1
|
Kavand A, Robin P, Mayoraz L, Mensi M, Gerber-Lemaire S. Achieving high hybridization density at DNA biosensor surfaces using branched spacer and click chemistry. RSC Adv 2023; 13:34003-34011. [PMID: 38020007 PMCID: PMC10660212 DOI: 10.1039/d3ra04928k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023] Open
Abstract
The COVID-19 pandemic has highlighted the necessity to develop fast, highly sensitive and selective virus detection methods. Surface-based DNA-biosensors are interesting candidates for this purpose. Functionalization of solid substrates with DNA must be precisely controlled to achieve the required accuracy and sensitivity. In particular, achieving high hybridization density at the sensing surface is a prerequisite to reach a low limit of detection. We herein describe a strategy based on peptides as anchoring units to immobilize DNA probes at the surface of borosilicate slides. While the coating pathway involves copper-catalyzed click chemistry, a copper-free variation is also reported. The resulting biochips display a high hybridization density (2.9 pmol per cm2) with their targeted gene sequences.
Collapse
Affiliation(s)
- Alireza Kavand
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne CH-1015 Lausanne Switzerland
| | - Perrine Robin
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne CH-1015 Lausanne Switzerland
| | - Lucas Mayoraz
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne CH-1015 Lausanne Switzerland
| | - Mounir Mensi
- ISIC-XRDSAP, EPFL Valais-Wallis Rue de l'Industrie 17 CH-1951 Sion Switzerland
| | - Sandrine Gerber-Lemaire
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne CH-1015 Lausanne Switzerland
| |
Collapse
|
2
|
Waris, Hasnat A, Hasan S, Bano S, Sultana S, Ibhadon AO, Khan MZ. Development of nanozyme based sensors as diagnostic tools in clinic applications: a review. J Mater Chem B 2023; 11:6762-6781. [PMID: 37377089 DOI: 10.1039/d3tb00451a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Since 1970, many artificial enzymes that imitate the activity and structure of natural enzymes have been discovered. Nanozymes are a group of nanomaterials with enzyme-mimetic properties capable of catalyzing natural enzyme processes. Nanozymes have attracted great interest in biomedicine due to their excellent stability, rapid reactivity, and affordable cost. The enzyme-mimetic activities of nanozymes may be modulated by numerous parameters, including the oxidative state of metal ions, pH, hydrogen peroxide (H2O2) level, and glutathione (GSH) concentration, indicating the tremendous potential for biological applications. This article delivers a comprehensive overview of the advances in the knowledge of nanozymes and the creation of unique and multifunctional nanozymes, and their biological applications. In addition, a future perspective of employing the as-designed nanozymes in biomedical and diagnostic applications is provided, and we also discuss the barriers and constraints for their further therapeutic use.
Collapse
Affiliation(s)
- Waris
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
- Industrial Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, 202002, India
| | - Abul Hasnat
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
- Industrial Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, 202002, India
| | - Shumaila Hasan
- Department of Chemistry, Integral University, Lucknow-226026, India
| | - Sayfa Bano
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| | - Saima Sultana
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| | - Alex Omo Ibhadon
- School of Engineering, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - Mohammad Zain Khan
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
- Industrial Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
3
|
Xia N, Liu G, Zhang S, Shang Z, Yang Y, Li Y, Liu L. Oxidase-mimicking peptide-copper complexes and their applications in sandwich affinity biosensors. Anal Chim Acta 2022; 1214:339965. [DOI: 10.1016/j.aca.2022.339965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/15/2022] [Accepted: 05/18/2022] [Indexed: 01/08/2023]
|
4
|
Magnetic zirconium-based Prussian blue analog nanozyme: enhanced peroxidase-mimicking activity and colorimetric sensing of phosphate ion. Mikrochim Acta 2022; 189:220. [PMID: 35578124 DOI: 10.1007/s00604-022-05311-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/18/2022] [Indexed: 12/26/2022]
Abstract
A magnetic zirconium hexacyanoferrate-based Prussian blue analog (MB@ZrHCF) nanozyme was synthesized using dopamine (DA) reduction-assisted method and employed for colorimetric PO43- sensing. The MB@ZrHCF exhibits enhanced peroxidase-mimicking activity and ultrafast catalytic rate via the color reaction of 3,3',5,5'-tetramethylbenzidine (TMB) oxidized by hydrogen peroxide (H2O2). The catalytic reaction mechanism of MB@ZrHCF catalyzing H2O2 to produce hydroxyl radical (∙OH) was studied. Then, MB@ZrHCF was successfully applied to the detection of H2O2. Additionally, the catalytic activity of the nanocomposite is inhibited due to the steric hindrance effect from the coordination of PO43- and Zr(IV) node. Based on this, the MB@ZrHCF nanozyme can be used to detect PO43- in two linear ranges (10-100 µM and 100-200 µM) with a limit of detection of 2.25 µM. The proposed colorimetric sensor possesses excellent selectivity and reliability for PO43- sensing, which can be successfully applied to detect PO43- in sea and tap water samples.
Collapse
|
5
|
Abedanzadeh S, Moosavi-Movahedi Z, Sheibani N, Moosavi-Movahedi AA. Nanozymes: Supramolecular perspective. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
6
|
Wang X, Dong S, Wei H. Recent advances on nanozyme‐based electrochemical biosensors. ELECTROANAL 2022. [DOI: 10.1002/elan.202100684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Zheng J, Zhao P, Zhou S, Chen S, Liang Y, Tian F, Zhou J, Huo D, Hou C. Development of Au-Pd@UiO-66-on-ZIF-L/CC as a self-supported electrochemical sensor for in situ monitoring of cellular hydrogen peroxide. J Mater Chem B 2021; 9:9031-9040. [PMID: 34657951 DOI: 10.1039/d1tb01120k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Integrating metal-organic frameworks (MOFs) of different components or structures together and exploiting them as electrochemical sensors for electrochemical sensing has aroused great interest. Furthermore, the incorporation of noble metals with MOFs is conducive to the improvement of catalytic performance. In this work, Pd@UiO-66-on-ZIF-L nanomaterials were successfully synthesised onto a self-supported flexible carbon cloth (Pd@UiO-66-on-ZIF-L/CC) through a novel strategy called MOF-on-MOF. Then, Au nanoparticles were electrodeposited onto Pd@UiO-66-on-ZIF-L/CC to obtain Au-Pd@UiO-66-on-ZIF-L/CC, which can serve as an excellent electrocatalyst for the reduction of hydrogen peroxide (H2O2). The obtained flower-like Pd@UiO-66-on-ZIF-L/CC hybrid MOF changes the structure of the monomeric MOF alone and adds more attachment sites. The synergy of the bimetals greatly improved the catalytic performance of the as-developed sensor. Electrochemical experiment results show that the proposed sensor based on Au-Pd@UiO-66-on-ZIF-L/CC has an extended linear range from 1 μM to 19.6 mM with a sensitivity of 390 μA mM-1 cm-2, and a low limit of detection (LOD) of 21.2 nM (S/N = 3). Moreover, it has good anti-interference, reproducibility, repeatability and excellent stability. Furthermore, the real-time in situ detection of H2O2 secreted from human adenocarcinomic alveolar basal epithelial cells (A549 cells) was achieved by culturing cells on Au-Pd@UiO-66-on-ZIF-L/CC, which indicates the potential of the sensor for applications in cancer pathology. Both the synthesis strategy and the sensor design provide new methods and ideas for the production of ultrasensitive H2O2 electrochemical sensors.
Collapse
Affiliation(s)
- Jilin Zheng
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Peng Zhao
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Shiying Zhou
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Sha Chen
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Yi Liang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Fengchun Tian
- Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Jun Zhou
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China. .,National Engineering Research Center of Solid-State Brewing, Luzhou Laojiao Group Co. Ltd, Luzhou 646000, P. R. China
| | - Danqun Huo
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China. .,Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Changjun Hou
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China. .,National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
8
|
Bimetallic organic framework Cu/UiO-66 mediated "fluorescence turn-on" method for ultrasensitive and rapid detection of carcinoembryonic antigen (CEA). Anal Chim Acta 2021; 1183:339000. [PMID: 34627512 DOI: 10.1016/j.aca.2021.339000] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/22/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022]
Abstract
Carcinoembryonic antigen (CEA) is a key serum tumor marker which is overexpressed in all types of adenocarcinomas. Therefore, establish the ultrasensitive, accurate and rapid method for CEA detection is essential for reducing the mortality of cancer. Here, a bimetallic organic framework Cu/UiO-66 was synthesized through the simple two-step hydrothermal method and used to construct a "fluorescence turn-on" analytical method for CEA detection. Cu/UiO-66 can adsorb CEA aptamers modified with FAM (CEA/FAM-Apt) and take place photoinduced electron transfer (PET) between Cu/UiO-66 and FAM, resulting in the fluorescence of the FAM is quenched. When CEA is present, CEA and CEA/FAM-Apt are tightly combined, making CEA/FAM-Apt far away from the Cu/UiO-66 surface. As a result, the fluorescence intensity of the system was significantly restored. Under optimal conditions, the proposed "fluorescence turn-on" method can detect CEA as low as 0.01 ng mL-1 in a range of 0.01-0.3 ng mL-1. Besides, this analytical method owns good selectivity, reproducibility and serum applicability, which provides a new platform for the direct detection of clinical diagnosis-related markers.
Collapse
|
9
|
Chen Z, Li X, Yang C, Cheng K, Tan T, Lv Y, Liu Y. Hybrid Porous Crystalline Materials from Metal Organic Frameworks and Covalent Organic Frameworks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101883. [PMID: 34411465 PMCID: PMC8529453 DOI: 10.1002/advs.202101883] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/07/2021] [Indexed: 05/19/2023]
Abstract
Two frontier crystalline porous framework materials, namely, metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), have been widely explored owing to their outstanding physicochemical properties. While each type of framework has its own intrinsic advantages and shortcomings for specific applications, combining the complementary properties of the two materials allows the engineering of new classes of hybrid porous crystalline materials with properties superior to the individual components. Since the first report of MOF/COF hybrid in 2016, it has rapidly evolved as a novel platform for diverse applications. The state-of-art advances in the various synthetic approaches of MOF/COF hybrids are hereby summarized, together with their applications in different areas. Perspectives on the main challenges and future opportunities are also offered in order to inspire a multidisciplinary effort toward the further development of chemically diverse, multi-functional hybrid porous crystalline materials.
Collapse
Affiliation(s)
- Ziman Chen
- Beijing Key Laboratory of BioprocessCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
- The Molecular FoundryLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Xinle Li
- Department of ChemistryClark Atlanta UniversityAtlantaGA30314USA
| | - Chongqing Yang
- The Molecular FoundryLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Kaipeng Cheng
- Beijing Key Laboratory of BioprocessCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Tianwei Tan
- Beijing Key Laboratory of BioprocessCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Yongqin Lv
- Beijing Key Laboratory of BioprocessCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Yi Liu
- The Molecular FoundryLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| |
Collapse
|
10
|
Abstract
Since the discovery of the enzyme-like activities of nanomaterials, the study of nanozymes has become one of the most popular research frontiers of diverse areas including biosensors. DNA also plays a very important role in the construction of biosensors. Thus, the idea of combined applications of nanozymes with DNA (DNA-nanozyme) is very attractive for the development of nanozyme-based biosensors, which has attracted considerable interest of researchers. To date, many sensors based on DNA-functionalized or templated nanozymes have been reported for the detection of various targets and highly accelerated the development of nanozyme-based sensors. In this review, we summarize the main applications and advances of DNA-nanozyme-based sensors. Additionally, perspectives and challenges are also discussed at the end of the review.
Collapse
Affiliation(s)
- Renzhong Yu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.
| | - Rui Wang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.
| | - Zhaoyin Wang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.
| | - Qinshu Zhu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China. and Nanjing Normal University Centre for Analysis and Testing, Nanjing, 210023, P.R. China
| | - Zhihui Dai
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China. and Nanjing Normal University Centre for Analysis and Testing, Nanjing, 210023, P.R. China
| |
Collapse
|
11
|
Zhang C, Hu Q, Wu S, Chen F. Selective determination of DNA based on the fluorescence recovery of carbon dots quenched by Ru(bpy)2(dppz)2+. Talanta 2020; 217:121103. [DOI: 10.1016/j.talanta.2020.121103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 10/24/2022]
|
12
|
Mahmudunnabi RG, Farhana FZ, Kashaninejad N, Firoz SH, Shim YB, Shiddiky MJA. Nanozyme-based electrochemical biosensors for disease biomarker detection. Analyst 2020; 145:4398-4420. [PMID: 32436931 DOI: 10.1039/d0an00558d] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, a new group of nanomaterials named nanozymes that exhibit enzyme-mimicking catalytic activity has emerged as a promising alternative to natural enzymes. Nanozymes can address some of the intrinsic limitations of natural enzymes such as high cost, low stability, difficulty in storage, and specific working conditions (i.e., narrow substrate, temperature and pH ranges). Thus, synthesis and applications of hybrid and stimuli-responsive advanced nanozymes could revolutionize the current practice in life sciences and biosensor applications. On the other hand, electrochemical biosensors have long been used as an efficient way for quantitative detection of analytes (biomarkers) of interest. As such, the use of nanozymes in electrochemical biosensors is particularly important to achieve low cost and stable biosensors for prognostics, diagnostics, and therapeutic monitoring of diseases. Herein, we summarize the recent advances in the synthesis and classification of common nanozymes and their application in electrochemical biosensor development. After briefly overviewing the applications of nanozymes in non-electrochemical-based biomolecular sensing systems, we thoroughly discuss the state-of-the-art advances in nanozyme-based electrochemical biosensors, including genosensors, immunosensors, cytosensors and aptasensors. The applications of nanozymes in microfluidic-based assays are also discussed separately. We also highlight the challenges of nanozyme-based electrochemical biosensors and provide some possible strategies to address these limitations. Finally, future perspectives on the development of nanozyme-based electrochemical biosensors for disease biomarker detection are presented. We envisage that standardization of nanozymes and their fabrication process may bring a paradigm shift in biomolecular sensing by fabricating highly specific, multi-enzyme mimicking nanozymes for highly sensitive, selective, and low-biofouling electrochemical biosensors.
Collapse
Affiliation(s)
- Rabbee G Mahmudunnabi
- Institute of BioPhysio-Sensor Technology, Pusan National University, Busan 46241, South Korea
| | | | | | | | | | | |
Collapse
|
13
|
Zhang G, Chai H, Tian M, Zhu S, Qu L, Zhang X. Zirconium–Metalloporphyrin Frameworks–Luminol Competitive Electrochemiluminescence for Ratiometric Detection of Polynucleotide Kinase Activity. Anal Chem 2020; 92:7354-7362. [DOI: 10.1021/acs.analchem.0c01262] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Guangyao Zhang
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Huining Chai
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Mingwei Tian
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Shifeng Zhu
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Lijun Qu
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Xueji Zhang
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
14
|
Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 2019; 48:1004-1076. [DOI: 10.1039/c8cs00457a] [Citation(s) in RCA: 1628] [Impact Index Per Article: 271.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An updated comprehensive review to help researchers understand nanozymes better and in turn to advance the field.
Collapse
Affiliation(s)
- Jiangjiexing Wu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Xiaoyu Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Quan Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Zhangping Lou
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Sirong Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Yunyao Zhu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Li Qin
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| |
Collapse
|
15
|
Zhang H, Song Z, Pan F, He F. A surface-confined DNA assembly enabled target recycling amplification for multiplexed electrochemical DNA detection. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.09.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Zhou N, Ma Y, Hu B, He L, Wang S, Zhang Z, Lu S. Construction of Ce-MOF@COF hybrid nanostructure: Label-free aptasensor for the ultrasensitive detection of oxytetracycline residues in aqueous solution environments. Biosens Bioelectron 2018; 127:92-100. [PMID: 30594079 DOI: 10.1016/j.bios.2018.12.024] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Porous organic framework (COF) nanomaterials have drawn increasing attention and showed promising potential in the applications of various fields. Nevertheless, its applications in biosensing or biomedical fields are still in the early stage. In this work, we designed and synthesized a series of nanohybrids of COF and Ce-based metal organic framework (Ce-MOF) for the first time as label-free bioplatforms for a sensitive electrochemical aptasensor to detect oxytetracycline (OTC). A novel kinds of Ce-MOF@COF hybrids were prepared by adding different dosages of COF, into the preparation system of Ce-MOF, for which COF was synthesized using melamine and cyanutic acidmonomers through polycondensation (represented by MCA). Basic characterizations revealed that Ce-MOF@MCA nanohybrids not only remained their orignal crystal and chemical structure and features, such as different Ce species containing in Ce-MOF (Ce3+ and Ce4+), various functional amino-groups of MCA, and individual frameworks, but also showed a large specific surface area and interpenetrated morphologies. As a result, the Ce-MOF@MCA hybrid with high content of MCA exhibited high bioaffinity toward the OTC-targeted aptamer, further leading to the incremental detection effect for OTC detection. Among different hybrid-based aptasensors, the Ce-MOF@MCA-based one with an MCA dosage of 500 mg exhibited the lowest limit of detection at 17.4 fg mL-1 within a wider linearity of the OTC concentration within 0.1-0.5 ng mL-1. Additionally, the fabricated aptasensor displayed excellent analytical performance with great reproducibility, high selectivity and stability, and acceptable applicability for detecting OTC in various aqueous solutions, including milk, wastewater, and urine samples. This new Ce-MOF@MCA hybrid will become an excellent aptasensors platform for detecting various analytes, such as antibiotics, heavy metal ions, or cancer markers, and it have shown the promissing application potentials in the fields of biomedicine, food safety and environmental monitoring.
Collapse
Affiliation(s)
- Nan Zhou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou 450052, PR China
| | - Yashen Ma
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, PR China
| | - Bin Hu
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, PR China
| | - Linghao He
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, PR China
| | - Shijun Wang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou 450052, PR China.
| | - Zhihong Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, PR China.
| | - Siyu Lu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450000, China.
| |
Collapse
|
17
|
Zhou N, Yang L, Hu B, Song Y, He L, Chen W, Zhang Z, Liu Z, Lu S. Core–Shell Heterostructured CuFe@FeFe Prussian Blue Analogue Coupling with Silver Nanoclusters via a One-Step Bioinspired Approach: Efficiently Nonlabeled Aptasensor for Detection of Bleomycin in Various Aqueous Environments. Anal Chem 2018; 90:13624-13631. [DOI: 10.1021/acs.analchem.8b03850] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nan Zhou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University,No. 1, Jianshe East Road, Zhengzhou 450052, People’s Republic of China
| | - Longyu Yang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry,No. 136, Science Avenue, Zhengzhou 450001, People’s Republic of China
| | - Bin Hu
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry,No. 136, Science Avenue, Zhengzhou 450001, People’s Republic of China
| | - Yingpan Song
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry,No. 136, Science Avenue, Zhengzhou 450001, People’s Republic of China
| | - Linghao He
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry,No. 136, Science Avenue, Zhengzhou 450001, People’s Republic of China
| | - Weizhe Chen
- The Center of Quality Supervision and Inspection of Xuchang, Xuchang 461000, People’s Republic of China
| | - Zhihong Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry,No. 136, Science Avenue, Zhengzhou 450001, People’s Republic of China
| | - Zhongyi Liu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450000, People’s Republic of China
| | - Siyu Lu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450000, People’s Republic of China
| |
Collapse
|
18
|
Wang H, Zhou C, Sun X, Jian Y, Kong Q, Cui K, Ge S, Yu J. Polyhedral-AuPd nanoparticles-based dual-mode cytosensor with turn on enable signal for highly sensitive cell evalution on lab-on-paper device. Biosens Bioelectron 2018; 117:651-658. [DOI: 10.1016/j.bios.2018.07.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 10/28/2022]
|
19
|
Zhang G, Shan D, Dong H, Cosnier S, Al-Ghanim KA, Ahmad Z, Mahboob S, Zhang X. DNA-Mediated Nanoscale Metal–Organic Frameworks for Ultrasensitive Photoelectrochemical Enzyme-Free Immunoassay. Anal Chem 2018; 90:12284-12291. [DOI: 10.1021/acs.analchem.8b03762] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | - Dan Shan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | | | - Serge Cosnier
- University of Grenoble Alpes-CNRS, DCM UMR 5250, F-38000 Grenoble, France
| | - Khalid Abdullah Al-Ghanim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Zubair Ahmad
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
20
|
A voltammetric immunoassay for the carcinoembryonic antigen using a self-assembled magnetic nanocomposite. Mikrochim Acta 2018; 185:387. [DOI: 10.1007/s00604-018-2919-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/14/2018] [Indexed: 10/28/2022]
|
21
|
Enzyme-free homogeneous electrochemical biosensor for DNA assay using toehold-triggered strand displacement reaction coupled with host-guest recognition of Fe 3O 4@SiO 2@β-CD nanocomposites. Biosens Bioelectron 2018; 114:37-43. [PMID: 29775857 DOI: 10.1016/j.bios.2018.04.035] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/04/2018] [Accepted: 04/16/2018] [Indexed: 12/31/2022]
Abstract
Taking advantages of the toehold-triggered strand displacement reaction (TSDR) and host-guest interaction of β-cyclodextrin (β-CD), a facile enzyme-free and homogeneous electrochemical sensing strategy was designed for the sensitive assay of target DNA using Fe3O4@SiO2@β-CD nanocomposites and ferrocene-labeled hairpin DNA (H-1) as the capture and electrochemical probes, respectively. Upon addition of target molecule, the initiated TSDR process induced the conformational change of H-1, and subsequently stimulated the dynamic assembly of assist probes (A-1 and A-2) to generate H-1:A-1:A-2 duplex along with the release of target sequence. The released target could drive the next TSDR recycling and finally result in the formation of numerous DNA duplex. After the molecular recognition of Fe3O4@SiO2@β-CD nanocomposites, a large number of duplex were easily separated from the supernatant solution under an external magnetic field, which led to a decreased H-1 concentration in residual solution, concomitant with a remarkable reduction of peak current. Under the optimized conditions, wide linear range (1-5000 pM), low detection limit (0.3 pM), desirable reproducibility, good selectivity, and satisfactory practical analysis were obtained by the combination of the superior recognition capability of β-CD, TSDR-induced signal amplification, and homogeneous electroanalytical method. The proposed detection strategy could offer a universal approach for the monitoring of various biological analytes via the rational design of probe sequences.
Collapse
|
22
|
Wang M, Hu B, Ji H, Song Y, Liu J, Peng D, He L, Zhang Z. Aptasensor Based on Hierarchical Core-Shell Nanocomposites of Zirconium Hexacyanoferrate Nanoparticles and Mesoporous mFe 3O 4@mC: Electrochemical Quantitation of Epithelial Tumor Marker Mucin-1. ACS OMEGA 2017; 2:6809-6818. [PMID: 30023533 PMCID: PMC6044583 DOI: 10.1021/acsomega.7b01065] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/19/2017] [Indexed: 06/08/2023]
Abstract
A novel nanostructured hierarchical core-shell nanocomposite of zirconium hexacyanoferrate (ZrHCF) and a mesoporous nanomaterial composed of Fe3O4 and carbon nanospheres (denoted as ZrHCF@mFe3O4@mC) was prepared and used as a novel platform for an aptasensor to detect the epithelial tumor marker mucin-1 (MUC1) sensitively and selectively. The prepared ZrHCF@mFe3O4@mC nanocomposite exhibited good chemical functionality, water stability, and high specific surface area. Therefore, large amounts of aptamer molecules resulted in high sensitivity of the developed electrochemical aptasensor toward traces of MUC1. The constructed sensor also showed a good linear relationship with the logarithm of MUC1 concentration in the broad range of 0.01 ng·mL-1 to 1.0 μg·mL-1, with a low detection limit of 0.90 pg·mL-1. The fabricated ZrHCF@mFe3O4@mC-based aptasensor exhibited not only high selectivity because of the formation of aptamer-MUC1 complex but also good stability, acceptable reproducibility, and applicability. The proposed novel strategy based on a newly prepared hierarchical core-shell nanocomposite demonstrated outstanding biosensing performance and presents potential applications in biomedical fields.
Collapse
|
23
|
Zhang ZH, Duan FH, Tian JY, He JY, Yang LY, Zhao H, Zhang S, Liu CS, He LH, Chen M, Chen DM, Du M. Aptamer-Embedded Zirconium-Based Metal-Organic Framework Composites Prepared by De Novo Bio-Inspired Approach with Enhanced Biosensing for Detecting Trace Analytes. ACS Sens 2017; 2:982-989. [PMID: 28750523 DOI: 10.1021/acssensors.7b00236] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A series of Zr-based metal-organic framework (MOF) composites embedded with three kinds of aptamer strands (509-MOF@Apt) were achieved by a one-step de novo synthetic approach. A platform for ultrasensitive detection of analytes, namely, thrombin, kanamycin, and carcinoembryonic antigen (CEA), was also established. Considering the conformational changes caused by the binding interactions between aptamer strands and targeted molecules, the label-free electrochemical aptasensors based on 509-MOF@Apt composites could be developed to detect various target molecules. By comparing the common fabrication approaches of aptasensors, a distinct determination mechanism was presented through analysis of the electrochemical measurements on different interaction behaviors between probe aptamer strands and 509-MOF materials. The optimized aptasensors based on 509-MOFs@Apt demonstrated excellent sensitivity (with the detection limit of 0.40, 0.37, and 0.21 pg mL-1 for CEA, thrombin, and kanamycin, respectively), stability, repeatability, and applicability. This work will provide a new platform for direct and feasible detection in biosensing related to clinical diagnostics and therapeutics, and further, extend the scope of potential applications for MOF materials.
Collapse
Affiliation(s)
- Zhi-Hong Zhang
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Feng-He Duan
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Jia-Yue Tian
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Jun-Ying He
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Long-Yu Yang
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Hui Zhao
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Shuai Zhang
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Chun-Sen Liu
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Ling-Hao He
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Min Chen
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Di-Ming Chen
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Miao Du
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| |
Collapse
|
24
|
Su F, Zhang S, Ji H, Zhao H, Tian JY, Liu CS, Zhang Z, Fang S, Zhu X, Du M. Two-Dimensional Zirconium-Based Metal-Organic Framework Nanosheet Composites Embedded with Au Nanoclusters: A Highly Sensitive Electrochemical Aptasensor toward Detecting Cocaine. ACS Sens 2017; 2:998-1005. [PMID: 28750538 DOI: 10.1021/acssensors.7b00268] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Two-dimensional (2D) zirconium-based metal-organic framework nanosheets embedded with Au nanoclusters (denoted as 2D AuNCs@521-MOF) were prepared via a one-pot method under mild conditions. The optimized 2D AuNCs@521-MOF nanosheets not only possessed high specific surface area, physicochemical stability, and good electrochemical activity but also exhibited strong bioaffinity toward biomolecule-bearing phosphate groups. Consequently, a large amount of cocaine aptamer strands can be immobilized onto the substrate modified by 2D AuNCs@521-MOF nanosheet, further leading to the formation of a constructed biosensitive platform, which can be used to successfully detect cocaine through the specific binding interactions between cocaine and aptamer strands. The results demonstrated that the 2D AuNCs@521-MOF-based aptasensor had high sensitivity for detecting cocaine within the broad concentration range of 0.001-1.0 ng·mL-1 and the low limit of detection of 1.29 pM (0.44 pg·mL-1) and 2.22 pM (0.75 pg·mL-1) as determined by electrochemical impedance spectroscopy and differential pulse voltammetry, respectively. As expected, with the advantages of high selectivity, repeatability, stability, and simple operation, this new strategy is believed to exhibit great potential for simple and convenient detection of cocaine.
Collapse
Affiliation(s)
- Fangfang Su
- Henan Provincial Key Lab of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Shuai Zhang
- Department of Polymer Science & Materials, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China
| | - Hongfei Ji
- Henan Provincial Key Lab of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Hui Zhao
- Henan Provincial Key Lab of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Jia-Yue Tian
- Henan Provincial Key Lab of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Chun-Sen Liu
- Henan Provincial Key Lab of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Zhihong Zhang
- Henan Provincial Key Lab of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Shaoming Fang
- Henan Provincial Key Lab of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Xiuling Zhu
- Department of Polymer Science & Materials, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China
| | - Miao Du
- Henan Provincial Key Lab of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| |
Collapse
|
25
|
Ultrasensitive DNAzyme based amperometric determination of uranyl ion using mesoporous silica nanoparticles loaded with Methylene Blue. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2397-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
26
|
Liu CS, Zhang ZH, Chen M, Zhao H, Duan FH, Chen DM, Wang MH, Zhang S, Du M. Pore modulation of zirconium–organic frameworks for high-efficiency detection of trace proteins. Chem Commun (Camb) 2017; 53:3941-3944. [DOI: 10.1039/c7cc00029d] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This work develops a series of tunable electrochemical aptasensors based on Zr-MOFs with modulated pores, showing promising potential for high-efficiency detection of trace proteins.
Collapse
Affiliation(s)
- Chun-Sen Liu
- Henan Provincial Key Lab of Surface & Interface Science
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- P. R. China
| | - Zhi-Hong Zhang
- Henan Provincial Key Lab of Surface & Interface Science
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- P. R. China
| | - Min Chen
- Henan Provincial Key Lab of Surface & Interface Science
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- P. R. China
| | - Hui Zhao
- Henan Provincial Key Lab of Surface & Interface Science
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- P. R. China
| | - Feng-He Duan
- Henan Provincial Key Lab of Surface & Interface Science
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- P. R. China
| | - Di-Ming Chen
- Henan Provincial Key Lab of Surface & Interface Science
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- P. R. China
| | - Ming-Hua Wang
- Henan Provincial Key Lab of Surface & Interface Science
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- P. R. China
| | - Shuai Zhang
- Henan Provincial Key Lab of Surface & Interface Science
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- P. R. China
| | - Miao Du
- Henan Provincial Key Lab of Surface & Interface Science
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- P. R. China
| |
Collapse
|
27
|
Zhao L, Zhao L, Yang S, Peng X, Wu J, Bian L, Wang X, Pu Q. Use of Pulsed Streaming Potential with a Prepared Cationic Polyelectrolyte Layer to Detect Deposition Kinetics of Graphene Oxide and Consequences of Particle Size Differences. Anal Chem 2016; 88:10437-10444. [PMID: 27696821 DOI: 10.1021/acs.analchem.6b02342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The deposition kinetics of graphene oxide (GO) onto poly(ethylene imine) (PEI) layer was characterized in situ with pulsed streaming potential (SP) measurement, and it was found that the initial rate constant (ki) was dependent on the size of GO with same surface charge density at a fixed concentration under controlled experimental conditions. Assuming the deposition was controlled by diffusion at the initial stage, ki is proportional to Rh-2/3, where Rh is the hydrodynamic radius. By flushing a GO solution through a capillary coated with PEI, the initial change rate of relative SP (dEr/dt) was obtained in 20 s and ki was measured with five different concentrations in about 2 min. Three GO samples of different sizes obtained from the same batch of raw material were characterized with pulsed SP to get ki values, and their sizes were verified with atomic force microscopy and dynamic light scattering. The experimental results are consistent with the predicted effects of the size of NPs on their deposition kinetics.
Collapse
Affiliation(s)
- Lei Zhao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University , Lanzhou, Gansu 730000, China
| | - Lizhi Zhao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University , Lanzhou, Gansu 730000, China
| | - Shenghong Yang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University , Lanzhou, Gansu 730000, China
| | - Xianglu Peng
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University , Lanzhou, Gansu 730000, China
| | - Jing Wu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University , Lanzhou, Gansu 730000, China
| | - Lei Bian
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University , Lanzhou, Gansu 730000, China
| | - Xiayan Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology , Beijing 100124, China
| | - Qiaosheng Pu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University , Lanzhou, Gansu 730000, China
| |
Collapse
|
28
|
Zhang GY, Zhuang YH, Shan D, Su GF, Cosnier S, Zhang XJ. Zirconium-Based Porphyrinic Metal-Organic Framework (PCN-222): Enhanced Photoelectrochemical Response and Its Application for Label-Free Phosphoprotein Detection. Anal Chem 2016; 88:11207-11212. [PMID: 27750417 DOI: 10.1021/acs.analchem.6b03484] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A simple and rapid photoelectrochemical (PEC) sensor was developed for the label-free detection of a phosphoprotein (α-casein) based on a zirconium based porphyrinic metal-organic framework (MOF), PCN-222, which exhibited an enhanced photocurrent response toward dopamine under the O2-saturated aqueous media. In this work, in terms of PEC measurements and cyclic voltammetry, the PEC behaviors of PCN-222 in aqueous media were thoroughly investigated for the first time. Additionally, in the virtue of the steric hindrance effect from the coordination of the phosphate groups and inorganic Zr-O clusters as binding sites in PCN-222, this biosensor showed high sensitivity for detecting α-casein and the limit of detection (LOD) was estimated to be 0.13 μg mL-1. Moreover, the proposed method provides a promising platform for clinic diagnostic and therapeutics.
Collapse
Affiliation(s)
- Guang-Yao Zhang
- Sino-French Laboratory of Biomaterials and Bioanalytical Chemistry, School of Environmental and Biological Engineering, Nanjing University of Science and Technology , Nanjing 210094, China
| | - Yu-Hong Zhuang
- Department of Gynecology and Obstetrics, Zhongda Hospotal, Southeast University , Nanjing 210009, China
| | - Dan Shan
- Sino-French Laboratory of Biomaterials and Bioanalytical Chemistry, School of Environmental and Biological Engineering, Nanjing University of Science and Technology , Nanjing 210094, China
| | - Guo-Fang Su
- Department of Gynecology and Obstetrics, Zhongda Hospotal, Southeast University , Nanjing 210009, China
| | - Serge Cosnier
- University of Grenoble Alpes-CNRS , DCM UMR 5250, F-38000 Grenoble, France
| | - Xue-Ji Zhang
- Sino-French Laboratory of Biomaterials and Bioanalytical Chemistry, School of Environmental and Biological Engineering, Nanjing University of Science and Technology , Nanjing 210094, China
| |
Collapse
|
29
|
Lateral flow biosensor for multiplex detection of nitrofuran metabolites based on functionalized magnetic beads. Anal Bioanal Chem 2016; 408:6703-9. [PMID: 27438720 DOI: 10.1007/s00216-016-9787-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/16/2016] [Accepted: 07/08/2016] [Indexed: 10/21/2022]
Abstract
The use of potential mutagenic nitrofuran antibiotic in food animal production has been banned world-wide. Common methods for nitrofuran detection involve complex extraction procedures. In the present study, magnetic beads functionalized with antibody against nitrofuran derivative were used as both the extraction and color developing media in lateral flow biosensor. Derivatization reagent carboxybenzaldehyde is firstly modified with ractopamine. After reaction with nitrofuran metabolites, the resultant molecule has two functional groups: the metabolite moiety and the ractopamine moiety. Metabolite moiety is captured by the antibody that is coated on magnetic beads. This duplex is then loaded onto biosensor and ractopamine moiety is further captured by the antibody immobilized on the test zone of nitrocellulose membrane. Without tedious organic reagent-based extraction procedure, this biosensor was capable of visually detecting four metabolites simultaneously with a detection limit of 0.1 μg/L. No cross-reactivity was observed in the presence of 50 μg/L interferential components. Graphical abstract Derivatization of nitrofuran metabolites (AHD, AOZ, SEM, or AMOZ) and LFA detection of the derivative products.
Collapse
|
30
|
Forato F, Liu H, Benoit R, Fayon F, Charlier C, Fateh A, Defontaine A, Tellier C, Talham DR, Queffélec C, Bujoli B. Comparison of Zirconium Phosphonate-Modified Surfaces for Immobilizing Phosphopeptides and Phosphate-Tagged Proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:5480-5490. [PMID: 27166821 DOI: 10.1021/acs.langmuir.6b01020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Different routes for preparing zirconium phosphonate-modified surfaces for immobilizing biomolecular probes are compared. Two chemical-modification approaches were explored to form self-assembled monolayers on commercially available primary amine-functionalized slides, and the resulting surfaces were compared to well-characterized zirconium phosphonate monolayer-modified supports prepared using Langmuir-Blodgett methods. When using POCl3 as the amine phosphorylating agent followed by treatment with zirconyl chloride, the result was not a zirconium-phosphonate monolayer, as commonly assumed in the literature, but rather the process gives adsorbed zirconium oxide/hydroxide species and to a lower extent adsorbed zirconium phosphate and/or phosphonate. Reactions giving rise to these products were modeled in homogeneous-phase studies. Nevertheless, each of the three modified surfaces effectively immobilized phosphopeptides and phosphopeptide tags fused to an affinity protein. Unexpectedly, the zirconium oxide/hydroxide modified surface, formed by treating the amine-coated slides with POCl3/Zr(4+), afforded better immobilization of the peptides and proteins and efficient capture of their targets.
Collapse
Affiliation(s)
- Florian Forato
- Chimie et Interdisciplinarité: Synthèse Analyse Modélisation (CEISAM), Université de Nantes, CNRS, UMR 6230 , 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Hao Liu
- Department of Chemistry, University of Florida , Gainesville, Florida 32611-7200, United States
| | - Roland Benoit
- CRMD-CNRS, 1B rue de la férollerie, 45071 Orléans Cedex 2, France
| | - Franck Fayon
- CNRS, CEMHTI UPR3079, Université de Orléans , F-45071 Orléans, France
| | - Cathy Charlier
- Fonctionnalité et Ingénierie des Protéines (UFIP), Université de Nantes, CNRS, UMR 6286 , 2 rue de la Houssinière BP 92208, 44322 Nantes Cedex 3, France
| | - Amina Fateh
- Fonctionnalité et Ingénierie des Protéines (UFIP), Université de Nantes, CNRS, UMR 6286 , 2 rue de la Houssinière BP 92208, 44322 Nantes Cedex 3, France
| | - Alain Defontaine
- Fonctionnalité et Ingénierie des Protéines (UFIP), Université de Nantes, CNRS, UMR 6286 , 2 rue de la Houssinière BP 92208, 44322 Nantes Cedex 3, France
| | - Charles Tellier
- Fonctionnalité et Ingénierie des Protéines (UFIP), Université de Nantes, CNRS, UMR 6286 , 2 rue de la Houssinière BP 92208, 44322 Nantes Cedex 3, France
| | - Daniel R Talham
- Department of Chemistry, University of Florida , Gainesville, Florida 32611-7200, United States
| | - Clémence Queffélec
- Chimie et Interdisciplinarité: Synthèse Analyse Modélisation (CEISAM), Université de Nantes, CNRS, UMR 6230 , 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Bruno Bujoli
- Chimie et Interdisciplinarité: Synthèse Analyse Modélisation (CEISAM), Université de Nantes, CNRS, UMR 6230 , 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| |
Collapse
|
31
|
Zhang GY, Cai C, Cosnier S, Zeng HB, Zhang XJ, Shan D. Zirconium-metalloporphyrin frameworks as a three-in-one platform possessing oxygen nanocage, electron media, and bonding site for electrochemiluminescence protein kinase activity assay. NANOSCALE 2016; 8:11649-11657. [PMID: 27218308 DOI: 10.1039/c6nr01206j] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A Zr-based metal-organic framework with zinc tetrakis(carboxyphenyl)-porphyrin (ZnTCPP) groups (MOF-525-Zn) was utilized to develop a novel electrochemiluminescence (ECL) biosensor for highly sensitive protein kinase activity assay. In this work, in terms of ECL measurements and cyclic voltammetry, the cathodic ECL behaviors of MOF-525-Zn in aqueous media were thoroughly investigated for the first time. The photoelectric active groups ZnTCPP on the MOF-525-Zn frameworks could promote the generation of singlet oxygen ((1)O2) via a series of electrochemical and chemical reactions, resulting in a strong and stable red irradiation at 634 nm. Additionally, the surfactant tetraoctylammonium bromide (TOAB) further facilitated dissolved oxygen to interact with the active sites ZnTCPP of MOF-525-Zn. Furthermore, the inorganic Zr-O clusters of MOF-525-Zn were simultaneously served as the recognition sites of phosphate groups. And then, an ultrasensitive ECL sensor was proposed for protein kinase A (PKA) activity detection with a linear range from 0.01 to 20 U mL(-1) and a sensitive detection limit of 0.005 U mL(-1). This biosensor can also be applied for quantitative kinase inhibitor screening. Finally, it exhibits good performance with high stability and acceptable fabrication reproducibility, which provide a valuable strategy for clinic diagnostics and therapeutics.
Collapse
Affiliation(s)
- Guang-Yao Zhang
- Sino-French Laboratory of Biomaterials and Bioanalytical Chemistry, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Chang Cai
- Sino-French Laboratory of Biomaterials and Bioanalytical Chemistry, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Serge Cosnier
- Univ. Grenoble Alpes, Département de Chimie Moléculaire, UMR CNRS 5250, 570 rue de la Chimie, CS 40700, 38058 Grenoble cedex 9, France
| | - Hai-Bo Zeng
- Institute of Optoelectronics & Nanomaterials, Jiangsu Key Laboratory of Advanced Micro & Nano Materials and Technology, College of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xue-Ji Zhang
- Sino-French Laboratory of Biomaterials and Bioanalytical Chemistry, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Dan Shan
- Sino-French Laboratory of Biomaterials and Bioanalytical Chemistry, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
32
|
Cobalt hexacyanoferrate electrodeposited on electrode with the assistance of laponite: The enhanced electrochemical sensing of captopril. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.03.080] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Wang X, Hu Y, Wei H. Nanozymes in bionanotechnology: from sensing to therapeutics and beyond. Inorg Chem Front 2016. [DOI: 10.1039/c5qi00240k] [Citation(s) in RCA: 430] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanozymes are nanomaterials with enzyme-like characteristics, which have found broad applications in various areas including bionanotechnology and beyond.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Biomedical Engineering
- College of Engineering and Applied Sciences
- Collaborative Innovation Center of Chemistry for Life Sciences
- Nanjing National Laboratory of Microstructures
- Nanjing University
| | - Yihui Hu
- Department of Biomedical Engineering
- College of Engineering and Applied Sciences
- Collaborative Innovation Center of Chemistry for Life Sciences
- Nanjing National Laboratory of Microstructures
- Nanjing University
| | - Hui Wei
- Department of Biomedical Engineering
- College of Engineering and Applied Sciences
- Collaborative Innovation Center of Chemistry for Life Sciences
- Nanjing National Laboratory of Microstructures
- Nanjing University
| |
Collapse
|