1
|
Kacerova T, Pires E, Walsby-Tickle J, Probert F, McCullagh JSO. Integrating NMR and multi-LC-MS-based untargeted metabolomics for comprehensive analysis of blood serum samples. Anal Chim Acta 2025; 1356:343979. [PMID: 40288864 DOI: 10.1016/j.aca.2025.343979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 03/17/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Mass spectrometry (MS) and nuclear magnetic resonance (NMR) have emerged as pivotal tools in biofluid metabolomics, facilitating investigation of disease mechanisms and biomarker discovery. Despite complementary capabilities, these techniques are rarely combined, although their integration is often beneficial. Typically, different sample preparation approaches are used, and compatibility challenges potentially arise due to the requirement for deuterated buffered solvents in NMR but not MS techniques. Additionally, MS-based approaches necessitate protein removal from samples whilst in NMR proteins can be potentially useful biomarkers. In this study, we developed a blood serum preparation protocol enabling sequential NMR and multi-LC-MS untargeted metabolomics analysis using a single serum aliquot in a research discovery setting. RESULTS We analysed human serum samples using various untargeted NMR and multi-LC-MS platforms to assess the impact of deuterated solvents and buffers on detected compound-features. Employing multiple LC-MS profiling approaches, we observed no evidence of deuterium incorporation into metabolites following sample preparation with deuterated solvents. Furthermore, we demonstrated that buffers used in NMR were well tolerated by LC-MS. Protein removal, involving both solvent precipitation and molecular weight cut-off (MWCO) filtration, was identified as a primary factor influencing metabolite abundance. Our findings led to the development and validation of a serum sample preparation protocol enabling a combined NMR and multi-LC-MS analysis. SIGNIFICANCE Using a single clinical serum aliquot for simultaneous untargeted profiling via NMR and multi-LC-MS represents a highly efficient alternative to current methods. This approach reduces sample volume requirements and substantially expands the potential for broader metabolome coverage. Our study offers comprehensive insights into the impact of sample preparation on complex metabolic biofluid profiles, highlighting the compatibility and complementarity of LC-MS and NMR in metabolomics research.
Collapse
Affiliation(s)
- Tereza Kacerova
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Elisabete Pires
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - John Walsby-Tickle
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Fay Probert
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - James S O McCullagh
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK.
| |
Collapse
|
2
|
Liu H, Wu T, He H, Zhou R, Zhao J, Zhan L, Hou Z, Huang G. Dual Desalting Electrospray Strategy for In-Cell Mass Spectrometry to Reveal Novel Sphingolipid Metabolism in an Epithelial-Mesenchymal Transition. Anal Chem 2025; 97:8337-8345. [PMID: 40214983 DOI: 10.1021/acs.analchem.4c06669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
The metabolome offers a direct snapshot of cell function and can respond to external changes within a very brief time scale of seconds or minutes. In situ in-cell mass spectrometry, with minimal pretreatment, enables direct analysis in a nonvolatile salt environment. However, it is challenging to obtain abundant metabolomes due to the inherent incompatibility of nonvolatile salts with mass spectrometry. Here, we developed a dual desalting electrospray ionization mass spectrometry (dd-ESI MS) technology for in-cell MS measurement to obtain a comprehensive and native cellular metabolome in nonvolatile salt buffers. The salt ions and metabolites were initially separated through the mild electrophoretic effect of induced nanoelectrospray ionization (InESI). In the following electrospray process, the complex interactions between aqueous droplets and methanol droplets further enhanced the desalting effect. Compared with nanoESI, dd-ESI MS exhibited stronger salt tolerance and higher sensitivity for cell metabolome analysis in PBS buffer. Interestingly, we observed a significant enrichment of the sphingolipid metabolism pathway during the epithelial-mesenchymal transition, a metabolic pathway not previously confirmed by metabolomics techniques. In addition, the transcriptome analysis also revealed consistent gene changes, further confirming the validity of our findings. dd-ESI MS enabled the acquisition of a more comprehensive and native metabolome, providing novel insights into complex physiological processes.
Collapse
Affiliation(s)
- Huimin Liu
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Tianhong Wu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230001, China
- School of Biomedical Engineering, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Hongbin He
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Rongbin Zhou
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jia Zhao
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Liujuan Zhan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Zhuanghao Hou
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Guangming Huang
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230001, China
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| |
Collapse
|
3
|
Noor MS, Ferdous S, Salehi R, Gates H, Dey S, Raghunath VS, Zargar MR, Chowdhury R. Next-generation metabolic models informed by biomolecular simulations. Curr Opin Biotechnol 2025; 92:103259. [PMID: 39827498 DOI: 10.1016/j.copbio.2025.103259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/01/2025] [Indexed: 01/22/2025]
Abstract
Metabolic modeling is essential for understanding the mechanistic bases of cellular metabolism in various organisms, from microbes to humans, and the design of fitter microbial strains. Metabolic networks focus on the overall fluxes through biochemical reactions that implicitly rely on several biochemical processes, such as active or diffusive uptake (or export) of nutrients (or metabolites), enzymatic turnover of metabolites, and metal-cofactor enzyme interactions. Despite independent progress in biomolecular simulations, they have yet to be integrated to inform metabolic models. We explore the evolution of computational metabolic modeling approaches, starting with flux balance analysis, dynamic, kinetic delineations of metabolic shifts in single organisms within cells and across tissues, and mutually informing, community-level modeling frameworks and provide a narrative to tie in biomolecular simulations and machine learning predictions to usher the new phase of structure-guided synthetic biology applications. These additions and prospective novel ones are likely to open hitherto untapped paradigms for optimizing/understanding metabolic pathways toward improving bioproduction of protein and small molecule products with downstream applications in health, environment, energy, and sustainability.
Collapse
Affiliation(s)
- Mohammed S Noor
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA; Nanovaccine Institute, Iowa State University, Ames, IA, USA
| | - Sakib Ferdous
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA; Nanovaccine Institute, Iowa State University, Ames, IA, USA
| | - Rahil Salehi
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA; Nanovaccine Institute, Iowa State University, Ames, IA, USA
| | - Hannah Gates
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA; Nanovaccine Institute, Iowa State University, Ames, IA, USA
| | - Supantha Dey
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA; Nanovaccine Institute, Iowa State University, Ames, IA, USA
| | - Vaishnavey S Raghunath
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA; Nanovaccine Institute, Iowa State University, Ames, IA, USA
| | - Mohammad R Zargar
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA; Nanovaccine Institute, Iowa State University, Ames, IA, USA
| | - Ratul Chowdhury
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA; Nanovaccine Institute, Iowa State University, Ames, IA, USA.
| |
Collapse
|
4
|
Svrkota B, Krmar J, Petronijević F, Protić A, Otašević B. Sustainable Analysis of Diclofenac Salts: A Chemometric Approach to Mixed-Mode Liquid Chromatography With Charged Aerosol Detection. J Sep Sci 2025; 48:e70136. [PMID: 40230338 DOI: 10.1002/jssc.70136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Active pharmaceutical ingredients (APIs) are often used in salt form because of enhanced bioavailability. This study aims to propose a new environmentally friendly method for the analysis of raw diclofenac substance, achieving simultaneous analysis of diclofenac and its counterions (Na+ and K+), utilizing mixed-mode liquid chromatography (MMLC) and charged aerosol detector (CAD). To optimize the critical method characteristic-the mobile phase composition-a 32 full factorial design of experiments and multiobjective decision making using Derringer's desirability function were employed. Two optimized methods with acceptable run times and satisfactory peak separation were developed. The methods compared the use of acetonitrile (ACN) and acetone (ACE) in terms of method sustainability. The mobile phase composition in the first method (MMLC-ACN) was 40% ACN and 60% ammonium acetate buffer (48.00 mM, pH 4.82), whereas in the second, improved method (MMLC-ACE), it was 50% ACE and 50% ammonium acetate buffer (40.00 mM, pH 4.62). The eco-friendliness of the developed methods was assessed using the GAPI, the Analytical GREEnness (AGREE) score, and the Greenness Index. The method with ACE as the mobile phase modifier demonstrated a better environmental profile, achieving an AGREE score of 0.69, compared to the ACN-based method, which scored 0.60. Method performance characteristics of the MMLC-ACE method used for the quantitative analysis of diclofenac salt raw materials were evaluated according to ICH Q2(R2) guidelines: precision-repeatability (RSD from 1.07% to 2.41% and recovery >97%), selectivity between critical peak pair (αNa/K > 1) and obtained linear response within concentration range of 50%-150% (r > 0.99).
Collapse
Affiliation(s)
- Bojana Svrkota
- Faculty of Pharmacy, Department of Drug Analysis, University of Belgrade, Belgrade, Serbia
| | - Jovana Krmar
- Faculty of Pharmacy, Department of Drug Analysis, University of Belgrade, Belgrade, Serbia
| | - Filip Petronijević
- Faculty of Pharmacy, Department of Drug Analysis, University of Belgrade, Belgrade, Serbia
| | - Ana Protić
- Faculty of Pharmacy, Department of Drug Analysis, University of Belgrade, Belgrade, Serbia
| | - Biljana Otašević
- Faculty of Pharmacy, Department of Drug Analysis, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
5
|
Marshall K, Twum Y, Li Y, Gao W. Spotting targets with 2D-DIGE proteomics. Adv Clin Chem 2024; 125:1-22. [PMID: 39988404 DOI: 10.1016/bs.acc.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Two-dimensional difference gel electrophoresis (2D-DIGE) has been a staple of protein studies for almost three decades since first described in 1997. Although the advent of omic technologies has greatly expanded protein research and discovery, 2D-DIGE has consistently been the mainstay in biomedical applications. Differential protein expression is a hallmark of many disease states and identification of these biomarkers can improve diagnosis, prognosis and treatment. In this review, we examine the use of 2D-DIGE in exploring the cellular environment in physiologic and pathophysiologic states. We highlight this technology in protein identification and quantification, functional modification and biochemical pathways of interest. 2D-DIGE remains a useful tool due low cost and high resolving power for comparative and quantitative purposes in assessing disease states and facilitating identification of unique and novel biomarkers.
Collapse
Affiliation(s)
- Kent Marshall
- Department of Occupational and Environmental Health Sciences, West Virginia University, Morgantown, WV, United States
| | - Yaw Twum
- Department of Occupational and Environmental Health Sciences, West Virginia University, Morgantown, WV, United States
| | - Yulu Li
- Department of Occupational and Environmental Health Sciences, West Virginia University, Morgantown, WV, United States
| | - Weimin Gao
- Department of Public Health, Brooks College of Health, University of North Florida, Jacksonville, FL, United States.
| |
Collapse
|
6
|
Onigbinde S, Gutierrez Reyes CD, Sandilya V, Chukwubueze F, Oluokun O, Sahioun S, Oluokun A, Mechref Y. Optimization of glycopeptide enrichment techniques for the identification of clinical biomarkers. Expert Rev Proteomics 2024; 21:431-462. [PMID: 39439029 PMCID: PMC11877277 DOI: 10.1080/14789450.2024.2418491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/28/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION The identification and characterization of glycopeptides through LC-MS/MS and advanced enrichment techniques are crucial for advancing clinical glycoproteomics, significantly impacting the discovery of disease biomarkers and therapeutic targets. Despite progress in enrichment methods like Lectin Affinity Chromatography (LAC), Hydrophilic Interaction Liquid Chromatography (HILIC), and Electrostatic Repulsion Hydrophilic Interaction Chromatography (ERLIC), issues with specificity, efficiency, and scalability remain, impeding thorough analysis of complex glycosylation patterns crucial for disease understanding. AREAS COVERED This review explores the current challenges and innovative solutions in glycopeptide enrichment and mass spectrometry analysis, highlighting the importance of novel materials and computational advances for improving sensitivity and specificity. It outlines the potential future directions of these technologies in clinical glycoproteomics, emphasizing their transformative impact on medical diagnostics and therapeutic strategies. EXPERT OPINION The application of innovative materials such as Metal-Organic Frameworks (MOFs), Covalent Organic Frameworks (COFs), functional nanomaterials, and online enrichment shows promise in addressing challenges associated with glycoproteomics analysis by providing more selective and robust enrichment platforms. Moreover, the integration of artificial intelligence and machine learning is revolutionizing glycoproteomics by enhancing the processing and interpretation of extensive data from LC-MS/MS, boosting biomarker discovery, and improving predictive accuracy, thus supporting personalized medicine.
Collapse
Affiliation(s)
- Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | | | - Vishal Sandilya
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Favour Chukwubueze
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Odunayo Oluokun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Sarah Sahioun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Ayobami Oluokun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
7
|
Posey AE, Bremer A, Erkamp NA, Pant A, Knowles TPJ, Dai Y, Mittag T, Pappu RV. Biomolecular Condensates are Characterized by Interphase Electric Potentials. J Am Chem Soc 2024; 146:28268-28281. [PMID: 39356108 DOI: 10.1021/jacs.4c08946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Biomolecular condensates form via processes that combine phase separation and reversible associations of multivalent macromolecules. Condensates can be two- or multiphase systems defined by coexisting dense and dilute phases. Here, we show that solution ions partition asymmetrically across coexisting phases defined by condensates formed by intrinsically disordered proteins or homopolymeric RNA molecules. Our findings were enabled by direct measurements of the activities of cations and anions within coexisting phases of protein and RNA condensates. Asymmetries in ion partitioning between coexisting phases vary with protein sequence, macromolecular composition, salt concentration, and ion type. The Donnan equilibrium set up by the asymmetrical partitioning of solution ions generates interphase electric potentials known as Donnan and Nernst potentials. Our measurements show that the interphase potentials of condensates are of the same order of magnitude as membrane potentials of membrane-bound organelles. Interphase potentials quantify the degree to which microenvironments of coexisting phases are different from one another. Importantly, and based on condensate-specific interphase electric potentials, we reason that condensates are akin to capacitors that store charge. Interphase potentials should lead to electric double layers at condensate interfaces, thereby explaining recent observations of condensate interfaces being electrochemically active.
Collapse
Affiliation(s)
- Ammon E Posey
- Department of Biomedical Engineering, Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130-4899, United States
| | - Anne Bremer
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38103, United States
| | - Nadia A Erkamp
- Department of Biomedical Engineering, Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130-4899, United States
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Avnika Pant
- Department of Biomedical Engineering, Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130-4899, United States
| | - Tuomas P J Knowles
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
- Cavendish Laboratory, Department of Physics, University of Cambridge, J. J. Thomson Ave, Cambridge CB3 0HE, U.K
| | - Yifan Dai
- Department of Biomedical Engineering, Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130-4899, United States
| | - Tanja Mittag
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38103, United States
| | - Rohit V Pappu
- Department of Biomedical Engineering, Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130-4899, United States
| |
Collapse
|
8
|
YI Y, JIN M. [Advances in the application of ion chromatography-mass spectrometry in the fields of life and health]. Se Pu 2024; 42:923-934. [PMID: 39327656 PMCID: PMC11439138 DOI: 10.3724/sp.j.1123.2023.11001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Indexed: 09/28/2024] Open
Abstract
Ion chromatography is a technique commonly used to separate strongly polar and ionizable substances; it can be used to separate, identify, and quantify ionizable compounds in complex samples when coupled with mass spectrometry, and is currently being used in the application of food analysis, drug analysis, metabolomics and clinical poisoning analysis. Herein, we review the development of ion chromatography-mass spectrometry (IC-MS), its progress over the past 20 years, and future trends in the abovementioned areas. The IC-MS research progress and applications for the determination of inorganic anions, organic acids, polar pesticides, biogenic amines, and sugars in the food field are discussed. Drug analysis applications are discussed mainly in relation to the analysis of drug impurities, identifying drug degradation products, and determination of plasma concentration, while the separation and analysis of strongly polar metabolites, such as organic acids, sugar phosphates, and nucleotides in biological matrices are discussed in relation to metabolomics. Advances in the analysis of strongly polar or ionizable toxic compounds, such as alkyl methylphosphonic acid, methylphosphonic acid, glyphosate, 3-nitropropionic acid, and indandione rodenticides, are mainly discussed in clinical poisoning analysis field. This paper is expected to become a useful reference for the further expansion and application of IC-MS in the life and health fields.
Collapse
|
9
|
Liang D, Yang S, Ding Z, Xu X, Tang W, Wang Y, Qian K. Engineering a Bifunctional Smart Nanoplatform Integrating Nanozyme Activity and Self-Assembly for Kidney Cancer Diagnosis and Classification. ACS NANO 2024; 18:23625-23636. [PMID: 39150349 DOI: 10.1021/acsnano.4c08085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Accurate diagnosis and classification of kidney cancer are crucial for high-quality healthcare services. However, the current diagnostic platforms remain challenges in the rapid and accurate analysis of large-scale clinical biosamples. Herein, we fabricated a bifunctional smart nanoplatform based on tannic acid-modified gold nanoflowers (TA@AuNFs), integrating nanozyme catalysis for colorimetric sensing and self-assembled nanoarray-assisted LDI-MS analysis. The TA@AuNFs presented peroxidase (POD)- and glucose oxidase-like activity owing to the abundant galloyl residues on the surface of AuNFs. Combined with the colorimetric assay, the TA@AuNF-based sensing nanoplatform was used to directly detect glucose in serum for kidney tumor diagnosis. On the other hand, TA@AuNFs could self-assemble into closely packed and homogeneous two-dimensional (2D) nanoarrays at liquid-liquid interfaces by using Fe3+ as a mediator. The self-assembled TA@AuNFs (SA-TA@AuNFs) arrays were applied to assist the LDI-MS analysis of metabolites, exhibiting high ionization efficiency and excellent MS signal reproducibility. Based on the SA-TA@AuNF array-assisted LDI-MS platform, we successfully extracted metabolic fingerprints from urine samples, achieving early-stage diagnosis of kidney tumor, subtype classification, and discrimination of benign from malignant tumors. Taken together, our developed TA@AuNF-based bifunctional smart nanoplatform showed distinguished potential in clinical disease diagnosis, point-of-care testing, and biomarker discovery.
Collapse
Affiliation(s)
- Dingyitai Liang
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu 610213, P. R. China
| | - Shouzhi Yang
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu 610213, P. R. China
| | - Ziqi Ding
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu 610213, P. R. China
| | - Xiaoyu Xu
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu 610213, P. R. China
| | - Wenxuan Tang
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu 610213, P. R. China
| | - Yuning Wang
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu 610213, P. R. China
| | - Kun Qian
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu 610213, P. R. China
| |
Collapse
|
10
|
Posey AE, Bremer A, Erkamp NA, Pant A, Knowles TPJ, Dai Y, Mittag T, Pappu RV. Biomolecular condensates are characterized by interphase electric potentials. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601783. [PMID: 39005320 PMCID: PMC11245003 DOI: 10.1101/2024.07.02.601783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Biomolecular condensates form via processes that combine phase separation and reversible associations of multivalent macromolecules. Condensates can be two- or multi-phase systems defined by coexisting dense and dilute phases. Here, we show that solution ions can partition asymmetrically across coexisting phases defined by condensates formed by intrinsically disordered proteins or homopolymeric RNA molecules. Our findings were enabled by direct measurements of the activities of cations and anions within coexisting phases of protein and RNA condensates. Asymmetries in ion partitioning between coexisting phases vary with protein sequence, condensate type, salt concentration, and ion type. The Donnan equilibrium set up by asymmetrical partitioning of solution ions generates interphase electric potentials known as Donnan and Nernst potentials. Our measurements show that the interphase potentials of condensates are of the same order of magnitude as membrane potentials of membrane-bound organelles. Interphase potentials quantify the degree to which microenvironments of coexisting phases are different from one another. Importantly, and based on condensate-specific interphase electric potentials, which are membrane-like potentials of membraneless bodies, we reason that condensates are mesoscale capacitors that store charge. Interphase potentials lead to electric double layers at condensate interfaces. This helps explain recent observations of condensate interfaces being electrochemically active.
Collapse
|
11
|
Garvey J, Margalit A, Kelly M, Geoghegan E, Burrell S. A method for the quantitative analysis of polar anionic pesticides in milk/infant formula, cereals and fruit and vegetables using ion chromatography coupled to tandem mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3692-3700. [PMID: 38805075 DOI: 10.1039/d4ay00183d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Polar pesticides such as anionic or ionisable compounds have always provided a challenge for analytical chemists. Methods of analysis have been developed using a range of techniques including normal phase chromatography, ion-pairing, derivatisation and HILIC or multi-mode chromatography. These work well with some of these compounds but, except for HILIC, all of them have their limitations and none of them cover the range required by legislation. Some of these compounds, glyphosate, chlorate and phosphonic acid, are found regularly in a range of food matrices, and therefore reliable methods of analysis are essential. This study describes an ion chromatography method with tandem mass spectrometry detection which not only covers the full range of compounds required by legislation but also can be expanded to include other anionic or ionisable pesticides and metabolites. These include glyphosate and its metabolites, glufosinate and its metabolites, ethephon and its metabolites as well as fosetyl aluminium, chlorate and perchlorate. The method is fully validated according to the performance criteria from the SANTE guidelines for the analysis of pesticides in food and feed over a wide range of matrices, including milk, infant formula, cereals and fruits and vegetables. Over 300 food samples have analysed as part of our routine monitoring program.
Collapse
Affiliation(s)
- Jim Garvey
- The Food Chemistry Laboratories, The Department of Agriculture, Food and the Marine, Celbridge, Co. Kildare, Ireland.
| | - Anatte Margalit
- The Food Chemistry Laboratories, The Department of Agriculture, Food and the Marine, Celbridge, Co. Kildare, Ireland.
| | - Michael Kelly
- The Food Chemistry Laboratories, The Department of Agriculture, Food and the Marine, Celbridge, Co. Kildare, Ireland.
| | - Eoin Geoghegan
- The Food Chemistry Laboratories, The Department of Agriculture, Food and the Marine, Celbridge, Co. Kildare, Ireland.
| | - Stephen Burrell
- The Food Chemistry Laboratories, The Department of Agriculture, Food and the Marine, Celbridge, Co. Kildare, Ireland.
| |
Collapse
|
12
|
Adnane M, de Almeida AM, Chapwanya A. Unveiling the power of proteomics in advancing tropical animal health and production. Trop Anim Health Prod 2024; 56:182. [PMID: 38825622 DOI: 10.1007/s11250-024-04037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/04/2024]
Abstract
Proteomics, the large-scale study of proteins in biological systems has emerged as a pivotal tool in the field of animal and veterinary sciences, mainly for investigating local and rustic breeds. Proteomics provides valuable insights into biological processes underlying animal growth, reproduction, health, and disease. In this review, we highlight the key proteomics technologies, methodologies, and their applications in domestic animals, particularly in the tropical context. We also discuss advances in proteomics research, including integration of multi-omics data, single-cell proteomics, and proteogenomics, all of which are promising for improving animal health, adaptation, welfare, and productivity. However, proteomics research in domestic animals faces challenges, such as sample preparation variation, data quality control, privacy and ethical considerations relating to animal welfare. We also provide recommendations for overcoming these challenges, emphasizing the importance of following best practices in sample preparation, data quality control, and ethical compliance. We therefore aim for this review to harness the full potential of proteomics in advancing our understanding of animal biology and ultimately improve animal health and productivity in local breeds of diverse animal species in a tropical context.
Collapse
Affiliation(s)
- Mounir Adnane
- Department of Biomedicine, Institute of Veterinary Sciences, University of Tiaret, Tiaret, 14000, Algeria.
| | - André M de Almeida
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, 1349-017, Portugal
| | - Aspinas Chapwanya
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, Basseterre, 00265, Saint Kitts and Nevis
| |
Collapse
|
13
|
McCullagh J, Probert F. New analytical methods focusing on polar metabolite analysis in mass spectrometry and NMR-based metabolomics. Curr Opin Chem Biol 2024; 80:102466. [PMID: 38772215 DOI: 10.1016/j.cbpa.2024.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/19/2024] [Accepted: 04/26/2024] [Indexed: 05/23/2024]
Abstract
Following in the footsteps of genomics and proteomics, metabolomics has revolutionised the way we investigate and understand biological systems. Rapid development in the last 25 years has been driven largely by technical innovations in mass spectrometry and nuclear magnetic resonance spectroscopy. However, despite the modest size of metabolomes relative to proteomes and genomes, methodological capabilities for robust, comprehensive metabolite analysis remain a major challenge. Therefore, development of new methods and techniques remains vital for progress in the field. Here, we review developments in LC-MS, GC-MS and NMR methods in the last few years that have enhanced quantitative and comprehensive metabolome coverage, highlighting the techniques involved, their technical capabilities, relative performance, and potential impact.
Collapse
Affiliation(s)
- James McCullagh
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
| | - Fay Probert
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
14
|
Dörfel D, Rohn S, Jantzen E. Electrostatic Repulsion Hydrophilic Interaction Liquid Chromatography (ERLIC) for the Quantitative Analysis of Polyamines. J Chromatogr A 2024; 1720:464820. [PMID: 38507872 DOI: 10.1016/j.chroma.2024.464820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Highly polar low molecular weight organic molecules are still very challenging to analyze by liquid chromatography. Yet, with the steadily increasing application of metabolomics and similar approaches in chemical analysis, separating polar compounds might be even more important. However, almost all established liquid chromatography techniques (i.e., normal and reversed phase, hydrophilic interaction liquid chromatography (HILIC), ion chromatography) struggle with either carry-over, low sensitivity, or a lack of retention. For improving these shortcomings, electrostatic repulsion hydrophilic interaction chromatography (ERLIC) might be an alternative. By combining a HILIC mobile phase, that is highly organic with a low water content, and an ion exchange column, a distinct layer system develops. When the analyte's charge is of the same direction as the stationary phase, retention and elution are determined by two antagonistic forces: electrostatic repulsion and hydrophilicity. One prominent group of challenging polar analytes are the polyamines cadaverine, putrescine, spermidine, and spermine. Carrying charges from +2 to +4 at physiological pH, these compounds are essential cell constituents and found in all living organisms. However, they are still notoriously challenging to analyze via the established liquid chromatography methods. In the present work, an ERLIC tandem mass spectrometry method has been exemplarily developed, optimized, and validated for the quantitative determination of cadaverine, putrescine, spermidine, and spermine. This method enables symmetrical peak shapes and good separation of analytes with different charges while simultaneously selectively detecting the co-eluting diamines by MS/MS. Furthermore, high linearity (R > 0.998) and sensitivity (LODs ≤ 2 ng/mL) have been proven. Thus, ERLIC may be interesting for both targeted and untargeted analysis approaches of highly charged low molecular weight organic molecules.
Collapse
Affiliation(s)
- Dominik Dörfel
- GALAB Laboratories GmbH, Am Schleusengraben 7, 21029 Hamburg, Germany; Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav Meyer Allee 25, 13355 Berlin, Germany.
| | - Sascha Rohn
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav Meyer Allee 25, 13355 Berlin, Germany
| | - Eckard Jantzen
- GALAB Laboratories GmbH, Am Schleusengraben 7, 21029 Hamburg, Germany
| |
Collapse
|
15
|
Sanz Rodriguez E, Wood K, Haddad PR, Paull B. Boron quantification using ion chromatography tandem triple quadrupole mass spectrometry. Application to retention analysis in boron-treated wood. Talanta 2024; 268:125377. [PMID: 37956558 DOI: 10.1016/j.talanta.2023.125377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
Boron compounds play a crucial role in various industries, and accurate quantification of boron is essential for quality control and environmental monitoring. This study presents a simple, rapid, and reliable method for determining boron in aqueous solutions using suppressed ion chromatography coupled to electrospray ionisation-triple quadrupole mass spectrometry (IC-ESI-QqQ-MS). Boric acid (B(OH)3) was retained as the tetrahydroxyborate ion (B(OH)4-) on a CarboPac PA300-4 μm anion-exchange column using isocratic elution with 40 mM KOH. During the neutralization process at the suppressor, B(OH)4- was converted to B(OH)3, which subsequently generated the metaborate ion [BO2]- (m/z 43) within the electrospray ionisation source. By employing a pseudo-selected reaction monitoring (SRM) transition from m/z 43 to m/z 43, the method achieved a limit of detection (LOD) of 2.45 μg/L of boron, the lowest reported in the literature to-date for an IC-based method. The analytical performance of the method demonstrated no carry-over issues, no matrix interferences, and excellent intra- and inter-run repeatability of 2.03% and 3.41%, respectively. The method was applied to the evaluation of boron uptake and retention by Tasmanian Oak timber blocks, treated by dip-diffusion in a boric acid solution of 2.5% Boric Acid Equivalent (BAE, m/m) under controlled laboratory conditions. Quantitative determination of the retained and unretained boron allowed a mass balance evaluation and confirmed the accuracy and reliability of the method, with recoveries ranging from 99.3% to 100.2%.
Collapse
Affiliation(s)
- Estrella Sanz Rodriguez
- Australian Centre for Research on Separation Science (ACROSS), Chemistry, School of Natural Sciences, College of Sciences and Engineering, University of Tasmania, Hobart, Tasmania, 7001, Australia.
| | - Kyra Wood
- Centre for Sustainable Architecture with Wood, School of Architecture and Design, College of Sciences and Engineering, University of Tasmania, Newnham, Tasmania, 7248, Australia
| | - Paul R Haddad
- Australian Centre for Research on Separation Science (ACROSS), Chemistry, School of Natural Sciences, College of Sciences and Engineering, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Brett Paull
- Australian Centre for Research on Separation Science (ACROSS), Chemistry, School of Natural Sciences, College of Sciences and Engineering, University of Tasmania, Hobart, Tasmania, 7001, Australia
| |
Collapse
|
16
|
Milian YE, Jamett N, Cruz C, Herrera-León S, Chacana-Olivares J. A comprehensive review of emerging technologies for recycling spent lithium-ion batteries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168543. [PMID: 37984661 DOI: 10.1016/j.scitotenv.2023.168543] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/19/2023] [Accepted: 11/11/2023] [Indexed: 11/22/2023]
Abstract
Along with the increasing demand for lithium-ion batteries (LIB), the need for recycling major components such as graphite and different critical materials contained in LIB is also reaching a peak in the research community. Several authors review the different LIB recycling methodologies, including pyro- and hydrometallurgy processes. However, the characteristics, main stages, and achievements of LIB emerging recycling are still missing. This study reviews the diverse emerging approaches for recycling critical materials from spent LIB in the last five years. A classification for emerging recycling technologies is provided, including terms like development stage and eco-friendly status. The main stages of recycling LIB are opening, phase separation, and materials recovery. Among the emerging proposals with the highest industrialization potential are direct recycling techniques due to low costs and simple procedures. Concerning phase separation, froth flotation and ultrasound-assisted methods are discussed. The former divides black mass into pure anodic and cathodic materials, while ultrasonication is employed to physically detach active materials from foils or enhance binder degradation. As to materials recovery, several recent approaches show high recovery efficiency for different elements, mainly in leaching. The use of new organic acids, deep eutectic acids, and some salts are worth noting as leaching agents due to their low environmental impact. In addition, leaching methods assisted by ultrasound and microwave irradiation increase valuable metal recovery, reducing time consumption and the number of leaching reactants. As a part of the hydrometallurgy process, metallic ion purification is performed by solvent extraction and ion exchange, while selective precipitation can be achieved by specific chemical agents or electrochemical processes.
Collapse
Affiliation(s)
- Yanio E Milian
- Centro Lithium I+D+i, Universidad Católica del Norte, Avenida Angamos 0610, 1270709 Antofagasta, Chile; Departamento de Ingeniería Química y Medio Ambiente, Universidad Católica del Norte, Avenida Angamos 0610, 1270709 Antofagasta, Chile.
| | - Nathalie Jamett
- Centro Lithium I+D+i, Universidad Católica del Norte, Avenida Angamos 0610, 1270709 Antofagasta, Chile; Departamento de Ingeniería Química y Medio Ambiente, Universidad Católica del Norte, Avenida Angamos 0610, 1270709 Antofagasta, Chile
| | - Constanza Cruz
- Centro Lithium I+D+i, Universidad Católica del Norte, Avenida Angamos 0610, 1270709 Antofagasta, Chile; Departamento de Ingeniería Química y Medio Ambiente, Universidad Católica del Norte, Avenida Angamos 0610, 1270709 Antofagasta, Chile
| | - Sebastián Herrera-León
- Centro Lithium I+D+i, Universidad Católica del Norte, Avenida Angamos 0610, 1270709 Antofagasta, Chile; Departamento de Ingeniería Química y Medio Ambiente, Universidad Católica del Norte, Avenida Angamos 0610, 1270709 Antofagasta, Chile; School of Engineering Science, LUT University, P.O. Box 20, FI-53851 Lappeenranta, Finland
| | - Jaime Chacana-Olivares
- Centro Lithium I+D+i, Universidad Católica del Norte, Avenida Angamos 0610, 1270709 Antofagasta, Chile; Departamento de Ingeniería Química y Medio Ambiente, Universidad Católica del Norte, Avenida Angamos 0610, 1270709 Antofagasta, Chile
| |
Collapse
|
17
|
Egede Frøkjær E, Rüsz Hansen H, Hansen M. Non-targeted and suspect screening analysis using ion exchange chromatography-Orbitrap tandem mass spectrometry reveals polar and very mobile xenobiotics in Danish drinking water. CHEMOSPHERE 2023; 339:139745. [PMID: 37558003 DOI: 10.1016/j.chemosphere.2023.139745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/21/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Non-targeted and suspect screening analysis is gaining approval across the scientific and regulatory community to monitor the chemical status in the environment and thus environmental quality. These holistic screening analyses provides the means to perform suspect screening and go beyond to discover previously undescribed chemical pollutants in environmental samples. In a case study, we developed and optimized a high-resolution tandem mass spectrometry platform hyphenated with anion exchange chromatography to screen drinking water samples in Denmark. The optimized non-targeted screening method was able to detect anionic and polar compounds and was successfully applied to drinking water from two drinking water facilities. Following a data analysis pipeline optimization, anionic pesticide residues and other environmental contaminants were detected at confidence identification level 1 such as dimethachlor ESA, mecoprop, and dichlorprop in drinking water. In addition to these three substances, it was possible to detect another 1662 compounds, of which 97 were annotated at confidence identification level 2. More research is urgently needed to health risk prioritize the detected substances and to determine their concentrations.
Collapse
Affiliation(s)
- Emil Egede Frøkjær
- Environmental Metabolomics Lab, Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark.
| | - Helle Rüsz Hansen
- Danish Environmental Protection Agency, Tolderlundsvej 5, 5000, Odense C, Denmark
| | - Martin Hansen
- Environmental Metabolomics Lab, Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark.
| |
Collapse
|
18
|
Saw YL, Boughton JR, Wroniuk FL, Mostafa ME, Pellegrinelli PJ, Calvez SA, Kaplitz AS, Perez LJ, Edwards JL, Grinias JP. Use of N-(4-aminophenyl)piperidine derivatization to improve organic acid detection with supercritical fluid chromatography-mass spectrometry. J Sep Sci 2023; 46:e2300343. [PMID: 37603367 DOI: 10.1002/jssc.202300343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/22/2023]
Abstract
The analysis of organic acids in complex mixtures by LC-MS can often prove challenging, especially due to the poor sensitivity of negative ionization mode required for detection of these compounds in their native (i.e., underivatized or untagged) form. These compounds have also been difficult to measure using supercritical fluid chromatography (SFC)-MS, a technique of growing importance for metabolomic analysis, with similar limitations based on negative ionization. In this report, the use of a high proton affinity N-(4-aminophenyl)piperidine derivatization tag is explored for the improvement of organic acid detection by SFC-MS. Four organic acids (lactic, succinic, malic, and citric acids) with varying numbers of carboxylate groups were derivatized with N-(4-aminophenyl)piperidine to achieve detection limits down to 0.5 ppb, with overall improvements in detection limit ranging from 25-to-2100-fold. The effect of the derivatization group on sensitivity, which increased by at least 200-fold for compounds that were detectable in their native form, and mass spectrometric detection are also described. Preliminary investigations into the separation of these derivatized compounds identified multiple stationary phases that could be used for complete separation of all four compounds by SFC. This derivatization technique provides an improved approach for the analysis of organic acids by SFC-MS, especially for those that are undetectable in their native form.
Collapse
Affiliation(s)
- Yih Ling Saw
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey, USA
| | - John R Boughton
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey, USA
| | - Faith L Wroniuk
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey, USA
| | | | - Peter J Pellegrinelli
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey, USA
| | - Samantha A Calvez
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey, USA
| | - Alexander S Kaplitz
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey, USA
| | - Lark J Perez
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey, USA
| | - James L Edwards
- Department of Chemistry, Saint Louis University, St. Louis, Missouri, USA
| | - James P Grinias
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey, USA
| |
Collapse
|
19
|
Badillo-Sanchez D, Serrano Ruber M, Davies-Barrett A, Jones DJ, Hansen M, Inskip S. Metabolomics in archaeological science: A review of their advances and present requirements. SCIENCE ADVANCES 2023; 9:eadh0485. [PMID: 37566664 PMCID: PMC10421062 DOI: 10.1126/sciadv.adh0485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/11/2023] [Indexed: 08/13/2023]
Abstract
Metabolomics, the study of metabolites (small molecules of <1500 daltons), has been posited as a potential tool to explore the past in a comparable manner to other omics, e.g., genomics or proteomics. Archaeologists have used metabolomic approaches for a decade or so, mainly applied to organic residues adhering to archaeological materials. Because of advances in sensitivity, resolution, and the increased availability of different analytical platforms, combined with the low mass/volume required for analysis, metabolomics is now becoming a more feasible choice in the archaeological sector. Additional approaches, as presented by our group, show the versatility of metabolomics as a source of knowledge about the human past when using human osteoarchaeological remains. There is tremendous potential for metabolomics within archaeology, but further efforts are required to position it as a routine technique.
Collapse
Affiliation(s)
| | - Maria Serrano Ruber
- School of Archaeology and Ancient History, University of Leicester, Leicester, UK
| | - Anna Davies-Barrett
- School of Archaeology and Ancient History, University of Leicester, Leicester, UK
| | - Donald J. L. Jones
- Leicester Cancer Research Centre, RKCSB, University of Leicester, Leicester, UK
- The Leicester van Geest MultiOmics Facility, University of Leicester, Leicester, UK
| | - Martin Hansen
- Environmental Metabolomics Lab, Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Sarah Inskip
- School of Archaeology and Ancient History, University of Leicester, Leicester, UK
| |
Collapse
|
20
|
Li D, Huang W, Huang R. Analysis of environmental pollutants using ion chromatography coupled with mass spectrometry: A review. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131952. [PMID: 37399723 DOI: 10.1016/j.jhazmat.2023.131952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/17/2023] [Accepted: 06/26/2023] [Indexed: 07/05/2023]
Abstract
The rise of emerging pollutants in the current environment and requirements of trace analysis in complex substrates pose challenges to modern analytical techniques. Ion chromatography coupled with mass spectrometry (IC-MS) is the preferred tool for analyzing emerging pollutants due to its excellent separation ability for polar and ionic compounds with small molecular weight and high detection sensitivity and selectivity. This paper reviews the progress of sample preparation and ion-exchange IC-MS methods in the analysis of several major categories of environmental polar and ionic pollutants including perchlorate, inorganic and organic phosphorus compounds, metalloids and heavy metals, polar pesticides, and disinfection by-products in past two decades. The comparison of various methods to reduce the influence of matrix effect and improve the accuracy and sensitivity of analysis are emphasized throughout the process from sample preparation to instrumental analysis. Furthermore, the human health risks of these pollutants in the environment with natural concentration levels in different environmental medias are also briefly discussed to raise public attention. Finally, the future challenges of IC-MS for analysis of environmental pollutants are briefly discussed.
Collapse
Affiliation(s)
- Dazhen Li
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Weixiong Huang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430078, Hubei, China.
| | - Rongfu Huang
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| |
Collapse
|