1
|
Nwaji N, Gwak J, Nguyen MC, Nguyen HQ, Kang H, Choi Y, Kim Y, Chen H, Lee J. Emerging potentials of Fe-based nanomaterials for chiral sensing and imaging. Med Res Rev 2024; 44:897-918. [PMID: 38084636 DOI: 10.1002/med.22003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 04/11/2023] [Accepted: 11/26/2023] [Indexed: 04/06/2024]
Abstract
Fe-based nanostructures have possessed promising properties that make it suitable for chiral sensing and imaging applications owing to their ultra-small size, non-toxicity, biocompatibility, excellent photostability, tunable fluorescence, and water solubility. This review summarizes the recent research progress in the field of Fe-based nanostructures and places special emphases on their applications in chiral sensing and imaging. The synthetic strategies to prepare the targeted Fe-based structures were also introduced. The chiral sensing and imaging applications of the nanostructures are discussed in details.
Collapse
Affiliation(s)
- Njemuwa Nwaji
- Institute of Materials Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Juyong Gwak
- Department of Chemistry, Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - My-Chi Nguyen
- Institute of Materials Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Huu-Quang Nguyen
- Institute of Materials Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Hyojin Kang
- Department of Chemistry, Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Youngeun Choi
- Department of Chemistry, Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Youngmi Kim
- Department of Chemistry, Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Hongxia Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, PR China
| | - Jaebeom Lee
- Institute of Materials Chemistry, Chungnam National University, Daejeon, Republic of Korea
- Department of Chemistry, Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
2
|
Aredes RS, Lima IDP, Faillace AP, Madriaga VGC, Lima TDM, Vaz FAS, Marques FFDC, Duarte LM. From capillaries to microchips, green electrophoretic features for enantiomeric separations: A decade review (2013-2022). Electrophoresis 2023; 44:1471-1518. [PMID: 37667860 DOI: 10.1002/elps.202200178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 06/28/2023] [Accepted: 07/12/2023] [Indexed: 09/06/2023]
Abstract
Enantioseparation by the electromigration-based method is well-established and widely discussed in the literature. Electrophoretic strategies have been used to baseline resolve complex enantiomeric mixtures, typically using a selector substance into the background electrolyte (BGE) from capillaries to microchips. Along with developing new materials/substances for enantioseparations, it is the concern about the green analytical chemistry (GAC) principles for method development and application. This review article brings a last decade's update on the publications involving enantioseparation by electrophoresis for capillary and microchip systems. It also brings a critical discussion on GAC principles and new green metrics in the context of developing an enantioseparation method. Chemical and green features of native and modified cyclodextrins are discussed. Still, given the employment of greener substances, ionic liquids and deep-eutectic solvents are highlighted, and some new selectors are proposed. For all the mentioned selectors, green features about their production, application, and disposal are considered. Sample preparation and BGE composition in GAC perspective, as well as greener derivatization possibilities, were also addressed. Therefore, one of the goals of this review is to aid the electrophoretic researchers to look where they have not.
Collapse
Affiliation(s)
- Rafaella S Aredes
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Isabela de P Lima
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Amanda P Faillace
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Vinicius G C Madriaga
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Thiago de M Lima
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Fernando A S Vaz
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Flávia F de C Marques
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Lucas M Duarte
- Programa, de Pós-Graduação em Química, Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Pan QX, Yang YC, Zhao NN, Zhang B, Cui L, Zhang CY. Development of a chiral electrochemical sensor based on copper-amino acid mercaptide nanorods for enantioselective discrimination of tryptophan enantiomers. Anal Chim Acta 2023; 1272:341480. [PMID: 37355327 DOI: 10.1016/j.aca.2023.341480] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/26/2023]
Abstract
Chirality is an important property of nature and it regulates fundamental phenomena in nature and organisms. Here, we develop a chiral electrochemical sensor based on copper-amino acid mercaptide nanorods (L-CuCys NRs) to discriminate tryptophan (Trp) isomers. The chiral L-CuCys NRs are prepared in alkaline solution based on the facile coordination reaction between the sulfhydryl groups of L-Cys and copper ions. Since the stability constant (K) of L-CuCys NRs with L-Trp (752) are much higher than that of L-CuCys NRs with D-Trp (242), the cross-linking bonds between L-CuCys NRs and L-Trp are more stable than those between L-CuCys NRs and D-Trp. Consequently, this electrochemical sensor can selectively recognize the Trp isomers with an enantiomeric electrochemical difference ratio (IL-Trp/ID-Trp) of 3.22, and it exhibits a detection limit of 0.26 μM for L-Trp. Moreover, this electrochemical sensor can quantitatively measure Trp isomers in complex samples. Importantly, this electrochemical sensor has the characteristics of high stability, good repeatability, easy fabrication, low cost, and efficient discrimination of tryptophan (Trp) isomers.
Collapse
Affiliation(s)
- Qian-Xiu Pan
- College of Pharmacy, Department of Pathology, Weifang Medical University, Weifang, 261053, China
| | - Yun-Cong Yang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Ning-Ning Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Baogang Zhang
- College of Pharmacy, Department of Pathology, Weifang Medical University, Weifang, 261053, China.
| | - Lin Cui
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
4
|
Lininger A, Palermo G, Guglielmelli A, Nicoletta G, Goel M, Hinczewski M, Strangi G. Chirality in Light-Matter Interaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2107325. [PMID: 35532188 DOI: 10.1002/adma.202107325] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 04/07/2022] [Indexed: 06/14/2023]
Abstract
The scientific effort to control the interaction between light and matter has grown exponentially in the last 2 decades. This growth has been aided by the development of scientific and technological tools enabling the manipulation of light at deeply sub-wavelength scales, unlocking a large variety of novel phenomena spanning traditionally distant research areas. Here, the role of chirality in light-matter interactions is reviewed by providing a broad overview of its properties, materials, and applications. A perspective on future developments is highlighted, including the growing role of machine learning in designing advanced chiroptical materials to enhance and control light-matter interactions across several scales.
Collapse
Affiliation(s)
- Andrew Lininger
- Department of Physics, Case Western Reserve University, 2076 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Giovanna Palermo
- Department of Physics, NLHT-Lab, University of Calabria and CNR-NANOTEC Istituto di Nanotecnologia, Rende, 87036, Italy
| | - Alexa Guglielmelli
- Department of Physics, NLHT-Lab, University of Calabria and CNR-NANOTEC Istituto di Nanotecnologia, Rende, 87036, Italy
| | - Giuseppe Nicoletta
- Department of Physics, NLHT-Lab, University of Calabria and CNR-NANOTEC Istituto di Nanotecnologia, Rende, 87036, Italy
| | - Madhav Goel
- Department of Physics, Case Western Reserve University, 2076 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Michael Hinczewski
- Department of Physics, Case Western Reserve University, 2076 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Giuseppe Strangi
- Department of Physics, Case Western Reserve University, 2076 Adelbert Rd, Cleveland, OH, 44106, USA
- Department of Physics, NLHT-Lab, University of Calabria and CNR-NANOTEC Istituto di Nanotecnologia, Rende, 87036, Italy
| |
Collapse
|
5
|
Uçar A, Aydoğdu Tığ G, Er E. Recent advances in two dimensional nanomaterial-based electrochemical (bio)sensing platforms for trace-level detection of amino acids and pharmaceuticals. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
6
|
Abdulbagi M, Wang L, Siddig O, Di B, Li B. D-Amino Acids and D-Amino Acid-Containing Peptides: Potential Disease Biomarkers and Therapeutic Targets? Biomolecules 2021; 11:1716. [PMID: 34827714 PMCID: PMC8615943 DOI: 10.3390/biom11111716] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
In nature, amino acids are found in two forms, L and D enantiomers, except for glycine which does not have a chiral center. The change of one form to the other will lead to a change in the primary structure of proteins and hence may affect the function and biological activity of proteins. Indeed, several D-amino acid-containing peptides (DAACPs) were isolated from patients with cataracts, Alzheimer's and other diseases. Additionally, significant levels of free D-amino acids were found in several diseases, reflecting the disease conditions. Studying the molecular mechanisms of the DAACPs formation and the alteration in D-amino acids metabolism will certainly assist in understanding these diseases and finding new biomarkers and drug targets. In this review, the presence of DAACPs and free D-amino acids and their links with disease development and progress are summarized. Similarly, we highlight some recent advances in analytical techniques that led to improvement in the discovery and analysis of DAACPs and D-amino acids.
Collapse
Affiliation(s)
- Mohamed Abdulbagi
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; (M.A.); (L.W.); (O.S.)
| | - Liya Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; (M.A.); (L.W.); (O.S.)
| | - Orwa Siddig
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; (M.A.); (L.W.); (O.S.)
| | - Bin Di
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; (M.A.); (L.W.); (O.S.)
- Center Key Laboratory on Protein Chemistry and Structural Biology, China Pharmaceutical University, Nanjing 210009, China
- MOE Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China
| | - Bo Li
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China; (M.A.); (L.W.); (O.S.)
- Center Key Laboratory on Protein Chemistry and Structural Biology, China Pharmaceutical University, Nanjing 210009, China
- MOE Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
7
|
Warning LA, Miandashti AR, McCarthy LA, Zhang Q, Landes CF, Link S. Nanophotonic Approaches for Chirality Sensing. ACS NANO 2021; 15:15538-15566. [PMID: 34609836 DOI: 10.1021/acsnano.1c04992] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Chiral nanophotonic materials are promising candidates for biosensing applications because they focus light into nanometer dimensions, increasing their sensitivity to the molecular signatures of their surroundings. Recent advances in nanomaterial-enhanced chirality sensing provide detection limits as low as attomolar concentrations (10-18 M) for biomolecules and are relevant to the pharmaceutical industry, forensic drug testing, and medical applications that require high sensitivity. Here, we review the development of chiral nanomaterials and their application for detecting biomolecules, supramolecular structures, and other environmental stimuli. We discuss superchiral near-field generation in both dielectric and plasmonic metamaterials that are composed of chiral or achiral nanostructure arrays. These materials are also applicable for enhancing chiroptical signals from biomolecules. We review the plasmon-coupled circular dichroism mechanism observed for plasmonic nanoparticles and discuss how hotspot-enhanced plasmon-coupled circular dichroism applies to biosensing. We then review single-particle spectroscopic methods for achieving the ultimate goal of single-molecule chirality sensing. Finally, we discuss future outlooks of nanophotonic chiral systems.
Collapse
Affiliation(s)
| | | | | | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | | | | |
Collapse
|
8
|
Ramadan Q, Fardous RS, Hazaymeh R, Alshmmari S, Zourob M. Pharmacokinetics-On-a-Chip: In Vitro Microphysiological Models for Emulating of Drugs ADME. Adv Biol (Weinh) 2021; 5:e2100775. [PMID: 34323392 DOI: 10.1002/adbi.202100775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/08/2021] [Indexed: 12/15/2022]
Abstract
Despite many ongoing efforts across the full spectrum of pharmaceutical and biotech industries, drug development is still a costly undertaking that involves a high risk of failure during clinical trials. Animal models played vital roles in understanding the mechanism of human diseases. However, the use of these models has been a subject of heated debate, particularly due to ethical matters and the inevitable pathophysiological differences between animals and humans. Current in vitro models lack the sufficient functionality and predictivity of human pharmacokinetics and toxicity, therefore, are not capable to fully replace animal models. The recent development of micro-physiological systems has shown great potential as indispensable tools for recapitulating key physiological parameters of humans and providing in vitro methods for predicting the pharmacokinetics and pharmacodynamics in humans. Integration of Absorption, Distribution, Metabolism, and Excretion (ADME) processes within one close in vitro system is a paramount development that would meet important unmet pharmaceutical industry needs. In this review paper, synthesis of the ADME-centered organ-on-a-chip technology is systemically presented from what is achieved to what needs to be done, emphasizing the requirements of in vitro models that meet industrial needs in terms of the structure and functions.
Collapse
Affiliation(s)
- Qasem Ramadan
- Alfaisal University, Riyadh, 11533, Kingdom of Saudi Arabia
| | - Roa Saleem Fardous
- Alfaisal University, Riyadh, 11533, Kingdom of Saudi Arabia.,Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde University, Glasgow, G4 0RE, United Kingdom
| | - Rana Hazaymeh
- Almaarefa University, Riyadh, 13713, Kingdom of Saudi Arabia
| | - Sultan Alshmmari
- Saudi Food and Drug Authority, Riyadh, 13513-7148, Kingdom of Saudi Arabia
| | | |
Collapse
|
9
|
Miller A, Hill N, Hakim K, Lapizco-Encinas BH. Fine-Tuning Electrokinetic Injections Considering Nonlinear Electrokinetic Effects in Insulator-Based Devices. MICROMACHINES 2021; 12:mi12060628. [PMID: 34071691 PMCID: PMC8227112 DOI: 10.3390/mi12060628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/17/2022]
Abstract
The manner of sample injection is critical in microscale electrokinetic (EK) separations, as the resolution of a separation greatly depends on sample quality and how the sample is introduced into the system. There is a significant wealth of knowledge on the development of EK injection methodologies that range from simple and straightforward approaches to sophisticated schemes. The present study focused on the development of optimized EK sample injection schemes for direct current insulator-based EK (DC-iEK) systems. These are microchannels that contain arrays of insulating structures; the presence of these structures creates a nonuniform electric field distribution when a potential is applied, resulting in enhanced nonlinear EK effects. Recently, it was reported that the nonlinear EK effect of electrophoresis of the second kind plays a major role in particle migration in DC-iEK systems. This study presents a methodology for designing EK sample injection schemes that consider the nonlinear EK effects exerted on the particles being injected. Mathematical modeling with COMSOL Multiphysics was employed to identify proper voltages to be used during the EK injection process. Then, a T-microchannel with insulating posts was employed to experimentally perform EK injection and separate a sample containing two types of similar polystyrene particles. The quality of the EK injections was assessed by comparing the resolution (Rs) and number of plates (N) of the experimental particle separations. The findings of this study establish the importance of considering nonlinear EK effects when planning for successful EK injection schemes.
Collapse
|
10
|
Lu N, Kutter JP. Recent advances in microchip enantioseparation and analysis. Electrophoresis 2020; 41:2122-2135. [PMID: 32949465 DOI: 10.1002/elps.202000242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/10/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022]
Abstract
This review summarizes recent developments (over the past decade) in the field of microfluidics-based solutions for enantiomeric separation and detection. The progress in various formats of microchip electrodriven separations, such as MCE, microchip electrochromatography, and multidimensional separation techniques, is discussed. Innovations covering chiral stationary phases, surface coatings, and modification strategies to improve resolution, as well as integration with detection systems, are reported. Finally, combinations with other microfluidic functional units are also presented and highlighted.
Collapse
Affiliation(s)
- Nan Lu
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Jörg P Kutter
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Zhang L, Luo K, Li D, Zhang Y, Zeng Y, Li J. Chiral molecular imprinted sensor for highly selective determination of D-carnitine in enantiomers via dsDNA-assisted conformation immobilization. Anal Chim Acta 2020; 1136:82-90. [PMID: 33081952 DOI: 10.1016/j.aca.2020.08.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/03/2020] [Accepted: 08/22/2020] [Indexed: 02/08/2023]
Abstract
In this paper, a novel approach was established on the basis of a molecularly imprinted technique with the aid of double-stranded deoxyribonucleic acid (dsDNA) embedded in a molecularly imprinted polymer (MIP) membrane as a new functional unit with chiral recognition for highly specific chiral recognition. The chiral molecules were immobilized and anchored in the cavities of the MIP membrane on the basis of the three-dimensional structure of a molecule determined by the functional groups, spatial characterization of the cavities of MIPs, and the spatial orientation with dsDNA embedded in MIPs. D-carnitine was selected as an example of a chiral molecular template, which intercalated into dsDNA immobilized on the gold electrode surface to form dsDNA-D-carnitine complex, and then the complex was embedded in the MIP during electropolymerization. After elution, the stereo-selective cavities were obtained. Our findings have shown that AAAA-TTTT base sequence had high affinity for D-carnitine intercalation. Combined with the electrochemical detection method, MIP sensor was prepared. The selectivity of the MIP sensor to ultratrace D-carnitine was significantly improved; the sensor had remarkable stereo-selectivity and highly chiral specific recognition to D-carnitine, and L-carnitine with a concentration of 10,000 times D-carnitine did not interfere with the detection of D-carnitine in the assay of raceme. The sensor also exhibited high sensitivity to ultratrace D-carnitine determination with a linear response to the concentration of D-carnitine in the range of 3.0 × 10-16 mol/L to 4.0 × 10-13 mol/L, with a detection limit of 2.24 × 10-16 mol/L. The mechanism of chiral recognition was studied, and result showed that apart from the recognition effect of imprinted cavities, dsDNA provided chiral selectivity to the spatial orientation of chiral molecules via the intercalation of chiral molecules with dsDNA and electrostatic interaction with groups of DNA base.
Collapse
Affiliation(s)
- Lianming Zhang
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, PR China; College of Material and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610000, PR China
| | - Kui Luo
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, PR China
| | - Dan Li
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, PR China
| | - Yufu Zhang
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, PR China
| | - Ying Zeng
- College of Material and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610000, PR China
| | - Jianping Li
- Guangxi Colleges and Universities Key Laboratory of Food Safety and Detection, Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, PR China.
| |
Collapse
|
12
|
Rezaei Z, Mahmoudifard M. Pivotal role of electrospun nanofibers in microfluidic diagnostic systems - a review. J Mater Chem B 2020; 7:4602-4619. [PMID: 31364667 DOI: 10.1039/c9tb00682f] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recently, the usage of electrospinning technology for the fabrication of fine fibers with a good deal of variation in morphology and structure has drawn the attention of many researchers around the world. These fibers have found their way in the many fields of science including medical diagnosis, tissue engineering, drug delivery, replica molding, solar cells, catalysts, energy conversion and storage, physical and chemical sensors and other applications. Among all applications, biosensing with the aim of rapid and sensitive biomarker detection is an area that warrants attention. Electrospun nanofibrous membranes enjoy numerous factors which benefit them to be used as potential candidates in biosensing platforms. Some of these factors include a high surface to volume ratio, analogous scale compared to bioactive molecules and relatively defect-free properties of nanofibers (NFs). In this review, we focused on the recent advances in electrospun nanofibrous membrane-based micro-analytical devices with an application as diagnostic systems. Hence, a study on the electrospun nanofiber usage in lab-on-a-chip and paper-based point-of-care devices, with an opening introduction to biosensors, nanofibers, the electrospinning method, and microfluidics as the principles of the intended subject, is provided. It is anticipated that the given examples in this paper will provide sufficient evidence for the potential of electrospun NFs for being used as a substrate in the commercial fabrication of highly sensitive and selective biosensors.
Collapse
Affiliation(s)
- Zahra Rezaei
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran and Chemical & Petroleum Engineering Department, Sharif University of Technology, Tehran, Iran.
| | - Matin Mahmoudifard
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
13
|
Rosini E, D’Antona P, Pollegioni L. Biosensors for D-Amino Acids: Detection Methods and Applications. Int J Mol Sci 2020; 21:E4574. [PMID: 32605078 PMCID: PMC7369756 DOI: 10.3390/ijms21134574] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 12/24/2022] Open
Abstract
D-enantiomers of amino acids (D-AAs) are only present in low amounts in nature, frequently at trace levels, and for this reason, their biological function was undervalued for a long time. In the past 25 years, the improvements in analytical methods, such as gas chromatography, HPLC, and capillary electrophoresis, allowed to detect D-AAs in foodstuffs and biological samples and to attribute them specific biological functions in mammals. These methods are time-consuming, expensive, and not suitable for online application; however, life science investigations and industrial applications require rapid and selective determination of D-AAs, as only biosensors can offer. In the present review, we provide a status update concerning biosensors for detecting and quantifying D-AAs and their applications for safety and quality of foods, human health, and neurological research. The review reports the main challenges in the field, such as selectivity, in order to distinguish the different D-AAs present in a solution, the simultaneous assay of both L- and D-AAs, the production of implantable devices, and surface-scanning biosensors. These innovative tools will push future research aimed at investigating the neurological role of D-AAs, a vibrant field that is growing at an accelerating pace.
Collapse
Affiliation(s)
- Elena Rosini
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; (P.D.); (L.P.)
| | | | | |
Collapse
|
14
|
Abstract
Chirality is a fundamental property of a molecule, and the significant progress in chirality detection and quantification of a molecule has inspired major advances in various fields ranging from chemistry, biology, to biotechnology and pharmacology. Chiral molecules have identical molecular formulas, atom-to-atom linkages, and bonding distances, and as such they are difficult to distinguish both sensitively and selectively. Today, most new drugs and those under development are chiral, which requires technological developments in the separation and detection of chiral molecules. Therefore, rapid and facile methods to detect and discriminate chiral compounds are necessary to accelerate advances in many research fields. The challenges in analysis stem from the obvious fact that chiral molecules have the same physical properties. Although significant progress on the detection of enantiomeric composition has been achieved in the past decade, in order to fully realize the capacity of chiral molecular interrogation, highly sensitive and selective, portable, and easy-to-use detection remains challenging because of the limitation of conventional techniques.Soft nanoarchitectonics is a new concept for the fabrication of functional soft material systems through harmonization of various actions including atomic/molecular-level manipulation, chemical reactions, self-assembly and self-organization, and their modulation by external fields/stimuli. Soft nanoarchitectonics has been widely used as a key enabling technology for integrating predefined molecular functionalities including electrochemical, optical, catalytic, or biological properties into biosensing devices, which provides exciting opportunities to design, assemble, and fabricate tailored nanosystems to enable new sensing strategies for chiral molecules.In this Account, we aim to concisely discuss how these molecule-inspired soft nanoarchitectonics work for enantioselective sensing. We will first outline the basic principle and mechanistic insights of the soft nanoarchitectonics approach for enantioselective sensing, and then we will describe the new breakthroughs and trends in the area that have been most recently reported by our groups and others. There will also be a discussion on the merits of soft nanoarchitectonics based sensing in comparison to conventional analytical methods. Finally, with this Account, we hope to spark new chiral molecule sensing strategies by fundamentally understanding chiral recognition and engineering soft nanoarchitectonics with programmable structures and predictable sensing properties.
Collapse
Affiliation(s)
- Jing Liu
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3216, Australia
| | - Hong Zhou
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3216, Australia
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Wenrong Yang
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3216, Australia
| | - Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
15
|
Singh N, Ali MA, Rai P, Ghori I, Sharma A, Malhotra BD, John R. Dual-modality microfluidic biosensor based on nanoengineered mesoporous graphene hydrogels. LAB ON A CHIP 2020; 20:760-777. [PMID: 31951241 DOI: 10.1039/c9lc00751b] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A dual-modality microfluidic biosensor is fabricated using a mesoporous nanostructured cysteine-graphene hydrogel for the quantification of human cardiac myoglobin (cMb). In this device, the nanoengineered mesoporous l-cysteine-graphene (Cys-RGO) hydrogel performs the role of a dual-modality sensing electrode for the measurements conducted using differential pulse voltammetry and surface plasmon resonance (SPR) techniques. High surface reactivity, mesoporous structure and fast electron transfer combined with good reaction kinetics of the graphene hydrogel in this device indicate excellent performance for the detection of human cardiac myoglobin in serum samples. In electrochemical modality, this microfluidic chip exhibits a high sensitivity of 196.66 μA ng-1 mL cm-2 for a linear range of concentrations (0.004-1000 ng mL-1) with a low limit of detection (LOD) of 4 pg mL-1 while the SPR technique shows a LOD of 10 pg mL-1 for cMb monitoring in the range 0.01-1000 ng mL-1. The intra-assay coefficient of variation was less than 8% for standard samples and 9% for real serum samples, respectively. This Cys-RGO hydrogel-based microfluidic SPR chip allows real-time dynamic tracking of cMb molecules with a high association constant of 4.93 ± 0.2 × 105 M-1 s-1 and a dissociation constant of 1.37 ± 0.08 × 10-4 s-1, self-verification, reduced false readout, and improved detection reliability.
Collapse
Affiliation(s)
- Nawab Singh
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, 502285 Telangana, India.
| | - Md Azahar Ali
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana-46556, USA
| | - Prabhakar Rai
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Inayathullah Ghori
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, 502285 Telangana, India. and Department of Cardiology, Kamineni Koti Hospital, Hyderabad-500001, Telangana, India
| | - Ashutosh Sharma
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - B D Malhotra
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi-110042, India
| | - Renu John
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, 502285 Telangana, India.
| |
Collapse
|
16
|
Nanomaterial-based electrochemical (bio)-sensing: One step ahead in diagnostic and monitoring of metabolic rare diseases. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Kato S, Inagaki K, Oikawa T. Application of l-methionine γ-lyase in chiral amino acid analysis. Anal Biochem 2019; 580:56-61. [PMID: 31163123 DOI: 10.1016/j.ab.2019.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/09/2019] [Accepted: 05/31/2019] [Indexed: 10/26/2022]
Abstract
Here, a conventional chiral amino acid analysis method using high-performance liquid chromatography was coupled with a sample pretreatment using l-methionine γ-lyase from Pseudomonas putida ICR 3460 for the selective analysis of l-methionine and l-tryptophan. The sample was analyzed after the degradation of l-methionine with l-methionine γ-lyase, as l-methionine coelutes with l-tryptophan under the standard chiral amino acid analytical conditions used for precolumn derivatization with o-phthalaldehyde and N-acetyl-l-cysteine. The l-tryptophan in the sample was then eluted as a clearly separated peak and analyzed further. Since the l-methionine γ-lyase did not act on l-tryptophan, we were able to calculate the l-methionine or l-tryptophan concentration based on the data obtained from 2 individual runs: the sample with and without l-methionine γ-lyase pretreatment. The concentration of l-tryptophan was calculated from the data obtained from the sample with l-methionine γ-lyase pretreatment, while the concentration of l-methionine was calculated using the following equation: l-methionine concentration = {the data from the sample without l-methionine γ-lyase pretreatment}-{the data from the sample with l-methionine γ-lyase pretreatment}. Model samples containing authentic amino acids and a fermented food sample were analyzed by our method, and the calculated concentrations of l-methionine and l-tryptophan were consistently in agreement with the theoretical values.
Collapse
Affiliation(s)
- Shiro Kato
- Kansai University High Technology Research Center, 3-3-35 Yamate-Cho, Suita, Osaka, 564-8680, Japan
| | - Kenji Inagaki
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama, 700-8530, Japan
| | - Tadao Oikawa
- Kansai University High Technology Research Center, 3-3-35 Yamate-Cho, Suita, Osaka, 564-8680, Japan; Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-Cho, Suita, Osaka, 564-8680, Japan.
| |
Collapse
|
18
|
Sengupta J, Hussain CM. Graphene and its derivatives for Analytical Lab on Chip platforms. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.03.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Yang J, Wang K, Xu H, Yan W, Jin Q, Cui D. Detection platforms for point-of-care testing based on colorimetric, luminescent and magnetic assays: A review. Talanta 2019; 202:96-110. [PMID: 31171232 DOI: 10.1016/j.talanta.2019.04.054] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/03/2019] [Accepted: 04/20/2019] [Indexed: 12/14/2022]
Abstract
Along with the considerable potential and increasing demand of the point-of-care testing (POCT), corresponding detection platforms have attracted great interest in both academic and practical fields. The first few generations of conventional detection devices tend to be costly, complicated to operate and hard to move on account of early limitations in the level of technological development and relatively high requirement of performance. Owing to the requirements for rapidity, simplicity, accuracy and cost controlling in the POCT, reader systems are urgently needed to be developed, upgraded and modified constantly, realizing on-site testing and healthcare management without a specific place or cumbersome operation. Accordingly, numerous rapid detection platforms with diverse size and performance have emerged such as bench-top apparatuses, handheld devices and intelligent detection devices. This review discusses various devices developed mainly for the detection of lateral flow test strips (LFTSs) or microfluidic strips in the POCT and summarizes these devices by size and portability. Furthermore, on the basis of various detection methods and diverse probes usually containing specific nanoparticles composites, three most common aspects of detection rationale in the POCT are selected to elaborate each kind of detection platforms in this paper: colorimetric assay, luminescent detection and magnetic signal detection. Herein, we focus on their structures, detection mechanisms and assay results, accompany with discussions and comments on the performances, costs and potential application, as well as advantages and limitations of each technique. In addition, perspectives on the future advances of detection platforms and some conclusions are proposed.
Collapse
Affiliation(s)
- Jinchuan Yang
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai, 200240, PR China.
| | - Kan Wang
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai, 200240, PR China.
| | - Hao Xu
- School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Wenqiang Yan
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai, 200240, PR China.
| | - Qinghui Jin
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China; Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China.
| | - Daxiang Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai, 200240, PR China.
| |
Collapse
|
20
|
Gao J, Zhang H, Ye C, Yuan Q, Chee KWA, Su W, Yu A, Yu J, Lin CT, Dai D, Fu L. Electrochemical Enantiomer Recognition Based on sp³-to-sp² Converted Regenerative Graphene/Diamond Electrode. NANOMATERIALS 2018; 8:nano8121050. [PMID: 30558215 PMCID: PMC6316030 DOI: 10.3390/nano8121050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/14/2018] [Accepted: 12/03/2018] [Indexed: 01/30/2023]
Abstract
It is of great significance to distinguish enantiomers due to their different, even completely opposite biological, physiological and pharmacological activities compared to those with different stereochemistry. A sp3-to-sp2 converted highly stable and regenerative graphene/diamond electrode (G/D) was proposed as an enantiomer recognition platform after a simple β-cyclodextrin (β-CD) drop casting process. The proposed enantiomer recognition sensor has been successfully used for d and l-phenylalanine recognition. In addition, the G/D electrode can be simply regenerated by half-minute sonication due to the strong interfacial bonding between graphene and diamond. Therefore, the proposed G/D electrode showed significant potential as a reusable sensing platform for enantiomer recognition.
Collapse
Affiliation(s)
- Jingyao Gao
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China.
| | - Haoyang Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Chen Ye
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China.
| | - Qilong Yuan
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China.
- Department of Electrical and Electronic Engineering, Faculty of Science and Engineering, University of Nottingham, Ningbo 315100, China.
| | - Kuan W A Chee
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China.
- Department of Electrical and Electronic Engineering, Faculty of Science and Engineering, University of Nottingham, Ningbo 315100, China.
| | - Weitao Su
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Aimin Yu
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
| | - Jinhong Yu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China.
| | - Cheng-Te Lin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China.
| | - Dan Dai
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China.
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
| |
Collapse
|
21
|
Chen X, Zhang S, Han W, Wu Z, Chen Y, Wang S. A review on application of graphene‐based microfluidics. JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY 2018; 93:3353-3363. [DOI: 10.1002/jctb.5710] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/24/2018] [Indexed: 01/12/2025]
Abstract
AbstractThis review reports on the progress of recent developments in graphene‐based microfluidics. The applications of graphene‐based microfluidics that are the focus of this work are illustrated and discussed mainly with examples from detection of viruses and disease, detection of proteins and glucose, detection of contaminants, and applications in sensors and material preparation. A variety of microfluidic devices integrated with graphene are expounded and analysed. This paper will provide an expedient and valuable reference to designers researching graphene‐based microfluidics for various applications. © 2018 Society of Chemical Industry
Collapse
Affiliation(s)
- Xueye Chen
- Faculty of Mechanical Engineering and Automation Liaoning University of Technology Jinzhou China
| | - Shuai Zhang
- Faculty of Mechanical Engineering and Automation Liaoning University of Technology Jinzhou China
| | - Wenbo Han
- Faculty of Mechanical Engineering and Automation Liaoning University of Technology Jinzhou China
| | - Zhongli Wu
- Faculty of Mechanical Engineering and Automation Liaoning University of Technology Jinzhou China
| | - Yao Chen
- Faculty of Mechanical Engineering and Automation Liaoning University of Technology Jinzhou China
| | - Shouxin Wang
- Faculty of Mechanical Engineering and Automation Liaoning University of Technology Jinzhou China
| |
Collapse
|
22
|
Nasseri B, Soleimani N, Rabiee N, Kalbasi A, Karimi M, Hamblin MR. Point-of-care microfluidic devices for pathogen detection. Biosens Bioelectron 2018; 117:112-128. [PMID: 29890393 PMCID: PMC6082696 DOI: 10.1016/j.bios.2018.05.050] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/22/2018] [Accepted: 05/28/2018] [Indexed: 12/22/2022]
Abstract
The rapid diagnosis of pathogens is crucial in the early stages of treatment of diseases where the choice of the correct drug can be critical. Although conventional cell culture-based techniques have been widely utilized in clinical applications, newly introduced optical-based, microfluidic chips are becoming attractive. The advantages of the novel methods compared to the conventional techniques comprise more rapid diagnosis, lower consumption of patient sample and valuable reagents, easy application, and high reproducibility in the detection of pathogens. The miniaturized channels used in microfluidic systems simulate interactions between cells and reagents in microchannel structures, and evaluate the interactions between biological moieties to enable diagnosis of microorganisms. The overarching goal of this review is to provide a summary of the development of microfluidic biochips and to comprehensively discuss different applications of microfluidic biochips in the detection of pathogens. New types of microfluidic systems and novel techniques for viral pathogen detection (e.g. HIV, HVB, ZIKV) are covered. Next generation techniques relying on high sensitivity, specificity, lower consumption of precious reagents, suggest that rapid generation of results can be achieved via optical based detection of bacterial cells. The introduction of smartphones to replace microscope based observation has substantially improved cell detection, and allows facile data processing and transfer for presentation purposes.
Collapse
Affiliation(s)
- Behzad Nasseri
- Departments of Microbiology and Microbial Biotechnology and Nanobiotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran; Chemical Engineering Deptartment and Bioengineeing Division, Hacettepe University, 06800 Beytepe, Ankara, Turkey.
| | - Neda Soleimani
- Departments of Microbiology and Microbial Biotechnology and Nanobiotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Navid Rabiee
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran.
| | - Alireza Kalbasi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
23
|
Habimana JDD, Ji J, Sun X. Minireview: Trends in Optical-Based Biosensors for Point-Of-Care Bacterial Pathogen Detection for Food Safety and Clinical Diagnostics. ANAL LETT 2018. [DOI: 10.1080/00032719.2018.1458104] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jean de Dieu Habimana
- State Key Laboratory of Food Science and Technology, School of Food Science, National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
- Department of Food Science and Technology, School of Food Science and Technology, University of Rwanda, Kigali, Rwanda
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science, National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science, National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
24
|
García-Carmona L, González MC, Escarpa A. Electrochemical On-site Amino Acids Detection of Maple Syrup Urine Disease Using Vertically Aligned Nickel Nanowires. ELECTROANAL 2018. [DOI: 10.1002/elan.201800103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Laura García-Carmona
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Biology, Environmental Sciences and Chemistry; University of Alcalá; 28871 Alcalá de Henares Madrid Spain
| | - María Cristina González
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Biology, Environmental Sciences and Chemistry; University of Alcalá; 28871 Alcalá de Henares Madrid Spain
- Chemical Research Institute “Andrés M. del Río”; University of Alcalá; Alcalá de Henares E-28871 Madrid Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Biology, Environmental Sciences and Chemistry; University of Alcalá; 28871 Alcalá de Henares Madrid Spain
- Chemical Research Institute “Andrés M. del Río”; University of Alcalá; Alcalá de Henares E-28871 Madrid Spain
| |
Collapse
|
25
|
Enzyme Immobilization on Functionalized Graphene Oxide Nanosheets: Efficient and Robust Biocatalysts. Methods Enzymol 2018; 609:371-403. [DOI: 10.1016/bs.mie.2018.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
26
|
García-Carmona L, Moreno-Guzmán M, González MC, Escarpa A. Class enzyme-based motors for “on the fly” enantiomer analysis of amino acids. Biosens Bioelectron 2017; 96:275-280. [DOI: 10.1016/j.bios.2017.04.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/26/2017] [Accepted: 04/29/2017] [Indexed: 01/28/2023]
|
27
|
Recent advances in microfluidic sample preparation and separation techniques for molecular biomarker analysis: A critical review. Anal Chim Acta 2017; 986:1-11. [PMID: 28870312 DOI: 10.1016/j.aca.2017.07.043] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/07/2017] [Accepted: 07/13/2017] [Indexed: 12/23/2022]
Abstract
Microfluidics is a vibrant and expanding field that has the potential for solving many analytical challenges. Microfluidics show promise to provide rapid, inexpensive, efficient, and portable diagnostic solutions that can be used in resource-limited settings. Researchers have recently reported various microfluidic platforms for biomarker analysis applications. Sample preparation processes like purification, preconcentration and labeling have been characterized on-chip. Additionally, improvements in microfluidic separation techniques have been reported for molecular biomarkers. This review critically evaluates microfluidic sample preparation platforms and separation methods for biomarker analysis reported in the last two years. Key advances in device operation and ability to process different sample matrices in a variety of device materials are highlighted. Finally, current needs and potential future directions for microfluidic device development to realize its full diagnostic potential are discussed.
Collapse
|
28
|
Abdelhamid HN, Bermejo-Gómez A, Martín-Matute B, Zou X. A water-stable lanthanide metal-organic framework for fluorimetric detection of ferric ions and tryptophan. Mikrochim Acta 2017; 184:3363-3371. [PMID: 28845057 PMCID: PMC5552832 DOI: 10.1007/s00604-017-2306-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/26/2017] [Indexed: 10/27/2022]
Abstract
The preparation of a highly water stable and porous lanthanide metal-organic framework (MOF) nanoparticles (denoted SUMOF-7II; SU refers to Stockholm University) is described. SUMOF-7II was synthesized starting from the tritopic linker of 2,4,6-tri-p-carboxyphenyl pyridine (H3L2) and La(III) as metal clusters. SUMOF-7II forms a stable dispersion and displays high fluorescence emission with small variation over the pH range of 6 to 12. Its fluorescence is selectively quenched by Fe(III) ions compared to other metal ions. The intensity of the fluorescene emission drops drops linearly in 16.6-167 μM Fe(III) concentration range, and Stern-Volmer plots are linear. The limit of detection (LOD) is 16.6 μM (at an S/N ratio of >3). This indicator probe can also be used for selective detection of tryptophan among several amino acids. Compared to the free linker H3L2, SUMOF-7II offers improved sensitivity and selectivity of the investigated species. Graphical abstractA water-stable porous lanthanide metal-organic framework SUMOF-7II (La) has shown to be an excellent probe for the detection of ferric ions among other metal ions, and tryptophan among other amino acids in aqueous solution. The new probe displays high and stable fluorescence signal in a wide pH range (6-12).
Collapse
Affiliation(s)
- Hani Nasser Abdelhamid
- Inorganic and Structural Chemistry and Berzelii Center EXSELENT on Porous Materials, Department of Materials and Environmental Chemistry, Stockholm University, -106 91 Stockholm, SE Sweden
| | - Antonio Bermejo-Gómez
- Department of Organic Chemistry and Berzelii Center EXSELENT on Porous Materials, Stockholm University, -10691 Stockholm, SE Sweden
| | - Belén Martín-Matute
- Department of Organic Chemistry and Berzelii Center EXSELENT on Porous Materials, Stockholm University, -10691 Stockholm, SE Sweden
| | - Xiaodong Zou
- Inorganic and Structural Chemistry and Berzelii Center EXSELENT on Porous Materials, Department of Materials and Environmental Chemistry, Stockholm University, -106 91 Stockholm, SE Sweden
| |
Collapse
|
29
|
Syedmoradi L, Daneshpour M, Alvandipour M, Gomez FA, Hajghassem H, Omidfar K. Point of care testing: The impact of nanotechnology. Biosens Bioelectron 2017; 87:373-387. [DOI: 10.1016/j.bios.2016.08.084] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 08/15/2016] [Accepted: 08/25/2016] [Indexed: 11/29/2022]
|
30
|
Tailor designed exclusive carbon nanomaterial electrodes for off-chip and on-chip electrochemical detection. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2020-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Hasanzadeh M, Shadjou N, Mokhtarzadeh A, Ramezani M. Two dimension (2-D) graphene-based nanomaterials as signal amplification elements in electrochemical microfluidic immune-devices: Recent advances. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:482-493. [DOI: 10.1016/j.msec.2016.06.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 06/01/2016] [Accepted: 06/07/2016] [Indexed: 12/25/2022]
|
32
|
Della Pelle F, Del Carlo M, Sergi M, Compagnone D, Escarpa A. Press-transferred carbon black nanoparticles on board of microfluidic chips for rapid and sensitive amperometric determination of phenyl carbamate pesticides in environmental samples. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1964-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
García-Carmona L, Martín A, Sierra T, González MC, Escarpa A. Electrochemical detectors based on carbon and metallic nanostructures in capillary and microchip electrophoresis. Electrophoresis 2016; 38:80-94. [DOI: 10.1002/elps.201600232] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Laura García-Carmona
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering; University of Alcalá; Madrid Spain
| | - Aida Martín
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering; University of Alcalá; Madrid Spain
| | - Tania Sierra
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering; University of Alcalá; Madrid Spain
| | - María Cristina González
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering; University of Alcalá; Madrid Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering; University of Alcalá; Madrid Spain
| |
Collapse
|
34
|
Della Pelle F, Vázquez L, Del Carlo M, Sergi M, Compagnone D, Escarpa A. Press-Printed Conductive Carbon Black Nanoparticle Films for Molecular Detection at the Microscale. Chemistry 2016; 22:12761-6. [PMID: 27460290 DOI: 10.1002/chem.201601743] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Indexed: 11/08/2022]
Abstract
Carbon black nanoparticle (CBNP) press-transferred film-based transducers for the molecular detection at the microscale level were proposed for the first time. Current-sensing atomic force microscopy (CS-AFM) revealed that the CBNP films were effectively press-transferred, retaining their good conductivity. A significant correlation between the morphology and the resistance was observed. The highest resistance was localized at the top of the press-transferred film protrusions, whereas low values are usually obtained at the deep crevices or grooves. The amount of press-transferred CBNPs is the key parameter to obtain films with improved conductivity, which is in good agreement with the electrochemical response. In addition, the conductivity of such optimum films was not only Ohmic; in fact, tunneling/hopping contributions were observed, as assessed by CS-AFM. The CBNP films acted as exclusive electrochemical transducers as evidenced by using two classes of molecules, that is, neurotransmitters and environmental organic contaminants. These results revealed the potential of these CBNP press-transferred films for providing new options in microfluidics and other related micro- and nanochemistry applications.
Collapse
Affiliation(s)
- Flavio Della Pelle
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Biology, Environmental Sciences and Chemistry, University of Alcalá, E-28871, Alcalá de Henares, Madrid, Spain), Fax: (+34) 918854971.,Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64023, Teramo, Italy), Fax:(+39) 0861-266942
| | - Luis Vázquez
- Institute of Materials Science of Madrid (CSIC), C/Sor Juana Inés de la Cruz No 3, Cantoblanco, 28049, Madrid, Spain
| | - Michele Del Carlo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64023, Teramo, Italy), Fax:(+39) 0861-266942
| | - Manuel Sergi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64023, Teramo, Italy), Fax:(+39) 0861-266942
| | - Dario Compagnone
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64023, Teramo, Italy), Fax:(+39) 0861-266942.
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Biology, Environmental Sciences and Chemistry, University of Alcalá, E-28871, Alcalá de Henares, Madrid, Spain), Fax: (+34) 918854971.
| |
Collapse
|
35
|
Labib M, Sargent EH, Kelley SO. Electrochemical Methods for the Analysis of Clinically Relevant Biomolecules. Chem Rev 2016; 116:9001-90. [DOI: 10.1021/acs.chemrev.6b00220] [Citation(s) in RCA: 555] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mahmoud Labib
- Department
of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | | | - Shana O. Kelley
- Department
of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Institute
of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| |
Collapse
|
36
|
Maria-Hormigos R, Jurado-Sánchez B, Escarpa A. Labs-on-a-chip meet self-propelled micromotors. LAB ON A CHIP 2016; 16:2397-2407. [PMID: 27250248 DOI: 10.1039/c6lc00467a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This frontier review covers recent advances in the field of nanomaterial-based micromotors for the development of novel labs-on-a-chip (LOCs). In this review, we will discuss how carbon nanomaterials "on-board" of micromotors offer particular promise for diverse LOC applications. New trends in the field, directed towards the use of quantum dots and nanoparticles as functional materials for sophisticated micromotors, will be reviewed. Micromotor strategies using functionalized catalytic microengines to capture and transport (bio)molecules between the different reservoirs of LOC devices will also be covered. These recent advances are bringing closer our hopes for personalized medicine and food safety assurance, among others.
Collapse
Affiliation(s)
- R Maria-Hormigos
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares E-28871, Madrid, Spain.
| | | | | |
Collapse
|
37
|
|
38
|
Derkus B. Applying the miniaturization technologies for biosensor design. Biosens Bioelectron 2016; 79:901-13. [DOI: 10.1016/j.bios.2016.01.033] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 12/11/2022]
|
39
|
Cong H, Xu X, Yu B, Liu H, Yuan H. Fabrication of universal serial bus flash disk type microfluidic chip electrophoresis and application for protein analysis under ultra low voltage. BIOMICROFLUIDICS 2016; 10:024107. [PMID: 27042249 PMCID: PMC4798985 DOI: 10.1063/1.4943915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/29/2016] [Indexed: 06/05/2023]
Abstract
A simple and effective universal serial bus (USB) flash disk type microfluidic chip electrophoresis (MCE) was developed by using poly(dimethylsiloxane) based soft lithography and dry film based printed circuit board etching techniques in this paper. The MCE had a microchannel diameter of 375 μm and an effective length of 25 mm. Equipped with a conventional online electrochemical detector, the device enabled effectively separation of bovine serum albumin, lysozyme, and cytochrome c in 80 s under the ultra low voltage from a computer USB interface. Compared with traditional capillary electrophoresis, the USB flash disk type MCE is not only portable and inexpensive but also fast with high separation efficiency.
Collapse
Affiliation(s)
| | - Xiaodan Xu
- College of Materials Science and Engineering, Qingdao University , Qingdao 266071, China
| | | | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Hua Yuan
- College of Materials Science and Engineering, Qingdao University , Qingdao 266071, China
| |
Collapse
|
40
|
Zheng D, Hu H, Liu X, Hu S. Application of graphene in elctrochemical sensing. Curr Opin Colloid Interface Sci 2015. [DOI: 10.1016/j.cocis.2015.10.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|