1
|
Fan S, Li X, Liu H, Ye M, He Y, Fu W, Chen F, Zhao Y. Molecule Differentiation Encoding Microscopy to Dissect Dense Biomolecules in Cellular Nanoenvironments below Spatial Resolution. Angew Chem Int Ed Engl 2025; 64:e202425136. [PMID: 40034080 DOI: 10.1002/anie.202425136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/19/2025] [Accepted: 03/03/2025] [Indexed: 03/05/2025]
Abstract
Cellular biomolecules may exhibit dense distribution and organization at the nanoscale to govern vital biological processes. However, it remains a common challenge to digitize the spatially dense biomolecules under the spatial resolution of microscopies. Here, a proof-of-principle method, molecule differentiation encoding microscopy by orthogonal tandem repeat DNA identifiers is reported, to resolve the copy numbers of dense biomolecules in cellular nanoenvironments. The method encodes each copy of the same biomolecules into different types of DNA barcodes based on stochastic multiplexed reactions. It can transform the overlap of the same spectrum into the overlap of different spectra. Furthermore, an algorithm is developed to automatically quantitate overlapping spots and individual spots. Using this method, RNAs in the cytoplasm, DNA epigenetic modifications in the cell nucleus, and glycans and glycoRNAs on the cell surface are dissected, respectively. It is found that all these biomolecules present dense distribution with diverse degrees in crowded cellular nanoenvironments. Especially, an average 17% copies of U1 glycoRNA of single cells are gathered in various nano environments on the cell surface. The strategy provides a powerful tool for digitally quantitative visualization of dense biomolecules below the spatial resolution of microscopies and can provide insights into underlying functions and mechanisms of the dense distribution information.
Collapse
Affiliation(s)
- Siyue Fan
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi, 710049, China
| | - Xinyin Li
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi, 710049, China
| | - Huan Liu
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi, 710049, China
| | - Mengying Ye
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi, 710049, China
| | - Yan He
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi, 710049, China
| | - Wenhao Fu
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi, 710049, China
| | - Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi, 710049, China
| | - Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi, 710049, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
2
|
Chen F, Li X, Bai M, Zhao Y. Visualizing epigenetic modifications and their spatial proximities in single cells using three DNA-encoded amplifying FISH imaging strategies: BEA-FISH, PPDA-FISH and Cell-TALKING. Nat Protoc 2025; 20:220-247. [PMID: 39232201 DOI: 10.1038/s41596-024-01036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 06/11/2024] [Indexed: 09/06/2024]
Abstract
Epigenetic modifications and spatial proximities of nucleic acids and proteins play important roles in regulating physiological processes and disease progression. Currently available cell imaging methods, such as fluorescence in situ hybridization (FISH) and immunofluorescence, struggle to detect low-abundance modifications and their spatial proximities. Here we describe a step-by-step protocol for three DNA-encoded amplifying FISH-based imaging strategies to overcome these challenges for varying applications: base-encoded amplifying FISH (BEA-FISH), pairwise proximity-differentiated amplifying FISH (PPDA-FISH) and cellular macromolecules-tethered DNA walking indexing (Cell-TALKING). They all use the similar core principle of DNA-encoded amplification, which transforms different nonsequence molecular features into unique DNA barcodes for in situ rolling circle amplification and FISH analysis. This involves three key reactions in fixed cell samples: target labeling, DNA encoding and rolling circle amplification imaging. Using this protocol, these three imaging strategies achieve in situ counting of low-abundance modifications alone, the pairwise proximity-differentiated visualization of two modifications and the exploration of multiple modifications around one protein (one-to-many proximity), respectively. Low-abundance modifications, including 5-hydroxymethylcytosine, 5-formylcytosine, 5-hydroxymethyluracil and 5-formyluracil, are clearly visualized in single cells. Various combinatorial patterns of nucleic acid modifications and/or histone modifications are found. The whole protocol takes ~2-4 d to complete, depending on different imaging applications.
Collapse
Affiliation(s)
- Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'An, P. R. China
| | - Xinyin Li
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'An, P. R. China
| | - Min Bai
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'An, P. R. China
| | - Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'An, P. R. China.
| |
Collapse
|
3
|
Jiang S, Cai Y, Zhang QY, Liu Q, Wang ZY, Zhang CY. Bioorthogonal Reaction-Mediated Enzymatic Elongation-Driven Dendritic Nanoassembly for Genome-Wide Analysis of 5-Hydroxymethyluracil in Breast Tissues. NANO LETTERS 2023; 23:10625-10632. [PMID: 37930759 DOI: 10.1021/acs.nanolett.3c03754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
5-Hydroxymethyluracil (5hmU) is an oxidation derivative of thymine in the genomes of various organisms and may serve as both an epigenetic mark and a cancer biomarker. However, the current 5hmU assays usually have drawbacks of laborious procedures, low specificity, and unsatisfactory sensitivity. Herein, we demonstrate the click chemistry-mediated hyperbranched amplification-driven dendritic nanoassembly for genome-wide analysis of 5hmU in breast cell lines and human breast tissues. The proposed strategy possesses good selectivity, ultralow background, and high sensitivity with a detection limit of 83.28 aM. This method can accurately detect even a 0.001% 5hmU level in the mixture. Moreover, it can determine 5hmU at single-cell level and distinguish the expressions of 5hmU in tissues of normal persons and breast cancer patients, holding great promise in 5hmU-related biological research and clinical diagnosis.
Collapse
Affiliation(s)
- Su Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Yanbo Cai
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Qian-Yi Zhang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Qian Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Zi-Yue Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
4
|
Chen F, Xue J, Bai M, Fan C, Zhao Y. Lighting Up Nucleic Acid Modifications in Single Cells with DNA-Encoded Amplification. Acc Chem Res 2022; 55:2248-2259. [PMID: 35904502 DOI: 10.1021/acs.accounts.2c00269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Nucleic acids are naturally decorated with various chemical modifications at nucleobases. Most nucleic acid modifications (NAMs) do not alter Watson-Crick base pairing but can regulate gene expression known as "epigenetics". Their abundances present a very wide range, approximately 10-2 to 10-6 of total bases. Different NAMs may coexist in spatial proximity (e.g., <20 nm) in the crowded intracellular environment. Considering the highly dynamic chromatin accessibility (physical access to DNA), the NAMs in inaccessible DNA probably plays different roles. These multilayered features of NAMs vary from cell to cell. Our understanding of the function and mechanism of NAMs in biological processes and disease states has largely been driven by the expanding array of sequencing-based methodologies. However, an underexplored aspect is the measurement of the subcellular distribution, spatial proximity, and inaccessibility of NAMs in single cells. In recent years, we have developed new approaches that light up single-cell NAMs with single-site sensitivity. These methods are mainly based on the integration of chemical or chemoenzymatic tools, DNA amplification and nanotechnology, and/or microfluidics. An overview of these methods together with conventional methods such as immunofluorescence (IF) and fluorescence in situ hybridization (FISH) is provided in this Account.Our laboratory has proposed DNA-encoded amplification (DEA) as the main strategy for developing a set of single-cell NAM imaging methods. In brief, DEA transforms the different features of NAMs into unique DNA primers for rolling circle amplification (RCA) followed by FISH imaging. The first method is base-encoded amplifying FISH (BEA-FISH), in which we convert individual NAMs into RCA primers via chemoselective labeling and click bioconjugation. It enables the in situ visualization of low-abundance NAMs (e.g., 5hmU), which is impracticable by conventional methods. We subsequently developed pairwise proximity-differentiated amplifying FISH (PPDA-FISH), which integrates BEA-FISH with DNA nanotechnology. PPDA-FISH utilizes proximity ligation and toehold strand displacement to label the adjacent site of two different NAMs (one-to-one proximity) and their respective residual sites with three unique RCA probes. It achieves simultaneous counting of the above-mentioned three types of modified sites in the same cells. The third method is cellular macromolecule-tethered DNA walking indexing (Cell-TALKING) to probe more than two NAMs within the same nanoenvironments. Cell-TALKING uses dynamic DNA proximity cleavage to continuously activate different preblocked RCA primers (for each NAM) near one walking probe (for one target molecule). We have explored three NAMs around one histone (one-to-many proximity) in different cancer cell lines and clinical specimens. Then, we describe a single-cell hydrogel encoding amplification (scHEA) method by integrating droplet microfluidics with BEA-FISH. This method generates hydrogel beads that encapsulate single cells and their genomic DNA after cell lysis. It realizes the analysis of global (accessible and inaccessible) DNA from the same cells. We find that the global levels of both 5hmC and 5hmU in single cells can distinguish different breast cancer cells. Finally, the current limitations of these strategies and the future development directions are also discussed. We hope that this Account can spark new ideas and invite new efforts from different disciplines for single-cell NAM analysis.
Collapse
Affiliation(s)
- Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Jing Xue
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Min Bai
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| |
Collapse
|
5
|
Liu H, Wang Y, Zhou X. Labeling and sequencing nucleic acid modifications using bio-orthogonal tools. RSC Chem Biol 2022; 3:994-1007. [PMID: 35975003 PMCID: PMC9347354 DOI: 10.1039/d2cb00087c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
The bio-orthogonal reaction is a type of reaction that can occur within a cell without interfering with the active components of the cell. Bio-orthogonal reaction techniques have been used to label and track the synthesis, metabolism, and interactions of distinct biomacromolecules in cells. Thus, it is a handy tool for analyzing biological macromolecules within cells. Nucleic acid modifications are widely distributed in DNA and RNA in cells and play a critical role in regulating physiological and pathological cellular activities. Utilizing bio-orthogonal tools to study modified bases is a critical and worthwhile research direction. The development of bio-orthogonal reactions focusing on nucleic acid modifications has enabled the mapping of nucleic acid modifications in DNA and RNA. This review discusses the recent advances in bio-orthogonal labeling and sequencing nucleic acid modifications in DNA and RNA. Labeling nucleic acid modifications using bio-orthogonal tools, then sequencing and imaging the labeled modifications in DNA and RNA.![]()
Collapse
Affiliation(s)
- Hui Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yafen Wang
- School of Public Health, Wuhan University, Wuhan 430071, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
6
|
Yang W, Han S, Zhang X, Wang Y, Zou G, Liu C, Xu M, Zhou X. Sequencing 5-Formyluracil in Genomic DNA at Single-Base Resolution. Anal Chem 2021; 93:15445-15451. [PMID: 34775754 DOI: 10.1021/acs.analchem.1c03339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Albeit with low content, 5-formyluracil has been an important modification in genomic DNA. 5-formyluracil was found to be widely distributed among living bodies. Due to the equilibrium of keto-enol form, 5-formyluracil could be base-paired with guanine, thus inducing mutations in DNA. The highly reactive aldehyde group of 5-formyluracil could also cross-link with proteins nearby, preventing gene replication and expression. In certain cancerous tissues, the content of 5-formyluracil was found to be higher than the normal tissues adjacent to the tumor, and 5-formyluracil might be an important potential epigenetic mark. Nevertheless, the lack of a higher resolution sequencing technique has hampered the studies of 5-formyluracil. We adjusted the base-pairing of 5-formyluracil during the PCR amplification by changing the pH. Hence, we adopted the Alkaline Modulated 5-formyluracil Sequencing (AMfU-Seq), a single-base resolution analysis method, to profile 5-formyluracil at the genome scale. We analyzed the distribution of 5-formyluracil in the human thyroid carcinoma cells using AMfU-Seq. This technique can be used in the future investigations of 5-formyluracil.
Collapse
Affiliation(s)
- Wei Yang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072 Hubei, China
| | - Shaoqing Han
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072 Hubei, China
| | - Xiong Zhang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072 Hubei, China
| | - Yafen Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072 Hubei, China
| | - Guangrong Zou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072 Hubei, China
| | - Chaoxing Liu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072 Hubei, China
| | - Muxin Xu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072 Hubei, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072 Hubei, China
| |
Collapse
|