1
|
Tunstad SA, Bull ID, Rands SA, Whitney HM. The cuticular wax composition and crystal coverage of leaves and petals differ in a consistent manner between plant species. Open Biol 2024; 14:230430. [PMID: 38806146 PMCID: PMC11293435 DOI: 10.1098/rsob.230430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 05/30/2024] Open
Abstract
Both leaves and petals are covered in a cuticle, which itself contains and is covered by cuticular waxes. The waxes perform various roles in plants' lives, and the cuticular composition of leaves has received much attention. To date, the cuticular composition of petals has been largely ignored. Being the outermost boundary between the plant and the environment, the cuticle is the first point of contact between a flower and a pollinator, yet we know little about how plant-pollinator interactions shape its chemical composition. Here, we investigate the general structure and composition of floral cuticular waxes by analysing the cuticular composition of leaves and petals of 49 plant species, representing 19 orders and 27 families. We show that the flowers of plants from across the phylogenetic range are nearly devoid of wax crystals and that the total wax load of leaves in 90% of the species is higher than that of petals. The proportion of alkanes is higher, and the chain lengths of the aliphatic compounds are shorter in petals than in leaves. We argue these differences are a result of adaptation to the different roles leaves and petals play in plant biology.
Collapse
Affiliation(s)
| | - Ian D. Bull
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol, UK
| | - Sean A. Rands
- School of Biological Sciences, University of Bristol, Bristol, UK
| | | |
Collapse
|
2
|
Saladin S, D'Aronco S, Ingram G, Giorio C. Direct surface analysis mass spectrometry uncovers the vertical distribution of cuticle-associated metabolites in plants. RSC Adv 2023; 13:8487-8495. [PMID: 36926302 PMCID: PMC10012332 DOI: 10.1039/d2ra07166e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/05/2023] [Indexed: 03/17/2023] Open
Abstract
The plant cuticle covers the plant's entire aerial surface and acts as the outermost protective layer. Despite being crucial for the survival of plants, surprisingly little is known about its biosynthesis. Conventional analytical techniques are limited to the isolation and depolymerization of the polyester cutin, which forms the cuticular scaffold. Although this approach allows the elucidation of incorporated cutin monomers, it neglects unincorporated metabolites participating in cutin polymerization. The feasibility of a novel approach is tested for in situ analysis of unpolymerized cuticular metabolites to enhance the understanding of cuticle biology. Intact cotyledons of Brassica napus and Arabidopsis thaliana seedlings are immersed in organic solvents for 60 seconds. Extracts are analyzed using high-resolution direct infusion mass spectrometry. A variety of different diffusion routes of plant metabolites across the cuticle are discussed. The results reveal different feasibilities depending on the research question and cuticle permeabilities in combination with the analyte's polarity. Especially hydrophilic analytes are expected to be co-located in the cell wall beneath the cuticle causing systematic interferences when comparing plants with different cuticle permeabilities. These interferences limit data interpretation to qualitative rather than quantitative comparison. In contrast, quantitative data evaluation is facilitated when analyzing cuticle-specific metabolites or plants with similar cuticle permeabilities.
Collapse
Affiliation(s)
- Siriel Saladin
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Sara D'Aronco
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Gwyneth Ingram
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRAE, UCBL F-69342 Lyon France
| | - Chiara Giorio
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
3
|
Moyroud E, Airoldi CA, Ferria J, Giorio C, Steimer SS, Rudall PJ, Prychid CJ, Halliwell S, Walker JF, Robinson S, Kalberer M, Glover BJ. Cuticle chemistry drives the development of diffraction gratings on the surface of Hibiscus trionum petals. Curr Biol 2022; 32:5323-5334.e6. [PMID: 36423640 DOI: 10.1016/j.cub.2022.10.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/07/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2022]
Abstract
Plants combine both chemical and structural means to appear colorful. We now have an extensive understanding of the metabolic pathways used by flowering plants to synthesize pigments, but the mechanisms remain obscure whereby cells produce microscopic structures sufficiently regular to interfere with light and create an optical effect. Here, we combine transgenic approaches in a novel model system, Hibiscus trionum, with chemical analyses of the cuticle, both in transgenic lines and in different species of Hibiscus, to investigate the formation of a semi-ordered diffraction grating on the petal surface. We show that regulating both cuticle production and epidermal cell growth is insufficient to determine the type of cuticular pattern produced. Instead, the chemical composition of the cuticle plays a crucial role in restricting the formation of diffraction gratings to the pigmented region of the petal. This suggests that buckling, driven by spatiotemporal regulation of cuticle chemistry, could pattern the petal surface at the nanoscale.
Collapse
Affiliation(s)
- Edwige Moyroud
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK; Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK.
| | - Chiara A Airoldi
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Jordan Ferria
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Chiara Giorio
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Sarah S Steimer
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; Department of Environmental Sciences, University of Basel, Klingelbergstrasse 27, 4056 Basel, Switzerland; Department of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
| | | | | | - Shannon Halliwell
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Joseph F Walker
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Sarah Robinson
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Markus Kalberer
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; Department of Environmental Sciences, University of Basel, Klingelbergstrasse 27, 4056 Basel, Switzerland
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
| |
Collapse
|
4
|
Abstract
Plant epidermis are multifunctional surfaces that directly affect how plants interact with animals or microorganisms and influence their ability to harvest or protect from abiotic factors. To do this, plants rely on minuscule structures that confer remarkable properties to their outer layer. These microscopic features emerge from the hierarchical organization of epidermal cells with various shapes and dimensions combined with different elaborations of the cuticle, a protective film that covers plant surfaces. Understanding the properties and functions of those tridimensional elements as well as disentangling the mechanisms that control their formation and spatial distribution warrant a multidisciplinary approach. Here we show how interdisciplinary efforts of coupling modern tools of experimental biology, physics, and chemistry with advanced computational modeling and state-of-the art microscopy are yielding broad new insights into the seemingly arcane patterning processes that sculpt the outer layer of plants.
Collapse
Affiliation(s)
- Lucie Riglet
- The Sainsbury Laboratory, Bateman Street, CB2 1LR, University of Cambridge, Cambridge, UK
| | - Stefano Gatti
- The Sainsbury Laboratory, Bateman Street, CB2 1LR, University of Cambridge, Cambridge, UK
| | - Edwige Moyroud
- The Sainsbury Laboratory, Bateman Street, CB2 1LR, University of Cambridge, Cambridge, UK
- Department of Genetics, Downing Site, CB2 3EJ, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
LC-HRMS Profiling and Antidiabetic, Antioxidant, and Antibacterial Activities of Acacia catechu (L.f.) Willd. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7588711. [PMID: 34435049 PMCID: PMC8380500 DOI: 10.1155/2021/7588711] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023]
Abstract
Acacia catechu (L.f.) Willd is a profoundly used traditional medicinal plant in Asia. Previous studies conducted in this plant are more confined to extract level. Even though bioassay-based studies indicated the true therapeutic potential of this plant, compound annotation was not performed extensively. This research is aimed at assessing the bioactivity of different solvent extracts of the plant followed by annotation of its phytoconstituents. Liquid chromatography equipped with high resolution mass spectrometry (LC-HRMS) is deployed for the identification of secondary metabolites in various crude extracts. On activity level, its ethanolic extract showed the highest inhibition towards α-amylase and α-glucosidase with an IC50 of 67.8 ± 1 μg/mL and 10.3 ± 0.1 μg/mL respectively, inspected through the substrate-based method. On the other hand, the plant extract showed an antioxidant activity of 23.76 ± 1.57 μg/mL, measured through radical scavenging activity. Similarly, ethyl acetate and aqueous extracts of A. catechu showed significant inhibition against Staphylococcus aureus with a zone of inhibition (ZoI) of 13 and 14 mm, respectively. With the LC-HRMS-based dereplication strategy, we have identified 28 secondary metabolites belonging to flavonoid and phenolic categories. Identification of these metabolites from A. catechu and its biological implication also support the community-based usage of this plant and its medicinal value.
Collapse
|
6
|
Antidiabetic, Antimicrobial, and Molecular Profiling of Selected Medicinal Plants. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5510099. [PMID: 34040646 PMCID: PMC8121587 DOI: 10.1155/2021/5510099] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/13/2021] [Indexed: 12/13/2022]
Abstract
Natural products have been the center of attraction ever since they were discovered. Among them, plant-based natural products were popular as analgesics, anti-inflammatory, antidiabetic, and cosmetics and possess widespread biotechnological applications. The use of plant products as cosmetics and therapeutics is deep-rooted in Nepalese society. Although there are few ethnobotanical studies conducted, extensive research of these valuable medicinal plants has not been a priority due to the limitation of technology and infrastructure. Here, we selected 4 traditionally used medicinal plants to examine their bioactive properties and their enzyme inhibition potential. α-Glucosidase and α-amylase inhibitory activities were investigated using an in vitro model followed up by antioxidant and antimicrobial activities. The present study shows that ethyl acetate fraction of Melastoma melabathrium (IC50 9.1 ± 0.3 µg/mL) and water fraction Acacia catechu (IC50 9.0 ± 0.6 µg/mL) exhibit strong α-glucosidase inhibition. Likewise, the highest α-amylase inhibition was shown by crude extracts of Ficus religiosa (IC50 29.2 ± 1.2 µg/mL) and ethyl acetate fractions of Shorea robusta (IC50 69.3 ± 1.1 µg/mL), and the highest radical scavenging activity was shown by F. religiosa with an IC50 67.4 ± 0.6 µg/mL. Furthermore, to identify the metabolites within the fractions, we employed high-resolution mass spectrometry (LC-HRMS) and annotated 17 known metabolites which justify our assumption on activity. Of 4 medicinal plants examined, ethyl acetate fraction of S. robusta, ethyl acetate fraction of M. melabathrium, and water or ethyl acetate fraction of A. catechu extracts illustrated the best activities. With our study, we set up a foundation that provides authentic evidence to the community for use of these traditional plants. The annotated metabolites in this study support earlier experimental evidence towards the inhibition of enzymes. Further study is necessary to explore the clinical efficacy of these secondary molecules, which might be alternatives for the treatment of diabetes and pathogens.
Collapse
|
7
|
Wu B, Chen Z, Xu X, Chen R, Wang S, Xu H, Lin F. Harnessing a Transient Gene Expression System in Nicotiana benthamiana to Explore Plant Agrochemical Transporters. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10030524. [PMID: 33799776 PMCID: PMC7998108 DOI: 10.3390/plants10030524] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 05/20/2023]
Abstract
Functional characterization of plant agrichemical transporters provided an opportunity to discover molecules that have a high mobility in plants and have the potential to increase the amount of pesticides reaching damage sites. Agrobacterium-mediated transient expression in tobacco is simple and fast, and its protein expression efficiency is high; this system is generally used to mediate heterologous gene expression. In this article, transient expression of tobacco nicotine uptake permease (NtNUP1) and rice polyamine uptake transporter 1 (OsPUT1) in Nicotiana benthamiana was performed to investigate whether this system is useful as a platform for studying the interactions between plant transporters and pesticides. The results showed that NtNUP1 increases nicotine uptake in N. benthamiana foliar discs and protoplasts, indicating that this transient gene expression system is feasible for studying gene function. Moreover, yeast expression of OsPUT1 apparently increases methomyl uptake. Overall, this method of constructing a transient gene expression system is useful for improving the efficiency of analyzing the functions of plant heterologous transporter-encoding genes and revealed that this system can be further used to study the functions of transporters and pesticides, especially their interactions.
Collapse
Affiliation(s)
- Bingqi Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (B.W.); (Z.C.); (X.X.); (R.C.); (S.W.)
| | - Zhiting Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (B.W.); (Z.C.); (X.X.); (R.C.); (S.W.)
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China
| | - Xiaohui Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (B.W.); (Z.C.); (X.X.); (R.C.); (S.W.)
| | - Ronghua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (B.W.); (Z.C.); (X.X.); (R.C.); (S.W.)
| | - Siwei Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (B.W.); (Z.C.); (X.X.); (R.C.); (S.W.)
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (B.W.); (Z.C.); (X.X.); (R.C.); (S.W.)
- Correspondence: (H.X.); (F.L.); Tel.: +86-20-8528-5127 (H.X. & F.L.)
| | - Fei Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (B.W.); (Z.C.); (X.X.); (R.C.); (S.W.)
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (H.X.); (F.L.); Tel.: +86-20-8528-5127 (H.X. & F.L.)
| |
Collapse
|
8
|
Tapparo A, Di Marco V, Badocco D, D'Aronco S, Soldà L, Pastore P, Mahon BM, Kalberer M, Giorio C. Formation of metal-organic ligand complexes affects solubility of metals in airborne particles at an urban site in the Po valley. CHEMOSPHERE 2020; 241:125025. [PMID: 31604190 DOI: 10.1016/j.chemosphere.2019.125025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 05/26/2023]
Abstract
Metals in atmospheric aerosols play potentially an important role in human health and ocean primary productivity. However, the lack of knowledge about solubility and speciation of metal ions in the particles or after solubilisation in aqueous media (sea or surface waters, cloud or rain droplets, biological fluids) limits our understanding of the underlying physico-chemical processes. In this work, a wide range of metals, their soluble fractions, and inorganic/organic compounds contained in urban particulate matter (PM) from Padua (Italy) were determined. Metal solubility tests have been performed by dissolving the PM in water and in solutions simulating rain droplet composition. The water-soluble fractions of the metal ions and of the organic compounds having ligand properties have been subjected to a multivariate statistical procedure, in order to elucidate associations among the aqueous concentrations of these PM components in simulated rain droplets. In parallel, a multi-dimensional speciation calculation has been performed to identify the stoichiometry and the amount of metal-ligand complexes theoretically expected in aqueous solutions. Both approaches showed that the solubility and the aqueous speciation of metal ions were differently affected by the presence of inorganic and organic ligands in the PM. The solubility of Al, Cr, and Fe was strongly correlated to the concentrations of oxalic acid, as their oxalate complexes represented the expected dominant species in aqueous solutions. Oxalates of Al represented ∼98% of soluble Al, while oxalates of Cu represented 34-75% of the soluble Cu, and oxalates of Fe represented 76% of soluble Fe. The oxidation state of Fe can strongly impact the speciation picture. If Fe is present as Fe(II) rather than Fe(III), the amount of Cr and Cu complexed with diacids can increase from 75% to 94%, and from 32% to 53%, respectively. For other metals, the solubility depended on the formation of soluble aquo-complexes, hence with a scarce effect of the organic ligands. An iron-oxalate complex was also directly detected in aerosol sample extracts.
Collapse
Affiliation(s)
- Andrea Tapparo
- Department of Chemical Sciences, University of Padua, via Marzolo 1, 35131, Padova, Italy
| | - Valerio Di Marco
- Department of Chemical Sciences, University of Padua, via Marzolo 1, 35131, Padova, Italy
| | - Denis Badocco
- Department of Chemical Sciences, University of Padua, via Marzolo 1, 35131, Padova, Italy
| | - Sara D'Aronco
- Department of Chemical Sciences, University of Padua, via Marzolo 1, 35131, Padova, Italy
| | - Lidia Soldà
- Department of Chemical Sciences, University of Padua, via Marzolo 1, 35131, Padova, Italy
| | - Paolo Pastore
- Department of Chemical Sciences, University of Padua, via Marzolo 1, 35131, Padova, Italy
| | - Brendan M Mahon
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Markus Kalberer
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom; Department of Environmental Sciences, University of Basel, Klingelbergstrasse 27, 4056, Basel, Switzerland
| | - Chiara Giorio
- Department of Chemical Sciences, University of Padua, via Marzolo 1, 35131, Padova, Italy; Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom.
| |
Collapse
|
9
|
Giorio C, Moyroud E, Glover BJ, Kalberer M. Direct Depolymerization Coupled to Liquid Extraction Surface Analysis-High-Resolution Mass Spectrometry for the Characterization of the Surface of Plant Tissues. Anal Chem 2019; 91:8326-8333. [PMID: 31125203 PMCID: PMC6620716 DOI: 10.1021/acs.analchem.9b01094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
cuticle, the outermost layer covering the epidermis of most
aerial organs of land plants, can have a heterogeneous composition
even on the surface of the same organ. The main cuticle component
is the polymer cutin which, depending on its chemical composition
and structure, can have different biophysical properties. In this
study, we introduce a new on-surface depolymerization method coupled
to liquid extraction surface analysis (LESA) high-resolution mass
spectrometry (HRMS) for a fast and spatially resolved chemical characterization
of the cuticle of plant tissues. The method is composed of an on-surface
saponification, followed by extraction with LESA using a chloroform–acetonitrile–water
(49:49:2) mixture and direct HRMS detection. The method is also compared
with LESA-HRMS without prior depolymerization for the analysis of
the surface of the petals of Hibiscus richardsonii flowers, which have a ridged cuticle in the proximal region and
a smooth cuticle in the distal region. We found that on-surface saponification
is effective enough to depolymerize the cutin into its monomeric constituents
thus allowing detection of compounds that were not otherwise accessible
without a depolymerization step. The effect of the depolymerization
procedure was more pronounced for the ridged/proximal cuticle, which
is thicker and richer in epicuticular waxes compared with the cuticle
in the smooth/distal region of the petal.
Collapse
Affiliation(s)
- Chiara Giorio
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom.,Department of Chemical Sciences , University of Padua , via Marzolo 1 , 35131 Padova , Italy
| | - Edwige Moyroud
- The Sainsbury Laboratory , Cambridge University , Bateman Street , Cambridge CB2 1LR , United Kingdom
| | - Beverley J Glover
- Department of Plant Sciences , University of Cambridge , Downing Street , Cambridge CB2 3EA , United Kingdom
| | - Markus Kalberer
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom.,Department of Environmental Sciences , University of Basel , Klingelbergstrasse 27 , 4056 Basel , Switzerland
| |
Collapse
|
10
|
Giorio C, Bortolini C, Kourtchev I, Tapparo A, Bogialli S, Kalberer M. Direct target and non-target analysis of urban aerosol sample extracts using atmospheric pressure photoionisation high-resolution mass spectrometry. CHEMOSPHERE 2019; 224:786-795. [PMID: 30851530 DOI: 10.1016/j.chemosphere.2019.02.151] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous atmospheric pollutants of high concern for public health. In the atmosphere they undergo oxidation, mainly through reactions with ·OH and NOx to produce nitro- and oxygenated (oxy-) derivatives. In this study, we developed a new method for the detection of particle-bound PAHs, nitro-PAHs and oxy-PAHs using direct infusion into an atmospheric pressure photoionisation high-resolution mass spectrometer (APPI-HRMS). Method optimisation was done by testing different source temperatures, gas flow rates, mobile phases and dopants. Samples were extracted with methanol, concentrated by evaporation and directly infused in the APPI source after adding toluene as dopant. Acquisition was performed in both polarity modes. The method was applied to target analysis of seasonal PM2.5 samples from an urban background site in Padua (Italy), in the Po Valley, in which a series of PAHs, nitro- and oxy-PAHs were detected. APPI-HRMS was then used for non-target analysis of seasonal PM2.5 samples and results compared with nano-electrospray ionisation (nanoESI) HRMS. The results showed that, when samples were characterised by highly oxidised organic compounds, including S-containing compounds, like in summer samples, APPI did not bring any additional information with respect to nanoESI in negative polarity (nanoESI(-)). Conversely, for winter samples, APPI(-) could detect a series of aromatic and poly-aromatic compounds, mainly oxidised and nitrogenated aromatics, that were not otherwise detected with nanoESI.
Collapse
Affiliation(s)
- Chiara Giorio
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom; Department of Chemical Sciences, University of Padua, Via Marzolo 1, Padova, 35131, Italy.
| | - Claudio Bortolini
- Department of Chemical Sciences, University of Padua, Via Marzolo 1, Padova, 35131, Italy
| | - Ivan Kourtchev
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Andrea Tapparo
- Department of Chemical Sciences, University of Padua, Via Marzolo 1, Padova, 35131, Italy
| | - Sara Bogialli
- Department of Chemical Sciences, University of Padua, Via Marzolo 1, Padova, 35131, Italy
| | - Markus Kalberer
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom; Department of Environmental Sciences, University of Basel, Klingelbergstrasse 27, 4056, Basel, Switzerland
| |
Collapse
|
11
|
Schulte AJ, Mail M, Hahn LA, Barthlott W. Ultraviolet patterns of flowers revealed in polymer replica - caused by surface architecture. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:459-466. [PMID: 30873316 PMCID: PMC6404398 DOI: 10.3762/bjnano.10.45] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
Angiosperms and their pollinators are adapted in a close co-evolution. For both the plants and pollinators, the functioning of the visual signaling system is highly relevant for survival. As the frequency range of visual perception in many insects extends into the ultraviolet (UV) region, UV-patterns of plants play an important role in the flower-pollinator interaction. It is well known that many flowers contain UV-absorbing pigments in their petal cells, which are localized in vacuoles. However, the contribution of the petal surface microarchitecture to UV-reflection remains uncertain. The correlation between the surface structure and its reflective properties is also relevant for biomimetic applications, for example, in the field of photovoltaics. Based on previous work, we selected three model species with distinct UV-patterns to explore the possible contribution of the surface architecture to the UV-signaling. Using a replication technique, we transferred the petal surface structure onto a transparent polymer. Upon illumination with UV-light, we observed structural-based patterns in the replicas that were surprisingly comparable to those of the original petals. For the first time, this experiment has shown that the parameters of the surface structure lead to an enhancement in the amount of absorbed UV-radiation. Spectrophotometric measurements revealed up to 50% less reflection in the UV-absorbing regions than in the UV-reflecting areas. A comparative characterization of the micromorphology of the UV-reflecting and UV-absorbing areas showed that, in principle, a hierarchical surface structure results in more absorption. Therefore, the results of our experiments demonstrate the structural-based amplification of UV-reflection and provide a starting point for the design of bioinspired antireflective and respectively strongly absorbing surfaces.
Collapse
Affiliation(s)
- Anna J Schulte
- Nees Institute for Biodiversity of Plants, University of Bonn, Venusbergweg 22, D-53115 Bonn, Germany
- Fraunhofer Institute for Technological Trend Analyses INT, Appelsgarten 2, D-53879 Euskirchen, Germany
| | - Matthias Mail
- Nees Institute for Biodiversity of Plants, University of Bonn, Venusbergweg 22, D-53115 Bonn, Germany
- Institute of Crop Science and Resource Conservation (INRES) – Horticultural Science, University of Bonn, Auf dem Hügel 6, D-53121 Bonn, Germany
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, D-76131 Karlsruhe, Germany
| | - Lisa A Hahn
- Nees Institute for Biodiversity of Plants, University of Bonn, Venusbergweg 22, D-53115 Bonn, Germany
| | - Wilhelm Barthlott
- Nees Institute for Biodiversity of Plants, University of Bonn, Venusbergweg 22, D-53115 Bonn, Germany
| |
Collapse
|
12
|
Hood S, Peter T, Blanksby SJ, Marshall DL. Forensic analysis of water-based lubricants using liquid extraction surface analysis high-resolution tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:1629-1636. [PMID: 29964357 DOI: 10.1002/rcm.8220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE Analysis of water-based personal lubricants can provide pivotal information to law enforcement regarding sexual assault allegations, particularly in the absence of biological evidence. Traditional methodology for the extraction and analysis of water-based lubricants is cumbersome, time-consuming, and is often not sufficiently selective or sensitive to fully characterise the wide range of chemical components present within complex formulations. METHODS Liquid extraction surface analysis (LESA) was deployed in combination with high-resolution mass spectrometry (HRMS) and tandem mass spectrometry (MS/MS) to screen a range of water-based lubricants directly from contaminated cotton fabric. Rehydration of the fabric was the only sample preparation required. RESULTS Analysis of ten different water-based lubricants by nano-electrospray ionisation mass spectrometry in negative ion mode enabled discrimination based on the presence or absence of nine compounds, which were identified by comparison of their MS/MS spectra with those of available standards. Lubricants were successfully detected by LESA from stained fabric surfaces; even following extended periods of time between deposition and sampling. CONCLUSIONS A library encompassing the common components of water-based lubricants has been established using HRMS and tandem mass spectrometry to enable identification of personal lubricant formulations and differentiation between suppliers.
Collapse
Affiliation(s)
- Shiona Hood
- Forensic Chemistry Department, Qld Health Forensic and Scientific Services, 39 Kessels Road, Coopers Plains, QLD, AUSTRALIA, 4108
| | - Tony Peter
- Forensic Chemistry Department, Qld Health Forensic and Scientific Services, 39 Kessels Road, Coopers Plains, QLD, AUSTRALIA, 4108
| | - Stephen J Blanksby
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, 2 George Street, Brisbane, QLD, AUSTRALIA, 4000
| | - David L Marshall
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, 2 George Street, Brisbane, QLD, AUSTRALIA, 4000
| |
Collapse
|