1
|
Kong X, He X, He F, Li Y, Feng Y, Li Y, Luo Z, Shen JW, Duan Y. Sandwich Layer-Modified Ω-Shaped Fiber-Optic LSPR Enables the Development of an Aptasensor for a Cytosensing-Photothermal Therapy Circuit. ACS Sens 2024; 9:4637-4645. [PMID: 39120046 DOI: 10.1021/acssensors.4c00841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The metastasis of cancer cells is a principal cause of morbidity and mortality in cancer. The combination of a cytosensor and photothermal therapy (PTT) cannot completely eliminate cancer cells at one time. Hence, this study aimed to design a localized surface plasmonic resonance (LSPR)-based aptasensor for a circuit of cytosensing-PTT (COCP). This was achieved by coating a novel sandwich layer of polydopamine/gold nanoparticles/polydopamine (PDA/AuNPs/PDA) around the Ω-shaped fiber-optic (Ω-FO). The short-wavelength peak of the sandwich layer with strong resonance exhibited a high refractive index sensitivity (RIS). The modification with the T-shaped aptamer endowed FO-LSPR with unique characteristics of time-dependent sensitivity enhancement behavior for a sensitive cytosensor with the lowest limit of detection (LOD) of 13 cells/mL. The long-wavelength resonance peak in the sandwich layer appears in the near-infrared region. Hence, the rate of increased localized temperature of FO-LSPR was 160 and 30-fold higher than that of the bare and PDA-coated FO, indicating strong photothermal conversion efficiency. After considering the localized temperature distribution around the FO under the flow environment, the FO-LSPR-enabled aptasensor killed 77.6% of cancer cells in simulated blood circulation after five cycles of COCP. The FO-LSPR-enabled aptasensor improved the efficiency of the cytosensor and PTT to effectively kill cancer cells, showing significant potential for application in inhibiting cancer metastasis.
Collapse
Affiliation(s)
- Xinyu Kong
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, Shaanxi, China
| | - Xingliang He
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Fan He
- School of Physics, Northwest University, Xi'an 710069, Shaanxi, China
| | - Yu Li
- School of Laboratory Medicine, Chengdu Medical College, Chengdu 610500, China
| | - Yanting Feng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, Shaanxi, China
| | - Yongxin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Zewei Luo
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Ji-Wei Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, Shaanxi, China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
2
|
Bekmurzayeva A, Nurlankyzy M, Abdossova A, Myrkhiyeva Z, Tosi D. All-fiber label-free optical fiber biosensors: from modern technologies to current applications [Invited]. BIOMEDICAL OPTICS EXPRESS 2024; 15:1453-1473. [PMID: 38495725 PMCID: PMC10942689 DOI: 10.1364/boe.515563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 03/19/2024]
Abstract
Biosensors are established as promising analytical tools for detecting various analytes important in biomedicine and environmental monitoring. Using fiber optic technology as a sensing element in biosensors offers low cost, high sensitivity, chemical inertness, and immunity to electromagnetic interference. Optical fiber sensors can be used in in vivo applications and multiplexed to detect several targets simultaneously. Certain configurations of optical fiber technology allow the detection of analytes in a label-free manner. This review aims to discuss recent advances in label-free optical fiber biosensors from a technological and application standpoint. First, modern technologies used to build label-free optical fiber-based sensors will be discussed. Then, current applications where these technologies are applied are elucidated. Namely, examples of detecting soluble cancer biomarkers, hormones, viruses, bacteria, and cells are presented.
Collapse
Affiliation(s)
- Aliya Bekmurzayeva
- National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Marzhan Nurlankyzy
- National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
- School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Albina Abdossova
- School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Zhuldyz Myrkhiyeva
- National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
- School of Sciences and Humanities, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Daniele Tosi
- National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
- School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000, Kazakhstan
| |
Collapse
|
3
|
Shi J, Xu Z, Yang K, Li X, Guo C, Bai H, Fu W, Niu P, Yao J, Yang X. Rapid and noninvasive cell assay by microfluidic-integrated intracavity evanescent field absorption in a fiber ring laser. Anal Chim Acta 2023; 1283:341960. [PMID: 37977802 DOI: 10.1016/j.aca.2023.341960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/14/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Highly sensitive and rapid detection of cell concentration and interfacial molecular events is of great value for biological, biomedical, and chemical research. Most traditional biosensors require large sample volumes and complicated functional modifications of the surface. It is of great significance to develop label-free biosensor platforms with minimal sample consumption for studying cell concentration changes and interfacial molecular events without labor-intensive procedures. RESULTS Here, a fiber-optic biosensor based on intracavity evanescent field absorption sensing is designed for sensitive and label-free cell assays for the first time. The interaction between the cells and the evanescent field is enhanced by introducing microfluidic-integrated intracavity absorption in a fiber ring laser. This strategy extends the range of targeted analytes to include quantification of a large number of targets on a surface and improves the detection sensitivity of the fiber-optic biosensor. The level of sensing resolution could be improved from 10-4 RIU to 10-7 RIU using this strategy. The stem cells were studied over a wide concentration range (from 500 to 1.2 × 105 cells/ml) and were measured sequentially. By measuring the output power of the intracavity absorption sensing system, the cell concentration can be directly determined in a label-free manner. The results show that dozens of stem cells can be sensitively detected with a sample consumption of 72 μL. The response was fast (15 s) with a low temperature cross-sensitivity of 0.031 cells·ml-1/°C. SIGNIFICANCE The proposed method suggests its capacity for true label-free and noninvasive cell assays with a low limit of detection and small sample consumption. This has the potential to be used as a universal tool for quantitative and qualitative characterization of various cells and other biochemical analytes.
Collapse
Affiliation(s)
- Jia Shi
- Tianjin Key Laboratory of Optoelectronic Detection Technology and System, School of Electronic and Information Engineering, Tiangong University, Tianjin, 300387, China; Key Laboratory of Opto-Electronics Information Technology (Ministry of Education), School of Precision Instruments and Opto-Electronic Engineering, Tianjin University, Tianjin, 300072, China.
| | - Ziyi Xu
- Tianjin Key Laboratory of Optoelectronic Detection Technology and System, School of Electronic and Information Engineering, Tiangong University, Tianjin, 300387, China
| | - Ke Yang
- Department of Cardiovascular Surgery, General Hospital of Western Theater Command (Chengdu Military General Hospital), Chengdu, 610036, China.
| | - Xianguo Li
- Tianjin Key Laboratory of Optoelectronic Detection Technology and System, School of Electronic and Information Engineering, Tiangong University, Tianjin, 300387, China
| | - Cuijuan Guo
- Tianjin Key Laboratory of Optoelectronic Detection Technology and System, School of Electronic and Information Engineering, Tiangong University, Tianjin, 300387, China
| | - Hua Bai
- Tianjin Key Laboratory of Optoelectronic Detection Technology and System, School of Electronic and Information Engineering, Tiangong University, Tianjin, 300387, China
| | - Weiling Fu
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Pingjuan Niu
- Tianjin Key Laboratory of Optoelectronic Detection Technology and System, School of Electronic and Information Engineering, Tiangong University, Tianjin, 300387, China
| | - Jianquan Yao
- Key Laboratory of Opto-Electronics Information Technology (Ministry of Education), School of Precision Instruments and Opto-Electronic Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiang Yang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
4
|
Miyamura S, Oe R, Nakahara T, Koresawa H, Okada S, Taue S, Tokizane Y, Minamikawa T, Yano TA, Otsuka K, Sakane A, Sasaki T, Yasutomo K, Kajisa T, Yasui T. Rapid, high-sensitivity detection of biomolecules using dual-comb biosensing. Sci Rep 2023; 13:14541. [PMID: 37752134 PMCID: PMC10522648 DOI: 10.1038/s41598-023-41436-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 08/26/2023] [Indexed: 09/28/2023] Open
Abstract
Rapid, sensitive detection of biomolecules is important for biosensing of infectious pathogens as well as biomarkers and pollutants. For example, biosensing of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still strongly required for the fight against coronavirus disease 2019 (COVID-19) pandemic. Here, we aim to achieve the rapid and sensitive detection of SARS-CoV-2 nucleocapsid protein antigen by enhancing the performance of optical biosensing based on optical frequency combs (OFC). The virus-concentration-dependent optical spectrum shift produced by antigen-antibody interactions is transformed into a photonic radio-frequency (RF) shift by a frequency conversion between the optical and RF regions in the OFC, facilitating rapid and sensitive detection with well-established electrical frequency measurements. Furthermore, active-dummy temperature-drift compensation with a dual-comb configuration enables the very small change in the virus-concentration-dependent signal to be extracted from the large, variable background signal caused by temperature disturbance. The achieved performance of dual-comb biosensing will greatly enhance the applicability of biosensors to viruses, biomarkers, environmental hormones, and so on.
Collapse
Affiliation(s)
- Shogo Miyamura
- Graduate School of Advanced Technology and Science, Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
| | - Ryo Oe
- Graduate School of Advanced Technology and Science, Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
| | - Takuya Nakahara
- Graduate School of Advanced Technology and Science, Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
| | - Hidenori Koresawa
- Graduate School of Advanced Technology and Science, Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
| | - Shota Okada
- Graduate School of Sciences and Technology for Innovation, Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
| | - Shuji Taue
- School of System Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami, Kochi, 782-8502, Japan
| | - Yu Tokizane
- Division of Next-Generation Photonics, Institute of Post-LED Photonics (pLED), Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
| | - Takeo Minamikawa
- Division of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics (pLED), Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
| | - Taka-Aki Yano
- Division of Next-Generation Photonics, Institute of Post-LED Photonics (pLED), Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
| | - Kunihiro Otsuka
- Division of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics (pLED), Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto, Tokushima, Tokushima, 770-8503, Japan
| | - Ayuko Sakane
- Division of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics (pLED), Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
- Department of Biochemistry, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto, Tokushima, Tokushima, 770-8503, Japan
| | - Takuya Sasaki
- Division of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics (pLED), Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
- Department of Biochemistry, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto, Tokushima, Tokushima, 770-8503, Japan
| | - Koji Yasutomo
- Division of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics (pLED), Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto, Tokushima, Tokushima, 770-8503, Japan
| | - Taira Kajisa
- Division of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics (pLED), Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan.
- Graduate School of Interdisciplinary New Science, Toyo University, 2100 Kujirai, Kawagoe, Saitama, 350-8585, Japan.
| | - Takeshi Yasui
- Division of Next-Generation Photonics, Institute of Post-LED Photonics (pLED), Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan.
| |
Collapse
|
5
|
Wang L, Wang Q, Wang TQ, Zhao WM, Yin XY, Jiang JX, Zhang SS. Plasmonic crescent nanoarray-based surface lattice resonance sensor with a high figure of merit. NANOSCALE 2022; 14:6144-6151. [PMID: 35388826 DOI: 10.1039/d1nr08341d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Due to the natural accumulation of radiation losses arising from the localization and random arrangement of nanoparticles, the figure of merit (FOM) of localized surface plasmon resonance (LSPR) sensors is usually very low (the value is usually less than 5 RIU-1). However, radiation losses of individual particles will be offset by adjusting the phase of the scattered field which is dependent on the structure parameters of arrays. Based on this, a two-dimensional periodic crescent nanoarray-based surface lattice resonance (SLR) sensor with a high FOM is proposed in this work. Some significant results have been obtained by mode field analysis and adjustment of structural parameters. On the one hand, the line-shape of the SLR spectrum is divided into a Fano-like line and a separate line. And the former usually has an FOM of 101 magnitude while the latter has an FOM of 103 magnitude. On the other hand, the relative size of the excitation wavelengths between SLR and LSPR is also vital. The FOM is higher but resonance depth decreases faster when the relative size increases. In this work, a full width at half-maximum (FWHM) of less than 0.5 nm and FOM of more than 1000 RIU-1 (the quality factor is more than 3000) are achieved by the proposed crescent nanoarrays. In addition, this structure demonstrates that plasmonic nanoarray-based SLR has enormous potential in trace substance detection.
Collapse
Affiliation(s)
- Lei Wang
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Qi Wang
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China.
- State Key Laboratory of Synthetical Automation for Process Industries (Northeastern University), Shenyang 110819, China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao 066004, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Tie-Qiang Wang
- College of Science, Northeastern University, Shenyang 110819, China
| | - Wan-Ming Zhao
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Xiang-Yu Yin
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Ju-Xin Jiang
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Shu-Shuai Zhang
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
6
|
Shoji A, Nakajima M, Morioka K, Fujimori E, Umemura T, Yanagida A, Hemmi A, Uchiyama K, Nakajima H. Development of a surface plasmon resonance sensor using an optical fiber prepared by electroless displacement gold plating and its application to immunoassay. Talanta 2022; 240:123162. [PMID: 34996015 DOI: 10.1016/j.talanta.2021.123162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/27/2022]
Abstract
A simple and low-cost method of fabricating an optical fiber for a surface plasmon resonance (SPR) sensor was proposed. The method is based on the electroless nickel plating and subsequent displacement gold plating of the core of the optical fiber. The thickness of the nickel and gold thin films deposited on the core of the optical fiber could be controlled by measuring the reflected light intensity from the tip of the optical fiber during the plating processes. The sensitivity and resolution of the SPR sensor with the fabricated optical fiber in the refractive index range from 1.333 to 1.348 were 1324.3 nm/RIU and 7.6 × 10-4 RIU, respectively. The developed SPR sensor was successfully used in the determination of immunoglobulin A (IgA) in human saliva. The IgA quantification results obtained by the SPR sensor were in excellent agreement with those obtained by conventional enzyme-linked immunosorbent assay using a 96-well microtiter plate.
Collapse
Affiliation(s)
- Atsushi Shoji
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| | - Miyu Nakajima
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachioji, Tokyo, 192-0397, Japan
| | - Kazuhiro Morioka
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Eiji Fujimori
- National Environmental Research and Training Institute, 3-3 Namiki, Tokorozawa, Saitama, 359-0042, Japan
| | - Tomonari Umemura
- Laboratory of Bioanalytical and Environmental Chemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Akio Yanagida
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Akihide Hemmi
- Mebius Advanced Technology Ltd., 3-31-6 Nishiogi-kita, Suginami-ku, Tokyo, 167-0042, Japan
| | - Katsumi Uchiyama
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachioji, Tokyo, 192-0397, Japan
| | - Hizuru Nakajima
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachioji, Tokyo, 192-0397, Japan.
| |
Collapse
|
7
|
Dillen A, Mohrbacher A, Lammertyn J. A Versatile One-Step Competitive Fiber Optic Surface Plasmon Resonance Bioassay Enabled by DNA Nanotechnology. ACS Sens 2021; 6:3677-3684. [PMID: 34633181 DOI: 10.1021/acssensors.1c01447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fiber optic surface plasmon resonance (FO-SPR)-based biosensors have emerged as powerful tools for biomarker detection due to their ability for real-time analysis of biomolecular interactions, cost-effectiveness, and user-friendliness. However, as (FO-)SPR signals are determined by the mass of the target molecules, the detection of low-molecular-weight targets remains challenging and currently requires tedious labeling and preparation steps. Therefore, in this work, we established a new concept for low-molecular-weight target detection by implementing duplexed aptamers on an FO-SPR sensor. In this manner, we enabled one-step competitive detection and could achieve significant signals, independent of the weight of the target molecules, without requiring labeling or preprocessing steps. This was demonstrated for the detection of a small molecule (ATP), protein (thrombin), and ssDNA target, thereby reaching detection limits of 72 μM, 36 nM, and 30 nM respectively and proving the generalizability of the proposed bioassay. Furthermore, target detection was successfully achieved in 10-fold diluted plasma, which demonstrated the applicability of the assay in biologically relevant matrices. Altogether, the developed one-step competitive FO-SPR bioassay opens up possibilities for the detection of low-molecular-weight targets in a fast and straightforward manner.
Collapse
Affiliation(s)
- Annelies Dillen
- KU Leuven, Department of Biosystems − Biosensors Group, Willem de Croylaan 42, Box 2428, Leuven 3001, Belgium
| | - Aurélie Mohrbacher
- KU Leuven, Department of Biosystems − Biosensors Group, Willem de Croylaan 42, Box 2428, Leuven 3001, Belgium
| | - Jeroen Lammertyn
- KU Leuven, Department of Biosystems − Biosensors Group, Willem de Croylaan 42, Box 2428, Leuven 3001, Belgium
| |
Collapse
|
8
|
Bekmurzayeva A, Ashikbayeva Z, Myrkhiyeva Z, Nugmanova A, Shaimerdenova M, Ayupova T, Tosi D. Label-free fiber-optic spherical tip biosensor to enable picomolar-level detection of CD44 protein. Sci Rep 2021; 11:19583. [PMID: 34599251 PMCID: PMC8486867 DOI: 10.1038/s41598-021-99099-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
Increased level of CD44 protein in serum is observed in several cancers and is associated with tumor burden and metastasis. Current clinically used detection methods of this protein are time-consuming and use labeled reagents for analysis. Therefore exploring new label-free and fast methods for its quantification including its detection in situ is of importance. This study reports the first optical fiber biosensor for CD44 protein detection, based on a spherical fiber optic tip device. The sensor is easily fabricated from an inexpensive material (single-mode fiber widely used in telecommunication) in a fast and robust manner through a CO2 laser splicer. The fabricated sensor responded to refractive index change with a sensitivity of 95.76 dB/RIU. The spherical tip was further functionalized with anti-CD44 antibodies to develop a biosensor and each step of functionalization was verified by an atomic force microscope. The biosensor detected a target of interest with an achieved limit of detection of 17 pM with only minor signal change to two control proteins. Most importantly, concentrations tested in this work are very broad and are within the clinically relevant concentration range. Moreover, the configuration of the proposed biosensor allows its potential incorporation into an in situ system for quantitative detection of this biomarker in a clinical setting.
Collapse
Affiliation(s)
- Aliya Bekmurzayeva
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan.
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan.
| | - Zhannat Ashikbayeva
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan.
| | - Zhuldyz Myrkhiyeva
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Aigerim Nugmanova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Madina Shaimerdenova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Takhmina Ayupova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Daniele Tosi
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| |
Collapse
|
9
|
Soares MS, Vidal M, Santos NF, Costa FM, Marques C, Pereira SO, Leitão C. Immunosensing Based on Optical Fiber Technology: Recent Advances. BIOSENSORS-BASEL 2021; 11:bios11090305. [PMID: 34562895 PMCID: PMC8472567 DOI: 10.3390/bios11090305] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022]
Abstract
The evolution of optical fiber technology has revolutionized a variety of fields, from optical transmission to environmental monitoring and biomedicine, given their unique properties and versatility. For biosensing purposes, the light guided in the fiber core is exposed to the surrounding media where the analytes of interest are detected by different techniques, according to the optical fiber configuration and biofunctionalization strategy employed. These configurations differ in manufacturing complexity, cost and overall performance. The biofunctionalization strategies can be carried out directly on bare fibers or on coated fibers. The former relies on interactions between the evanescent wave (EW) of the fiber and the analyte of interest, whereas the latter can comprise plasmonic methods such as surface plasmon resonance (SPR) and localized SPR (LSPR), both originating from the interaction between light and metal surface electrons. This review presents the basics of optical fiber immunosensors for a broad audience as well as the more recent research trends on the topic. Several optical fiber configurations used for biosensing applications are highlighted, namely uncladded, U-shape, D-shape, tapered, end-face reflected, fiber gratings and special optical fibers, alongside practical application examples. Furthermore, EW, SPR, LSPR and biofunctionalization strategies, as well as the most recent advances and applications of immunosensors, are also covered. Finally, the main challenges and an outlook over the future direction of the field is presented.
Collapse
|
10
|
Juste-Dolz A, Delgado-Pinar M, Avella-Oliver M, Fernández E, Pastor D, Andrés MV, Maquieira Á. BIO bragg gratings on microfibers for label-free biosensing. Biosens Bioelectron 2021; 176:112916. [PMID: 33401145 DOI: 10.1016/j.bios.2020.112916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/02/2020] [Accepted: 12/17/2020] [Indexed: 01/14/2023]
Abstract
Discovering nanoscale phenomena to sense biorecognition events introduces new perspectives to exploit nanoscience and nanotechnology for bioanalytical purposes. Here we present Bio Bragg Gratings (BBGs), a novel biosensing approach that consists of diffractive structures of protein bioreceptors patterned on the surface of optical waveguides, and tailored to transduce the magnitude of biorecognition assays into the intensity of single peaks in the reflection spectrum. This work addresses the design, fabrication, and optimization of this system by both theoretical and experimental studies to explore the fundamental physicochemical parameters involved. Functional biomolecular gratings are fabricated by microcontact printing on the surface of tapered optical microfibers, and their structural features were characterized. The transduction principle is experimentally demonstrated, and its quantitative bioanalytical prospects are assessed in a representative immunoassay, based on patterned protein probes and selective IgG targets, in label-free conditions. This biosensing system involves appealing perspectives to avoid unwanted signal contributions from non-specific binding, herein investigated in human serum samples. The work also proves how the optical response of the system can be easily tuned, and it provides insights into the relevance of this feature to conceive multiplexed BBG systems capable to perform multiple label-free biorecognition assays in a single device.
Collapse
Affiliation(s)
- Augusto Juste-Dolz
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022, Valencia, Spain
| | - Martina Delgado-Pinar
- Department of Applied Physics and Electromagnetism-ICMUV, Universitat de València, Burjassot, 46100, Spain
| | - Miquel Avella-Oliver
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022, Valencia, Spain; Departamento de Química, Universitat Politècnica de València, 46022, Valencia, Spain.
| | - Estrella Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022, Valencia, Spain
| | - Daniel Pastor
- Photonics Research Labs, Universitat Politècnica de València, 46021, Valencia, Spain
| | - Miguel V Andrés
- Department of Applied Physics and Electromagnetism-ICMUV, Universitat de València, Burjassot, 46100, Spain
| | - Ángel Maquieira
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022, Valencia, Spain; Departamento de Química, Universitat Politècnica de València, 46022, Valencia, Spain.
| |
Collapse
|
11
|
Qu JH, Dillen A, Saeys W, Lammertyn J, Spasic D. Advancements in SPR biosensing technology: An overview of recent trends in smart layers design, multiplexing concepts, continuous monitoring and in vivo sensing. Anal Chim Acta 2019; 1104:10-27. [PMID: 32106939 DOI: 10.1016/j.aca.2019.12.067] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/04/2019] [Accepted: 12/24/2019] [Indexed: 12/22/2022]
Abstract
Inspired by the rapid progress and existing limitations in surface plasmon resonance (SPR) biosensing technology, we have summarized the recent trends in the fields of both chip-SPR and fiber optic (FO)-SPR biosensors during the past five years, primarily regarding smart layers design, multiplexing, continuous monitoring and in vivo sensing. Versatile surface chemistries, biomaterials and nanomaterials have been utilized thus far to generate smart layers on SPR platforms and as such achieve oriented immobilization of bioreceptors, improved fouling resistance and sensitivity enhancement, collectively aiming to improve the biosensing performance. Furthermore, often driven by the desires for time- and cost-effective quantification of multiple targets in a single measurement, efforts have been made to implement multiplex bioassays on SPR platforms. While this aspect largely remains difficult to attain, numerous alternative strategies arose for obtaining parallel analysis of multiple analytes in one single device. Additionally, one of the upcoming challenges in this field will be to succeed in using SPR platforms for continuous measurements and in vivo sensing, and as such match up other biosensing platforms where these goals have been already conquered. Overall, this review will give insight into multiple possibilities that have become available over the years for boosting the performance of SPR biosensors. However, because combining them all into one optimal sensor is practically not feasible, the final application needs to be considered while designing an SPR biosensor, as this will determine the requirements of the bioassay and will thus help in selecting the essential elements from the recent progress made in SPR sensing.
Collapse
Affiliation(s)
- Jia-Huan Qu
- KU Leuven, Department of Biosystems - Biosensors Group, Willem de Croylaan 42, Box 2428, 3001, Leuven, Belgium
| | - Annelies Dillen
- KU Leuven, Department of Biosystems - Biosensors Group, Willem de Croylaan 42, Box 2428, 3001, Leuven, Belgium
| | - Wouter Saeys
- KU Leuven, Department of Biosystems, MeBioS - Biophotonics, Kasteelpark Arenberg 30, Box 2456, 3001, Leuven, Belgium
| | - Jeroen Lammertyn
- KU Leuven, Department of Biosystems - Biosensors Group, Willem de Croylaan 42, Box 2428, 3001, Leuven, Belgium.
| | - Dragana Spasic
- KU Leuven, Department of Biosystems - Biosensors Group, Willem de Croylaan 42, Box 2428, 3001, Leuven, Belgium
| |
Collapse
|
12
|
Zhong N, Wu Y, Wang Z, Chang H, Zhong D, Xu Y, Hu X, Huang L. Monitoring Microalgal Biofilm Growth and Phenol Degradation with Fiber-Optic Sensors. Anal Chem 2019; 91:15155-15162. [DOI: 10.1021/acs.analchem.9b03923] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Nianbing Zhong
- Intelligent Fiber Sensing Technology of Chongqing Municipal Engineering Research Center of Institutions of Higher Education, Chongqing Key Laboratory of Modern Photoelectric Detection Technology and Instrument, Chongqing Key Laboratory of Fiber Optic Sensor and Photodetector, Chongqing University of Technology, Chongqing 400054, China
| | - Yongwu Wu
- Intelligent Fiber Sensing Technology of Chongqing Municipal Engineering Research Center of Institutions of Higher Education, Chongqing Key Laboratory of Modern Photoelectric Detection Technology and Instrument, Chongqing Key Laboratory of Fiber Optic Sensor and Photodetector, Chongqing University of Technology, Chongqing 400054, China
| | - Zhengkun Wang
- Intelligent Fiber Sensing Technology of Chongqing Municipal Engineering Research Center of Institutions of Higher Education, Chongqing Key Laboratory of Modern Photoelectric Detection Technology and Instrument, Chongqing Key Laboratory of Fiber Optic Sensor and Photodetector, Chongqing University of Technology, Chongqing 400054, China
| | - Haixing Chang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Dengjie Zhong
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yunlan Xu
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xinyu Hu
- Intelligent Fiber Sensing Technology of Chongqing Municipal Engineering Research Center of Institutions of Higher Education, Chongqing Key Laboratory of Modern Photoelectric Detection Technology and Instrument, Chongqing Key Laboratory of Fiber Optic Sensor and Photodetector, Chongqing University of Technology, Chongqing 400054, China
| | - Liwen Huang
- Intelligent Fiber Sensing Technology of Chongqing Municipal Engineering Research Center of Institutions of Higher Education, Chongqing Key Laboratory of Modern Photoelectric Detection Technology and Instrument, Chongqing Key Laboratory of Fiber Optic Sensor and Photodetector, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
13
|
Cai S, González-Vila Á, Zhang X, Guo T, Caucheteur C. Palladium-coated plasmonic optical fiber gratings for hydrogen detection. OPTICS LETTERS 2019; 44:4483-4486. [PMID: 31517912 DOI: 10.1364/ol.44.004483] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
Surface plasmon resonance excitation with tilted fiber Bragg gratings has been typically studied using gold films to target biochemical sensing applications. However, surface plasmons can be excited on other metal coatings as well. In this work, plasmonic optical fiber grating platforms are developed using palladium films. Since the optical properties of this metal differ from the ones of gold, simulations are carried out to define the optimal thickness. Due to the phase transition of palladium in the presence of hydrogen, intensity changes in the optical transmission of the devices are produced. It is demonstrated that these platforms can be used for hydrogen detection at concentrations way below the lower explosive limit.
Collapse
|
14
|
Chen M, Xin X, Liu H, Wu Y, Zhong N, Chang H. Monitoring Biohydrogen Production and Metabolic Heat in Biofilms by Fiber Bragg Grating Sensors. Anal Chem 2019; 91:7842-7849. [DOI: 10.1021/acs.analchem.9b01559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Ming Chen
- Intelligent Fiber Sensing Technology of Chongqing Municipal Engineering Research Center of Institutions of Higher Education, Chongqing Key Laboratory of Modern Photoelectric Detection Technology and Instrument, Chongqing Key Laboratory of Fiber Optic Sensor and Photodetector, Chongqing University of Technology, Chongqing 400054, China
| | - Xin Xin
- Intelligent Fiber Sensing Technology of Chongqing Municipal Engineering Research Center of Institutions of Higher Education, Chongqing Key Laboratory of Modern Photoelectric Detection Technology and Instrument, Chongqing Key Laboratory of Fiber Optic Sensor and Photodetector, Chongqing University of Technology, Chongqing 400054, China
| | - Huimin Liu
- Intelligent Fiber Sensing Technology of Chongqing Municipal Engineering Research Center of Institutions of Higher Education, Chongqing Key Laboratory of Modern Photoelectric Detection Technology and Instrument, Chongqing Key Laboratory of Fiber Optic Sensor and Photodetector, Chongqing University of Technology, Chongqing 400054, China
| | - Yongwu Wu
- Intelligent Fiber Sensing Technology of Chongqing Municipal Engineering Research Center of Institutions of Higher Education, Chongqing Key Laboratory of Modern Photoelectric Detection Technology and Instrument, Chongqing Key Laboratory of Fiber Optic Sensor and Photodetector, Chongqing University of Technology, Chongqing 400054, China
| | - Nianbing Zhong
- Intelligent Fiber Sensing Technology of Chongqing Municipal Engineering Research Center of Institutions of Higher Education, Chongqing Key Laboratory of Modern Photoelectric Detection Technology and Instrument, Chongqing Key Laboratory of Fiber Optic Sensor and Photodetector, Chongqing University of Technology, Chongqing 400054, China
| | - Haixing Chang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
15
|
Recent development of fiber-optic chemical sensors and biosensors: Mechanisms, materials, micro/nano-fabrications and applications. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.08.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Qian C, Wang R, Wu H, Ping J, Wu J. Recent advances in emerging DNA-based methods for genetically modified organisms (GMOs) rapid detection. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.09.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Caucheteur C, Loyez M, González-Vila Á, Wattiez R. Evaluation of gold layer configuration for plasmonic fiber grating biosensors. OPTICS EXPRESS 2018; 26:24154-24163. [PMID: 30184907 DOI: 10.1364/oe.26.024154] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 08/28/2018] [Indexed: 05/22/2023]
Abstract
Gold-coated fiber Bragg gratings (FBGs) are nowadays a mature technology for lab-on-fiber sensing based on surface plasmon resonance (SPR) excitation. Tilted FBGs bring valuable assets such as easy light injection, remote operation in very small volumes of analytes and immunity to temperature fluctuations. Different gold configurations have been reported to date, without considering their relative performances in terms of biochemical sensing. In this work, we experimentally study the impact of the gold coating on the cladding mode distribution in the tilted FBG amplitude spectrum and subsequently on its sensitivity to cytokeratins used as biomarkers for cancer diagnosis. Some relevant configurations of gold coatings are produced and tested, relying on both the sputtering and electroless plating (ELP) processes. The obtained results confirm that the coating thickness and its roughness drive the biosensing performances. The experimental limit of detection for cytokeratins 17 sensing reaches 14 fM for the most sensitive configurations.
Collapse
|
18
|
Prabowo BA, Purwidyantri A, Liu KC. Surface Plasmon Resonance Optical Sensor: A Review on Light Source Technology. BIOSENSORS 2018; 8:E80. [PMID: 30149679 PMCID: PMC6163427 DOI: 10.3390/bios8030080] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 01/19/2023]
Abstract
The notion of surface plasmon resonance (SPR) sensor research emerged more than eight decades ago from the first observed phenomena in 1902 until the first introduced principles for gas sensing and biosensing in 1983. The sensing platform has been hand-in-hand with the plethora of sensing technology advancement including nanostructuring, optical technology, fluidic technology, and light source technology, which contribute to substantial progress in SPR sensor evolution. Nevertheless, the commercial products of SPR sensors in the market still require high-cost investment, component, and operation, leading to unaffordability for their implementation in a low-cost point of care (PoC) or laboratories. In this article, we present a comprehensive review of SPR sensor development including the state of the art from a perspective of light source technology trends. Based on our review, the trend of SPR sensor configurations, as well as its methodology and optical designs are strongly influenced by the development of light source technology as a critical component. These simultaneously offer new underlying principles of SPR sensor towards miniaturization, portability, and disposability features. The low-cost solid-state light source technology, such as laser diode, light-emitting diode (LED), organic light emitting diode (OLED) and smartphone display have been reported as proof of concept for the future of low-cost SPR sensor platforms. Finally, this review provides a comprehensive overview, particularly for SPR sensor designers, including emerging engineers or experts in this field.
Collapse
Affiliation(s)
- Briliant Adhi Prabowo
- Research Center for Electronics and Telecommunications, Indonesian Institute of Sciences, Bandung 40135, Indonesia.
- Department of Electronics Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Agnes Purwidyantri
- Research Unit for Clean Technology, Indonesian Institute of Sciences, Bandung 40135, Indonesia.
| | - Kou-Chen Liu
- Department of Electronics Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
- Division of Pediatric Infectious Disease, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan.
| |
Collapse
|
19
|
Zhang X, Wu Z, Liu F, Fu Q, Chen X, Xu J, Zhang Z, Huang Y, Tang Y, Guo T, Albert J. Hydrogen peroxide and glucose concentration measurement using optical fiber grating sensors with corrodible plasmonic nanocoatings. BIOMEDICAL OPTICS EXPRESS 2018; 9:1735-1744. [PMID: 29675315 PMCID: PMC5905919 DOI: 10.1364/boe.9.001735] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/01/2018] [Accepted: 03/08/2018] [Indexed: 05/31/2023]
Abstract
We propose and demonstrate hydrogen peroxide (H2O2) and glucose concentration measurements using a plasmonic optical fiber sensor. The sensor utilizes a tilted fiber Bragg grating (TFBG) written in standard single mode communication fiber. The fiber is over coated with an nm-scale film of silver that supports surface plasmon resonances (SPRs). Such a tilted grating SPR structure provides a high density of narrow spectral resonances (Q-factor about 105) that overlap with the broader absorption band of the surface plasmon waves in the silver film, thereby providing an accurate tool to measure small shifts of the plasmon resonance frequencies. The H2O2 to be detected acts as an oxidant to etch the silver film, which has the effect of gradually decreasing the SPR attenuation. The etching rate of the silver film shows a clear relationship with the H2O2 concentration so that monitoring the progressively increasing attenuation of a selected surface plasmon resonance over a few minutes enables us to measure the H2O2 concentration with a limit of detection of 0.2 μM. Furthermore, the proposed method can be applied to the determination of glucose in human serum for a concentration range from 0 to 12 mM (within the physiological range of 3-8 mM) by monitoring the H2O2 produced by an enzymatic oxidation process. The sensor does not require accurate temperature control because of the inherent temperature insensitivity of TFBG devices referenced to the core mode resonance. A gold mirror coated on the fiber allows the sensor to work in reflection, which will facilitate the integration of the sensor with a hypodermic needle for in vitro measurements. The present study shows that Ag-coated TFBG-SPR can be applied as a promising type of sensing probe for optical detection of H2O2 and glucose detection in human serum.
Collapse
Affiliation(s)
- Xuejun Zhang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Ze Wu
- Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Department of Bioengineering, Jinan University, Guangzhou 510632, China
| | - Fu Liu
- Department of Electronics, Carleton University, 1125 Colonel by Drive, Ottawa K1S 5B6, Canada
| | - Qiangqiang Fu
- Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Department of Bioengineering, Jinan University, Guangzhou 510632, China
| | - Xiaoyong Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Jian Xu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Zhaochuan Zhang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Yunyun Huang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Yong Tang
- Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Department of Bioengineering, Jinan University, Guangzhou 510632, China
| | - Tuan Guo
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Jacques Albert
- Department of Electronics, Carleton University, 1125 Colonel by Drive, Ottawa K1S 5B6, Canada
| |
Collapse
|
20
|
Guo T, González-Vila Á, Loyez M, Caucheteur C. Plasmonic Optical Fiber-Grating Immunosensing: A Review. SENSORS 2017; 17:s17122732. [PMID: 29186871 PMCID: PMC5751598 DOI: 10.3390/s17122732] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/13/2017] [Accepted: 11/24/2017] [Indexed: 12/20/2022]
Abstract
Plasmonic immunosensors are usually made of a noble metal (in the form of a film or nanoparticles) on which bioreceptors are grafted to sense analytes based on the antibody/antigen or other affinity mechanism. Optical fiber configurations are a miniaturized counterpart to the bulky Kretschmann prism and allow easy light injection and remote operation. To excite a surface plasmon (SP), the core-guided light is locally outcoupled. Unclad optical fibers were the first configurations reported to this end. Among the different architectures able to bring light in contact with the surrounding medium, a great quantity of research is today being conducted on metal-coated fiber gratings photo-imprinted in the fiber core, as they provide modal features that enable SP generation at any wavelength, especially in the telecommunication window. They are perfectly suited for use with cost-effective high-resolution interrogators, allowing both a high sensitivity and a low limit of detection to be reached in immunosensing. This paper will review recent progress made in this field with different kinds of gratings: uniform, tilted and eccentric short-period gratings as well as long-period fiber gratings. Practical cases will be reported, showing that such sensors can be used in very small volumes of analytes and even possibly applied to in vivo diagnosis.
Collapse
Affiliation(s)
- Tuan Guo
- Institute of Photonics Technology, Jinan University, Guangzhou 510632, China.
| | - Álvaro González-Vila
- Electromagnetism and Telecommunication Department, University of Mons, Boulevard Dolez 31, 7000 Mons, Belgium.
| | - Médéric Loyez
- Electromagnetism and Telecommunication Department, University of Mons, Boulevard Dolez 31, 7000 Mons, Belgium.
| | - Christophe Caucheteur
- Electromagnetism and Telecommunication Department, University of Mons, Boulevard Dolez 31, 7000 Mons, Belgium.
| |
Collapse
|
21
|
Pallarola D, Bochen A, Guglielmotti V, Oswald TA, Kessler H, Spatz JP. Highly Ordered Gold Nanopatterned Indium Tin Oxide Electrodes for Simultaneous Optical and Electrochemical Probing Cell Interactions. Anal Chem 2017; 89:10054-10062. [DOI: 10.1021/acs.analchem.7b02743] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Diego Pallarola
- Instituto
de Nanosistemas, Universidad Nacional de General San Martín, Av. 25 de Mayo y Francia, San Martín 1650, Argentina
| | - Alexander Bochen
- Department
of Chemistry, Institute for Advanced Study and Center for Integrated Protein Science, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Victoria Guglielmotti
- Instituto
de Nanosistemas, Universidad Nacional de General San Martín, Av. 25 de Mayo y Francia, San Martín 1650, Argentina
| | - Tabea A. Oswald
- Department
of Cellular Biophysics, Max-Planck-Institute for Medical Research, Heisenbergstr. 3, 70569 Stuttgart, Germany
- Department
of Biophysical Chemistry, Institute of Physical Chemistry, Heidelberg University, 69120 Heidelberg, Germany
| | - Horst Kessler
- Department
of Chemistry, Institute for Advanced Study and Center for Integrated Protein Science, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Joachim P. Spatz
- Department
of Cellular Biophysics, Max-Planck-Institute for Medical Research, Heisenbergstr. 3, 70569 Stuttgart, Germany
- Department
of Biophysical Chemistry, Institute of Physical Chemistry, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
22
|
Towards a Uniform Metrological Assessment of Grating-Based Optical Fiber Sensors: From Refractometers to Biosensors. BIOSENSORS-BASEL 2017. [PMID: 28635665 PMCID: PMC5487959 DOI: 10.3390/bios7020023] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A metrological assessment of grating-based optical fiber sensors is proposed with the aim of providing an objective evaluation of the performance of this sensor category. Attention was focused on the most common parameters, used to describe the performance of both optical refractometers and biosensors, which encompassed sensitivity, with a distinction between volume or bulk sensitivity and surface sensitivity, resolution, response time, limit of detection, specificity (or selectivity), reusability (or regenerability) and some other parameters of generic interest, such as measurement uncertainty, accuracy, precision, stability, drift, repeatability and reproducibility. Clearly, the concepts discussed here can also be applied to any resonance-based sensor, thus providing the basis for an easier and direct performance comparison of a great number of sensors published in the literature up to now. In addition, common mistakes present in the literature made for the evaluation of sensor performance are highlighted, and lastly a uniform performance assessment is discussed and provided. Finally, some design strategies will be proposed to develop a grating-based optical fiber sensing scheme with improved performance.
Collapse
|
23
|
Ribaut C, Loyez M, Larrieu JC, Chevineau S, Lambert P, Remmelink M, Wattiez R, Caucheteur C. Cancer biomarker sensing using packaged plasmonic optical fiber gratings: Towards in vivo diagnosis. Biosens Bioelectron 2017; 92:449-456. [DOI: 10.1016/j.bios.2016.10.081] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 11/29/2022]
|
24
|
Immunosensing with Near-Infrared Plasmonic Optical Fiber Gratings. Methods Mol Biol 2017. [PMID: 28281249 DOI: 10.1007/978-1-4939-6848-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Surface Plasmon resonance (SPR) optical fiber biosensors constitute a miniaturized counterpart to the bulky prism configuration and offer remote operation in very small volumes of analyte. They are a cost-effective and relatively straightforward technique to yield in situ (or even possibly in vivo) molecular detection. They are usually obtained from a gold-coated fiber segment for which the core-guided light is brought into contact with the surrounding medium, either by etching (or side-polishing) or by using grating coupling. Recently, SPR generation was achieved in gold-coated tilted fiber Bragg gratings (TFBGs). These sensors probe the surrounding medium with near-infrared narrowband resonances, which enhances both the penetration depth of the evanescent field in the external medium and the wavelength resolution of the interrogation. They constitute the unique configuration able to probe all the fiber cladding modes individually, with high Q-factors. We use these unique spectral features in our work to sense proteins and extra-cellular membrane receptors that are both overexpressed in cancerous tissues. Impressive limit of detection (LOD) and sensitivity are reported, which paves the way for the further use of such immunosensors for cancer diagnosis.
Collapse
|
25
|
Ultrasensitive plasmonic sensing in air using optical fibre spectral combs. Nat Commun 2016; 7:13371. [PMID: 27834366 PMCID: PMC5114639 DOI: 10.1038/ncomms13371] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 09/27/2016] [Indexed: 01/28/2023] Open
Abstract
Surface plasmon polaritons (SPP) can be excited on metal-coated optical fibres, enabling the accurate monitoring of refractive index changes. Configurations reported so far mainly operate in liquids but not in air because of a mismatch between permittivities of guided light modes and the surrounding medium. Here we demonstrate a plasmonic optical fibre platform that overcomes this limitation. The underpinning of our work is a grating architecture-a gold-coated highly tilted Bragg grating-that excites a spectral comb of narrowband-cladding modes with effective indices near 1.0 and below. Using conventional spectral interrogation, we measure shifts of the SPP-matched resonances in response to static atmospheric pressure changes. A dynamic experiment conducted using a laser lined-up with an SPP-matched resonance demonstrates the ability to detect an acoustic wave with a resolution of 10-8 refractive index unit (RIU). We believe that this configuration opens research directions for highly sensitive plasmonic sensing in gas.
Collapse
|
26
|
Ribaut C, Voisin V, Malachovská V, Dubois V, Mégret P, Wattiez R, Caucheteur C. Small biomolecule immunosensing with plasmonic optical fiber grating sensor. Biosens Bioelectron 2016; 77:315-22. [DOI: 10.1016/j.bios.2015.09.019] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/07/2015] [Accepted: 09/10/2015] [Indexed: 11/28/2022]
|
27
|
Wang J, Wang X, Wu S, Song J, Zhao Y, Ge Y, Meng C. Fabrication of highly catalytic silver nanoclusters/graphene oxide nanocomposite as nanotag for sensitive electrochemical immunoassay. Anal Chim Acta 2016; 906:80-88. [DOI: 10.1016/j.aca.2015.12.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/07/2015] [Accepted: 12/12/2015] [Indexed: 01/03/2023]
|
28
|
Affiliation(s)
- Xu-dong Wang
- Department
of Chemistry, Fudan University, 200433 Shanghai, P. R. China
| | - Otto S. Wolfbeis
- Institute
of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|