL-RET) sensing platform is used for the detection for chlorogenic acid.
Collapse
|
28
|
Development of a pH-Responsive, SO42–-loaded Fe and N co-doped carbon quantum dots-based fluorescent method for highly sensitive detection of glyphosate. Anal Chim Acta 2022; 1221:340110. [DOI: 10.1016/j.aca.2022.340110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/18/2022] [Accepted: 06/20/2022] [Indexed: 11/21/2022]
|
29
|
Liu J, Wang R, Zhou H, Mathesh M, Dubey M, Zhang W, Wang B, Yang W. Nucleic acid isothermal amplification-based soft nanoarchitectonics as an emerging electrochemical biosensing platform. NANOSCALE 2022; 14:10286-10298. [PMID: 35791765 DOI: 10.1039/d2nr02031a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The emergence of nucleic acid isothermal amplification strategies based on soft nanoarchitectonics offers a new dimension to the traditional electrochemical technique, particularly because of its flexibility, high efficiency, and increased sensitivity for analytical applications. Various DNA/RNA isothermal amplification strategies have been developed for the design and fabrication of new electrochemical biosensors for efficient and important biomolecular detection. Herein, we provide an overview of recent efforts in this research field and the strategies for signal-amplified sensing systems, with their biological applications, current challenges and prospects in this promising new area.
Collapse
Affiliation(s)
- Jing Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China.
| | - Ruke Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China.
| | - Hong Zhou
- Shandong Key Laboratory of Biochemical Analysis; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Motilal Mathesh
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, 3217, Australia.
| | - Mukul Dubey
- TERI-Deakin Nanobiotechnology Centre, TERI Gram, Gwal Pahari, Gurugram, Haryana, India
| | - Wengan Zhang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China.
| | - Bo Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China.
| | - Wenrong Yang
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, 3217, Australia.
| |
Collapse
|
30
|
He Y, Yang G, Zhao J, Tan K, Yuan R, Chen S. Potentially tunable ratiometric electrochemiluminescence sensing based on conjugated polymer nanoparticle for organophosphorus pesticides detection. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128699. [PMID: 35325864 DOI: 10.1016/j.jhazmat.2022.128699] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/02/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
In general, suitable double luminophores and their coreactants are necessary for constructing electrochemiluminescence (ECL) ratio strategy. However, the complexity of matching double luminophores and the stability and repeatability problem suffered by introducing exogenous coreactant would greatly limit the application of ratio detection. An original single-luminophore-based ECL ratio sensing was developed excluding any exogenous coreactants in this work. The poly [9,9-bis(3'-(N,N-dimethylamino)propyl)- 2,7-fluorene]-alt-2,7-(9,9-dioctylfluorene)] nanoparticles (PFN NPs) were explored to emit two anodic ECL signals. One centered at + 1.25 V (ECL-1) with the scanning potential of 0 ~ + 1.25 V and the other at + 1.95 V (ECL-2) with the scanning potential of 0 ~ + 1.95 V. ECL-1 showed a very strong emission without any exogenous coreactant. Importantly, hydrogen peroxide (H2O2) was able to efficiently weaken ECL-1 but strengthen ECL-2. When organophosphorus pesticides (OPs) were absent, the immobilized acetylcholinesterase-choline oxidase (AChE-ChOx) would catalyze the substrate acetylthiocholine chloride (ATCl) to produce H2O2, resulting in a quenched ECL-1 and an enhanced ECL-2. With the introduction of OPs, ECL-1 increased while ECL-2 accordingly decreased as OPs prohibited production of H2O2 by inhibiting activity of AChE. Highly sensitive ECL ratio detection for OPs was realized based on the change of the ratio of two signals. The dual anode emission properties of PFN NPs coupled with the opposite regulation of H2O2 on the two signals paved a new avenue for potentially tunable ECL ratio sensing strategy, and showed enormous potential applications for OPs analysis.
Collapse
Affiliation(s)
- Ying He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Guomin Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jinwen Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Kejun Tan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Shihong Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
31
|
Tan X, Yu C, Tang J, Wu W, Yang Q, Hou X. Progress in Nanomaterials-Based Enzyme and Aptamer Biosensor for the Detection of Organophosphorus Pesticides. Crit Rev Anal Chem 2022; 54:247-268. [PMID: 35549956 DOI: 10.1080/10408347.2022.2072678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
With the improvement of people's safety awareness, the requirement of pesticide detection is gradually increasing, and many new detection methods toward Organophosphorus pesticide (OPs) has been further developed and applied. Nanomaterials-based biosensors have played an important role in the trace detection of OPs. This article mainly introduces the detection principle of enzymes and aptamers as the identification element of biosensors. Various nanomaterials (i.e., metals and metal oxides, carbon nanotubes, graphene and graphene oxide, quantum dots, metal organic frameworks, molecular imprinted polymers, etc.) possess their unique properties and play different roles in the enzyme and aptamer-based biosensors toward OPs: (a) to produce the optical or electrochemical signal; (b) as a carrier to load the enzyme or aptamer; (c) to enhance the signal response. Besides, the intelligent portable devices provide the possibility to realize the onsite and real-time detection. The limitations of some nanomaterials and the future development are discussed. Finally, the future of enzyme and aptamer-based biosensors has prospected.
Collapse
Affiliation(s)
- Xin Tan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Chundi Yu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Juan Tang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Wei Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Xiudan Hou
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, China
| |
Collapse
|
32
|
Cao JT, Liu XM, Fu YZ, Ren SW, Liu YM. Label-Free Ratiometric Electrochemiluminescent (ECL) Immunosensor for the Determination of Prostate Specific Antigen (PSA) in Serum. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2027957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Jun-Tao Cao
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang, China
| | - Xiang-Mei Liu
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang, China
| | - Yi-Zhuo Fu
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang, China
| | | | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang, China
| |
Collapse
|
33
|
Wang T, Zhang L, Xin H. A Portable Fluorescent Hydrogel-Based Device for On-Site Quantitation of Organophosphorus Pesticides as Low as the Sub-ppb Level. Front Chem 2022; 10:855281. [PMID: 35572106 PMCID: PMC9101059 DOI: 10.3389/fchem.2022.855281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Portable devices possess powerful application prospects in on-site sensing without the limitation of bulky instruments. Given the relevance of pesticides to food safety, we herein fabricated a robust gold nanocluster (AuNC)-based hydrogel test kit for precisely quantified chlorpyrifos by using a three-dimensional (3D) printed subsidiary device. In this work, the fluorescence of AuNC-based hydrogel could be efficiently quenched by cobalt oxyhydroxide nanoflakes (CoOOH NFs) through the Förster resonance energy transfer effect. Chlorpyrifos as an acetylcholinesterase inhibitor controls the enzymatic hydrolysis reaction and further regulates the production of thiocholine that could decompose CoOOH nanoflakes into Co2+, resulting in the fluorescence response of AuNC-based hydrogel. By using a homemade subsidiary device and smartphone, the fluorescence color was transformed into digital information, achieving the on-site quantitative detection of chlorpyrifos with the limit of detection of 0.59 ng ml−1. Owing to specific AuNC signatures and hydrogel encapsulation, the proposed fluorescence hydrogel test kit displayed high sensitivity, good selectivity, and anti-interference capability in a real sample analysis, providing great potential in on-site applications.
Collapse
Affiliation(s)
| | | | - Hua Xin
- *Correspondence: Tuhui Wang, ; Hua Xin,
| |
Collapse
|
34
|
Liang H, Qileng A, Shen H, Zhou Y, Liu W, Lei H, Liu Y. Handheld Platform for Sensitive Rosiglitazone Detection: Immunosensor Based on a Time-Based Readout Device. Anal Chem 2022; 94:4294-4302. [PMID: 35107977 DOI: 10.1021/acs.analchem.1c04957] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The detection of rosiglitazone (RSG) in food is of great importance since the excessive intake of RSG could cause adverse effects on the human body. Although liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry are the preliminary methods for the detection of hazardous materials in food, they are not suitable for point-of-care or on-site detection. Herein, a time-based readout (TBR) device with an application software (APP) controlled by a smart phone was developed for the sensitive and selective immunoassay of RSG. The homemade TBR device was based on a two-electrode system, where the immune molecule-modified glassy carbon electrode was used as the bioanode, and Prussian blue-modified FTO was used as the cathode. By using Au-modified octahedral Cu2O with high catalytic activity as mimetic peroxidase, an insulating layer was generated on the cathode by catalyzing 4-chloro-1-naphthol (4-CN) into benzo-4-chlorohexadienone (B4Q). The time to reach a fixed potential varied indirectly with the concentrations of RSG and was recognized by the APP, while the electrochromic property on the cathode was also correspondingly changed. Under optimum conditions, both the square root of the time and the chroma value of the electrochromism exhibited linear responses for the detection of RSG ranging from 5 × 10-10 to 5 × 10-7 g/L, while the limits of detection were 8.2 × 10-11 and 1.3 × 10-10 g/L, respectively. With easy operation and portability, this TBR device showed a promising application for point-of-care monitoring of hazardous materials in food or the environment.
Collapse
Affiliation(s)
- Hongzhi Liang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Aori Qileng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.,The Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Haoran Shen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yaowei Zhou
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Weipeng Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Hongtao Lei
- The Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yingju Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.,The Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
35
|
Liu XM, Wang YL, Ren SW, Cao JT, Liu YM. H 2O 2-activated independently bidirectional regulation for a sensitive and accurate electrochemiluminescence ratiometric analysis. Analyst 2022; 147:2508-2514. [DOI: 10.1039/d2an00601d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel ECL ratiometric sensor was developed based on H2O2 activated independently bidirectional regulation strategy.
Collapse
Affiliation(s)
- Xiang-Mei Liu
- College of Chemistry and Chemical Engineering, Xinyang key laboratory of functional nanomaterials for bioanalysis, Xinyang Normal University, Xinyang 464000, China
| | - Yu-Ling Wang
- College of Chemistry and Chemical Engineering, Xinyang key laboratory of functional nanomaterials for bioanalysis, Xinyang Normal University, Xinyang 464000, China
| | - Shu-Wei Ren
- Xinyang Central Hospital, Xinyang 464000, China
| | - Jun-Tao Cao
- College of Chemistry and Chemical Engineering, Xinyang key laboratory of functional nanomaterials for bioanalysis, Xinyang Normal University, Xinyang 464000, China
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering, Xinyang key laboratory of functional nanomaterials for bioanalysis, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
36
|
Luo X, Luo Z, Wei X, Jiao L, Fang Q, Wang H, Wang J, Gu W, Hu L, Zhu C. Iridium Single-Atomic Site Catalysts with Superior Oxygen Reduction Reaction Activity for Sensitive Monitoring of Organophosphorus Pesticides. Anal Chem 2021; 94:1390-1396. [PMID: 34969242 DOI: 10.1021/acs.analchem.1c04665] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Tremendous efforts have been made in developing single-atomic site catalysts (SASCs) for oxygen reduction reaction (ORR), which is regarded as a pivotal cornerstone in electrochemical energy conversion. However, SASCs for ORR have not been explored for electrochemical sensing. Herein, a template-sacrificed strategy is reported for the synthesis of atomically dispersed Ir SASCs, serving as a sensing platform to detect organophosphorus pesticides (OPs) with high sensitivity and selectivity. Owing to abundant Ir single-atom active sites, Ir SASCs show excellent ORR activity and stability in a neutral medium. It is found that the ORR activity of Ir SASCs can be inhibited by thiocholine, which is the hydrolysate of acetylthiocholine. After being integrated with acetylcholinesterase (AChE), the AChE-Ir SASC-based electrochemical sensor is established and shows a superior sensitivity, which shows a wide detection range of 0.5-500 ng mL-1 with a low detection limit of 0.17 ng mL-1 for OPs. This work exhibits a broad application prospect of ORR for sensitive detection of biomolecules.
Collapse
Affiliation(s)
- Xin Luo
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.,Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan 430068, P. R. China
| | - Zhen Luo
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xiaoqian Wei
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Lei Jiao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Qie Fang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hengjia Wang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jinhua Wang
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan 430068, P. R. China
| | - Wenling Gu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Liuyong Hu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Chengzhou Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
37
|
Cao JT, Fu YZ, Fu XL, Ren SW, Liu YM. Dual-wavelength electrochemiluminescence ratiometry for hydrogen sulfide detection based on Cd 2+-doped g-C 3N 4 nanosheets. Analyst 2021; 147:247-251. [PMID: 34931211 DOI: 10.1039/d1an01873f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Herein, a novel and facile dual-wavelength ratiometric electrochemiluminescence-resonance energy transfer (ECL-RET) sensor for hydrogen sulfide (H2S) detection was constructed based on the interaction between S2- and Cd2+-doped g-C3N4 nanosheets (NSs). Cd2+-doped g-C3N4 NSs exhibited a strong ECL emission at 435 nm. In the presence of H2S, CdS was formed in situ on g-C3N4 NSs by the adsorption of S2- and Cd2+, generating another ECL emission at 515 nm. Furthermore, the overlapping of the absorption spectrum of the formed CdS and the ECL emission spectrum of g-C3N4 NSs led to a feasible RET, thus quenching the ECL intensity from g-C3N4 at 435 nm. Through an ECL decrease at 435 nm and an increase at 515 nm, a dual-wavelength ratiometric ECL-RET system for H2S was designed. The sensor exhibited a lower detection limit of 0.02 μM with a wide linear range of 0.05-100.0 μM. In addition, the applicability of the method was validated by plasma sample analysis with a linear range of 80.0-106.0%. We believe that such a proposal would provide new insight into advanced dual-wavelength ECL ratiometric assays.
Collapse
Affiliation(s)
- Jun-Tao Cao
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China.
| | - Yi-Zhuo Fu
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China.
| | - Xiao-Long Fu
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China.
| | - Shu-Wei Ren
- Xinyang Central Hospital, Xinyang 464000, China
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China.
| |
Collapse
|