1
|
Qi Y, Fu P, Li S, Ma C, Liu C, Volmer DA. Assessment of molecular diversity of lignin products by various ionization techniques and high-resolution mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136573. [PMID: 31955087 DOI: 10.1016/j.scitotenv.2020.136573] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
Lignin is a highly complex, plant-derived natural biomass component, the analysis of which requires significant demands on the analytical platform. Fourier transform ion cyclotron mass spectrometry (FT-ICR MS) has been shown to be able to readily assess the complexity of lignin and lignin degradation products by assigning tens of thousands of compounds with elemental formulae. Nevertheless, many experimental and instrumental parameters introduce discrimination towards certain components, which limits the comprehensive MS analysis. As a result, a complete characterization of the lignome remains a challenge. The present study investigated a degraded lignin sample using FT-ICR MS and compared several atmospheric pressure ionization methods, e.g., electrospray ionization, atmospheric-pressure chemical ionization, and atmospheric-pressure photoionization. The results clearly show that the number of heteroatoms (e.g., N, S, P) in the sample greatly increases the chemical diversity of lignin, while at the same time also providing potentially useful biomarkers. We demonstrate here that FT-ICR MS was able to directly isolate isotopically pure single components from the ultra-complex mixture for subsequent structural analysis, without the time-consuming chromatographic separation. CAPSULE: Various ionization techniques coupled to FT-ICR MS provide a powerful tool to assess the lignome coverage.
Collapse
Affiliation(s)
- Yulin Qi
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, China.
| | - Pingqing Fu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, China.
| | - Siliang Li
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, China
| | - Chao Ma
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, China
| | - Congqiang Liu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, China
| | - Dietrich A Volmer
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
2
|
Coopersmith K, Cody RB, Mannion JM, Hewitt JT, Koby SB, Wellons MS. Rapid paper spray mass spectrometry characterization of uranium and exemplar molecular species. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:1695-1702. [PMID: 31267593 DOI: 10.1002/rcm.8517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 06/09/2023]
Abstract
RATIONALE The ability to detect and quantify the presence of specific inorganic elements and complexes is essential for environmental monitoring and nuclear safeguards applications. In this work, paper spray ionization mass spectrometry was used for the rapid chemical and isotopic characterization of trace inorganic species collected on cotton swipe substrates. The direct analysis of cotton swipes using this ambient ionization technique led to fast sample analysis that retained original chemical information of the source material with minimal sample preparation. METHODS Mass spectra were collected with an atmospheric pressure ionization, high-resolution mass spectrometer for solutions containing uranyl acetate, uranyl chloride, uranyl nitrate, and uranyl tri-n-butylphosphate complexes. Gadolinium nitrate was used as an internal standard for the quantitative analysis of uranium. To demonstrate the ability to characterize inorganic contaminants in the presence of uranium, a multi-element inorganic standard containing U, Bi, Pb, Cd, Fe, and Zn was deposited onto cotton substrates and directly analyzed without purification. RESULTS All elements doped on the cotton substrate were detected with strong signal-to-noise ratios (ca 1000 for UO2 + on multi-element doped swipes) and high integrated intensities (>105 counts) from collection periods of approximately 1 min. Limits of detection were determined to be approximately 94 ng for UO2 + and uranyl acetate through the measurement of ppb level solutions. CONCLUSIONS The rapid analysis of uranium and other inorganic-containing samples while still retaining original chemical information (e.g. uranyl complexation) was demonstrated. Qualitative detection and speciation were achieved in less than 1 min of analysis. For uranium isotopic quantitation, longer accumulations (>15 min) can be sustained to improve the accuracy of minor 235 U isotopic abundance measurements to approximately 1% error.
Collapse
Affiliation(s)
| | | | - Joseph M Mannion
- Savannah River National Laboratory, PO Box A, Aiken, SC, 29808, USA
| | - Joshua T Hewitt
- Savannah River National Laboratory, PO Box A, Aiken, SC, 29808, USA
| | - Samuel B Koby
- Savannah River National Laboratory, PO Box A, Aiken, SC, 29808, USA
| | | |
Collapse
|
3
|
Schwerdt IJ, Brenkmann A, Martinson S, Albrecht BD, Heffernan S, Klosterman MR, Kirkham T, Tasdizen T, McDonald IV LW. Nuclear proliferomics: A new field of study to identify signatures of nuclear materials as demonstrated on alpha-UO3. Talanta 2018; 186:433-444. [DOI: 10.1016/j.talanta.2018.04.092] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 11/28/2022]
|
4
|
Tatosian IJ, Iacovino AC, Van Stipdonk MJ. Collision-induced dissociation of [U VI O 2 (ClO 4 )] + revisited: Production of [U VI O 2 (Cl)] + and subsequent hydrolysis to create [U VI O 2 (OH)] . RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:1085-1091. [PMID: 29645301 DOI: 10.1002/rcm.8135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE In a previous study [Rapid Commun Mass Spectrom. 2004;18:3028-3034], collision-induced dissociation (CID) of [UVI O2 (ClO4 )]+ appeared to be influenced by the high levels of background H2 O in a quadrupole ion trap. The CID of the same species was re-examined here with the goal of determining whether additional, previously obscured dissociation pathways would be revealed under conditions in which the level of background H2 O was lower. METHODS Water- and methanol-coordinated [UVI O2 (ClO4 )]+ precursor ions were generated by electrospray ionization. Multiple-stage tandem mass spectrometry (MSn ) for CID and ion-molecule reaction (IMR) studies was performed using a linear ion trap mass spectrometer. RESULTS Under conditions of low background H2 O, CID of [UVI O2 (ClO4 )]+ generates [UVI O2 (Cl)]+ , presumably by elimination of two O2 molecules. Using low isolation/reaction times, we found that [UVI O2 (Cl)]+ will undergo an IMR with H2 O to generate [UVI O2 (OH)]+ . CONCLUSIONS With lower levels of background H2 O, CID experiments reveal that the intrinsic dissociation pathway for [UVI O2 (ClO4 )]+ leads to [UVI O2 (Cl)]+ , apparently by loss of two O2 molecules. We propose that the results reported in the earlier CID study reflected a two-step process: initial formation of [UVI O2 (Cl)]+ by CID, followed by a very rapid hydrolysis reaction to leave [UVI O2 (OH)]+ .
Collapse
Affiliation(s)
- Irena J Tatosian
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA
| | - Anna C Iacovino
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA
| | - Michael J Van Stipdonk
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA
| |
Collapse
|
5
|
Van Stipdonk MJ, Iacovino A, Tatosian I. Influence of Background H 2O on the Collision-Induced Dissociation Products Generated from [UO 2NO 3]<sup/>. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1416-1424. [PMID: 29654536 DOI: 10.1007/s13361-018-1947-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/18/2018] [Accepted: 03/18/2018] [Indexed: 06/08/2023]
Abstract
Developing a comprehensive understanding of the reactivity of uranium-containing species remains an important goal in areas ranging from the development of nuclear fuel processing methods to studies of the migration and fate of the element in the environment. Electrospray ionization (ESI) is an effective way to generate gas-phase complexes containing uranium for subsequent studies of intrinsic structure and reactivity. Recent experiments by our group have demonstrated that the relatively low levels of residual H2O in a 2-D, linear ion trap (LIT) make it possible to examine fragmentation pathways and reactions not observed in earlier studies conducted with 3-D ion traps (Van Stipdonk et al. J. Am. Soc. Mass Spectrom. 14, 1205-1214, 2003). In the present study, we revisited the dissociation of complexes composed of uranyl nitrate cation [UVIO2(NO3)]+ coordinated by alcohol ligands (methanol and ethanol) using the 2-D LIT. With relatively low levels of background H2O, collision-induced dissociation (CID) of [UVIO2(NO3)]+ primarily creates [UO2(O2)]+ by the ejection of NO. However, CID (using He as collision gas) of [UVIO2(NO3)]+ creates [UO2(H2O)]+ and UO2+ when the 2-D LIT is used with higher levels of background H2O. Based on the results presented here, we propose that product ion spectrum in the previous experiments was the result of a two-step process: initial formation of [UVIO2(O2)]+ followed by rapid exchange of O2 for H2O by ion-molecule reaction. Our experiments illustrate the impact of residual H2O in ion trap instruments on the product ions generated by CID and provide a more accurate description of the intrinsic dissociation pathway for [UVIO2(NO3)]+. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Michael J Van Stipdonk
- Department of Chemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA.
| | - Anna Iacovino
- Department of Chemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA
| | - Irena Tatosian
- Department of Chemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA
| |
Collapse
|
6
|
Guilbaud P, Berthon L, Louisfrema W, Diat O, Zorz N. Determination of the Structures of Uranyl-Tri-n-butyl-Phosphate Aggregates by Coupling Experimental Results with Molecular Dynamic Simulations. Chemistry 2017; 23:16660-16670. [PMID: 28971546 DOI: 10.1002/chem.201703967] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Indexed: 11/10/2022]
Abstract
The complex structure of a plutonium uranium refining by extraction (PUREX) process organic phase was characterized by combining results from experiments and molecular dynamics simulations. For the first time, the molecular interactions between tri-n-butyl phosphate (TBP) and the extracted solutes, as well as TBP aggregation after the extraction of water and/or uranyl nitrate, were described and analyzed concomitantly. Coupling molecular dynamics simulations with small- and wide-angle X-ray scattering (SWAXS) experiments can lead to simulated organic solutions that are representative of the experimental ones, even for high extractant and solute concentrations. Furthermore, this coupling is well adapted for the interpretation of SWAXS experiments without preliminary hypothesis on the size or shape of aggregates. The results link together previous literature studies obtained for each level of depiction separately (complexation or aggregation). Without uranium, or at low metal concentration, almost no aggregation was observed. At high uranium concentration, organic phases contain small [UO2 (NO3 )2 (TBP)2 ]n polymetallic aggregates (with n=2 to 4), in which the 1:2 U/TBP stoichiometry is preserved.
Collapse
Affiliation(s)
- Phillipe Guilbaud
- CEA, Nuclear Energy Division, Research Department, on Mining and Fuel Recycling Processes (SPDS/LILA), BP17171, 30207, Bagnols-sur-Cèze, France
| | - Laurence Berthon
- CEA, Nuclear Energy Division, Research Department, on Mining and Fuel Recycling Processes (SPDS/LILA), BP17171, 30207, Bagnols-sur-Cèze, France
| | - Wilfried Louisfrema
- CEA, Nuclear Energy Division, Research Department, on Mining and Fuel Recycling Processes (SPDS/LILA), BP17171, 30207, Bagnols-sur-Cèze, France
| | - Olivier Diat
- Institut de Chimie Séparative de Marcoule (ICSM/ UMR 5257), CEA/CNRS/UM/ENSCM, BP17171, 30206, Bagnols-sur-Cèze, France
| | - Nicole Zorz
- CEA, Nuclear Energy Division, Research Department, on Mining and Fuel Recycling Processes (SPDS/LILA), BP17171, 30207, Bagnols-sur-Cèze, France
| |
Collapse
|
7
|
Espinosa MS, Servant R, Babay PA. Study of metal–ligand species by ESI-MS: The case of La, Nd and Th complexes with EDTA. Microchem J 2016. [DOI: 10.1016/j.microc.2016.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|