1
|
Atabay M, Inci F, Saylan Y. Computational studies for the development of extracellular vesicle-based biosensors. Biosens Bioelectron 2025; 277:117275. [PMID: 39999607 DOI: 10.1016/j.bios.2025.117275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/25/2024] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
Cancer affects millions of people, and early detection and efficient treatment are two strong levers to hurdle this disease. Recent studies on exosomes, a subset of extracellular vesicles, have deliberately shown the potential to function as a biomarker or treatment tool, thereby attracting the attention of researchers who work on developing biosensors. Due to the ability of computational methods to predict of the behavior of biomolecules, the combination of experimental and computational methods would enhance the analytical performance of the biosensor, including sensitivity, accuracy, and specificity, even detecting such vesicles from bodily fluids. In this regard, the role of computational methods such as molecular docking, molecular dynamics simulation, and density functional theory is overviewed in the development of biosensors. This review highlights the investigations and studies that have been reported using these methods to design exosome-based biosensors. This review concludes with the role of the quantum mechanics/molecular mechanics method in the investigation of chemical processes of biomolecular systems and the deficiencies in using this approach to develop exosome-based biosensors. In addition, the artificial intelligence theory is explained briefly to show its importance in the study of these biosensors.
Collapse
Affiliation(s)
- Maryam Atabay
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, Turkey; Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Fatih Inci
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, Turkey; Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Yeşeren Saylan
- Department of Chemistry, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
2
|
Song P, Dong J, Yu T, Pan Z, Chen Z, Wang R, Wang M, Zhao L, Wang X, Li J. Accurate Diagnosis of Pancreatic Ductal Adenocarcinoma by Detection of miRNA-196a Biomarker in Exosome Using Solution-Gated Graphene Transistor with Antifouling Design. Adv Healthc Mater 2025; 14:e2404572. [PMID: 39924840 DOI: 10.1002/adhm.202404572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/27/2025] [Indexed: 02/11/2025]
Abstract
The accurate diagnosis of pancreatic ductal adenocarcinoma (PDAC) suffers low specify, and low sensitivity of biomarker detection. In complex biological fluid environments, nonspecific adsorption is prevalent, posing challenges to the accurate detection of biomarkers at low concentrations. Herein, a highly sensitive and selective solution-gated graphene transistor (SGGT) is fabricated for the detection of miRNA-196a in exosomes to diagnose PDAC. The antifouling modification on the surface of the gate electrode is employed through using bovine serum albumin as a common sealing agent and poly adenine (polyA8) to enhance surface hydrophilicity. The effect of background noise on the detection is effectively reduced. The limit of detection reached 1.82 × 10-19 m without the need for labeling or amplification, and the detection time is within 25 min. The clinical experiments verify that receiver operating characteristic curve values of miRNA-196a detection in clinical diagnosis are higher than that of carbohydrate antigen 19-9 biomarker, and are as high as 0.98. The miRNA-196a detection can well distinguish PDAC from non-PDAC subjects. The SGGT sensor platform demonstrates significant potential for the accurate detection and diagnosis of PDAC within the milieu of complex biological samples.
Collapse
Affiliation(s)
- Peng Song
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, College of New Energy and Electrical Engineering, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Junqi Dong
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, College of New Energy and Electrical Engineering, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Tingting Yu
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, College of New Energy and Electrical Engineering, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Zexun Pan
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, College of New Energy and Electrical Engineering, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Ziwen Chen
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, College of New Energy and Electrical Engineering, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Ruixue Wang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, College of New Energy and Electrical Engineering, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Ming Wang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Liang Zhao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Xianbao Wang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, College of New Energy and Electrical Engineering, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Jinhua Li
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, College of New Energy and Electrical Engineering, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| |
Collapse
|
3
|
Han C, Liu Q, Luo X, Zhao J, Zhang Z, He J, Ge F, Ding W, Luo Z, Jia C, Zhang L. Development of a CRISPR/Cas12a-mediated aptasensor for Mpox virus antigen detection. Biosens Bioelectron 2024; 257:116313. [PMID: 38688229 DOI: 10.1016/j.bios.2024.116313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/23/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
The emergence and rapid spread of Mpox (formerly monkeypox) have caused significant societal challenges. Adequate and appropriate diagnostics procedures are an urgent necessity. Herein, we discover a pair of aptamers through the systematic evolution of ligands by exponential enrichment (SELEX) that exhibit high affinity and bind to different sites towards the A29 protein of the Mpox virus. Subsequently, we propose a facile, sensitive, convenient CRISPR/Cas12a-mediated aptasensor for detecting the A29 antigen. The procedure employs the bivalent aptamers recognition, which induces the formation of a proximity switch probe and initiates subsequent cascade strand displacement reactions, then triggers CRISPR/Cas12a DNA trans-cleavage to achieve the sensitive detection of Mpox. Our method enables selective and ultrasensitive evaluation of the A29 protein within the range of 1 ng mL-1 to 1 μg mL-1, with a limit of detection (LOD) at 0.28 ng mL-1. Moreover, spiked A29 protein recovery exceeds 96.9%, while the detection activity remains above 91.9% after six months of storage at 4 °C. This aptasensor provides a novel avenue for exploring clinical diagnosis in cases involving Mpox as facilitating development in various analyte sensors.
Collapse
Affiliation(s)
- Cong Han
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300350, PR China
| | - Qirui Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300350, PR China
| | - Xuantong Luo
- Tianjin Haihe High School, Tianjin, 300202, PR China
| | - Jian Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300350, PR China
| | - Zheng Zhang
- The Cancer Hospital of the University of Chinese Academy of Sciences, Aptamer Selection Center, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, PR China
| | - Jiaxuan He
- The Cancer Hospital of the University of Chinese Academy of Sciences, Aptamer Selection Center, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, PR China
| | - Feng Ge
- Department of Gynecological Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Nankai University, Tianjin, 300071, PR China
| | - Wei Ding
- Department of Gynecological Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Nankai University, Tianjin, 300071, PR China
| | - Zhaofeng Luo
- The Cancer Hospital of the University of Chinese Academy of Sciences, Aptamer Selection Center, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, PR China
| | - Chao Jia
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300350, PR China.
| | - Liyun Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300350, PR China.
| |
Collapse
|
4
|
Niedziałkowski P, Jurczak P, Orlikowska M, Wcisło A, Ryl J, Ossowski T, Czaplewska P. Phospholipid-functionalized gold electrode for cellular membrane interface studies - interactions between DMPC bilayer and human cystatin C. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184266. [PMID: 38151198 DOI: 10.1016/j.bbamem.2023.184266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
This work describes the electrochemical studies on the interactions between V57G mutant of human cystatin C (hCC V57G) and membrane bilayer immobilized on the surface of a gold electrode. The electrode was modified with 6-mercaptohexan-1-ol (MCH) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). DMPC was used as a membrane mimetic for monitoring electrochemical changes resulting from the interactions between the functionalized electrode surface and human cystatin C. The interactions between the modified electrode and hCC V57G were investigated by cyclic voltammetry and electrochemical impedance spectroscopy in a phosphate buffered saline (PBS) containing Fe(CN)63-/4- as a redox probe. The electrochemical measurements confirm that fabricated electrode is sensitive to hCC V57G at the concentration of 1 × 10-14 M. The incubation studies carried out at higher concentrations resulted in insignificant changes observed in cyclic voltammetry and electrochemical impedance spectroscopy measurements. The calculated values of surface coverage θR confirm that the electrode is equally covered at higher concentrations of hCC V57G. Measurements of wettability and surface free energy made it possible to determine the influence of individual structural elements of the modified gold electrode on its properties, and thus allowed to understand the nature of the interactions. Contact angle values confirmed the results obtained during electrochemical measurements, indicating the sensitivity of the electrode towards hCC V57G at the concentration of 1 × 10-14 M. In addition, the XPS spectra confirmed the successful anchoring of hCC V57G to the DMPC-functionalized surface.
Collapse
Affiliation(s)
- Paweł Niedziałkowski
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdańsk 80-308, Poland.
| | - Przemysław Jurczak
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdańsk 80-308, Poland; Specialist Laboratories, Intercollegiate Faculty of Biotechnology UG&MUG, Abrahama 58, Gdańsk 80-307, Poland.
| | - Marta Orlikowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdańsk 80-308, Poland
| | - Anna Wcisło
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdańsk 80-308, Poland
| | - Jacek Ryl
- Division of Electrochemistry and Surface Physical Chemistry, Institute of Nanotechnology and Materials Engineering and Advanced Materials Center, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233, Poland
| | - Tadeusz Ossowski
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdańsk 80-308, Poland
| | - Paulina Czaplewska
- Specialist Laboratories, Intercollegiate Faculty of Biotechnology UG&MUG, Abrahama 58, Gdańsk 80-307, Poland
| |
Collapse
|
5
|
Chen G, Yang N, Xu L, Lu S, Chen Z, Wu F, Chen J, Zhang X. Base-Stacking-Driven Catalytic Hairpin Assembly: A Nucleic Acid Amplification Reaction Using Electrode Interface as a "Booster" for SARS-CoV-2 Point-of-Care Testing. Anal Chem 2023; 95:15595-15605. [PMID: 37820038 DOI: 10.1021/acs.analchem.3c02577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Electrochemical DNA (E-DNA) biosensors based on interface-mediated hybridization reactions are promising for point-of-care testing (POCT). However, the low efficiency of target recycle amplification and the steric hindrance at the electrode interface limit their sensing performance. Herein, we propose a base-stacking-driven catalytic hairpin assembly (BDCHA), a nucleic acid amplification reaction strategy, for POCT. The introduction of the base-stacking effect in this strategy increases the thermodynamic stability of the product, thereby effectively improving the recycling efficiency. Also, it enables the interface-mediated hybridization to maintain stability with even fewer bases in the reaction-binding domain, hence minimizing DNA secondary structure formation or intertwining at the electrode surface and ameliorating the steric hindrance limitation. The introduced base-stacking effect makes the electrode serve as a "booster" by integrating the advantages of homogeneous and heterogeneous reactions, giving BDCHA an increased reaction rate of about 20-fold, compared to the conventional catalytic hairpin assembly. As a proof of concept, our BDCHA was applied in constructing a portable E-DNA biosensor for the detection of a SARS-CoV-2 N gene sequence fragment. A simple 30 min one-pot incubation is required, and the results can be readily read on a smartphone, making it portable and user-friendly for POCT.
Collapse
Affiliation(s)
- Guanyu Chen
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
| | - Ning Yang
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
| | - Lilan Xu
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
| | - Shi Lu
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
| | - Zhuhua Chen
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
| | - Fang Wu
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
| | - Jinghua Chen
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
| | - Xi Zhang
- Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
- Department of Clinical Pharmacy and Pharmacy Administration, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, P. R. China
| |
Collapse
|
6
|
Wang L, Wu X, Chen G, Chen Y, Xu L, Wang J, Chen J. Dual amplified electrochemical sensing coupling of ternary hybridization-based exosomal microRNA recognition and perchlorate-assisted electrocatalytic cycle. Biosens Bioelectron 2023; 243:115783. [PMID: 39492379 DOI: 10.1016/j.bios.2023.115783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/14/2023] [Accepted: 10/22/2023] [Indexed: 11/05/2024]
Abstract
Exosomal microRNA (miRNA) are important biomarkers for liquid biopsy, and display clinical molecular signatures for cancer diagnosis. Although advanced detection methods have been established to detect exosomal miRNAs, they are faced with certain challenges. Therefore, we aimed to establish a dual amplification-based electrochemical method for detecting exosomal miRNA. This method combined a two-hairpins-based ternary hybridization structure (thTHS)-initiated single-stranded DNA (ssDNA) amplification reaction (ssDAR) and sodium perchlorate (NaClO4)-assisted electrocatalytic cycle. Two DNA hairpins were designed to hybridize with target miRNA, forming thTHS. Next, ssDAR was triggered by thTHS to produce long ssDNA on magnetic beads. The long ssDNA, complementary to the signal probes, was subsequently released onto a methylene blue (MB)-labeled double-stranded DNA-modified electrode for strand displacement reaction. This led to a quantitative change in MB and a change in electrocatalytic reduction current from the electrocatalytic cycle of MB-ferricyanide. An amplified electrocatalytic reduction current was produced by adding NaClO4 to the electrocatalytic system, which substantially improved the signal response range and detection sensitivity. Ultimately, exosomal miRNA detection was achieved by recording changes in the electrocatalytic reduction current before and after miRNA addition. This electrochemical method exhibited a sensitive concentration response with a detection limit of 45 aM and selective miRNA recognition, and successfully used to detect exosomal miRNA derived from cells and serum. Additionally, this method exhibited better discrimination ability between patients with breast cancer (BC) and those people without BC (patients with benign breast disease and healthy people), providing a promising strategy for detecting and monitoring cancer biomarkers.
Collapse
Affiliation(s)
- Liangliang Wang
- Innovation Center for Cancer Research, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, 350014, China; Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, Fujian Province, 350014, China
| | - Xiufeng Wu
- Department of Breast Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, 350014, China
| | - Guanyu Chen
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350122, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350122, China; Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province, 350122, China
| | - Yawen Chen
- Innovation Center for Cancer Research, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, 350014, China; Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, Fujian Province, 350014, China
| | - Lilan Xu
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350122, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350122, China; Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province, 350122, China
| | - Jianmin Wang
- Innovation Center for Cancer Research, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, 350014, China; Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, Fujian Province, 350014, China.
| | - Jinghua Chen
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350122, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350122, China; Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province, 350122, China.
| |
Collapse
|
7
|
Nie L, Zeng X, Hongbo L, Wang S, Lu Z, Yu R. Entropy-driven DNA circuit with two-stage strand displacement for elegant and robust detection of miRNA let-7a. Anal Chim Acta 2023; 1269:341392. [PMID: 37290851 DOI: 10.1016/j.aca.2023.341392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/10/2023]
Abstract
MicroRNAs (miRNAs) research in cancer diagnosis is expanding, on account of miRNAs were demonstrated to be key indicator of gene expression and hopeful candidates for biomarkers. In this study, a stable miRNA-let-7a fluorescent biosensor was successfully designed based on an exonuclease Ⅲ-assisted two-stage strand displacement reaction (SDR). First, an entropy-driven SDR containing a three-chain structure of the substrate is used in our designed biosensor, leading to reduce the reversibility of the target recycling process in each step. The target acts on the first stage to start the entropy-driven SDR, which generates the trigger used to stimulate the exonuclease Ⅲ-assisted SDR in the second stage. At the same time, we design a SDR one-step amplification strategy as a comparison. Expectly, this developed two-stage strand displacement system has a low detection limit of 25.0 pM as well as a broad detection range of 4 orders of magnitude, making it more sensitive than the SDR one-step sensor, whose detection limit is 0.8 nM. In addition, this sensor has high specificity across members of the miRNA family. Therefore, we can take advantage of this biosensor to promote miRNA research in cancer diagnosis sensing systems.
Collapse
Affiliation(s)
- Lanxin Nie
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Xiaogang Zeng
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Li Hongbo
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China; Key Laboratory of Energy Catalysis and Conversion of Nanchang, Nanchang, 330022, PR China; State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, PR China.
| | - Suqin Wang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Zhanghui Lu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China; Key Laboratory of Energy Catalysis and Conversion of Nanchang, Nanchang, 330022, PR China.
| | - Ruqin Yu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, PR China
| |
Collapse
|
8
|
Song Z, Li R, Yang X, Ambrosi A, Luo X. Ultralow fouling electrochemical detection of uric acid directly in serum based on phase-transited bovine serum albumin and conducting polymer. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
9
|
Wu D, Zhang W, Li T, Li F, Feng Q, Cheng X, Guo Y. In situ detection of miRNA-21 in MCF-7 cell-derived extracellular vesicles using the red blood cell membrane vesicle strategy. Chem Commun (Camb) 2023; 59:1987-1990. [PMID: 36723001 DOI: 10.1039/d2cc05954a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In this work, we constructed a novel membrane fusion strategy for extracellular vesicles (EVs) and red blood cell membrane vesicles (RVs). A nanoscale space is formed, which can improve the efficiency of the probe reaction with miRNA-21, which allows the in situ fluorescence detection of miRNA-21 in EVs.
Collapse
Affiliation(s)
- Di Wu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China. .,Linyi University, Linyi, 276000, China
| | - Wenyue Zhang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Tao Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Fen Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Qingfang Feng
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Xiao Cheng
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Yingshu Guo
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| |
Collapse
|