1
|
Ma Z, Zhang Y, Yuan T, Fan Y, Wang X, Xue Z, Zhong A, Xu J. Tailoring crystal facets of metal-organic frameworks to enhance sensing performance for aromatic vapors detection. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136859. [PMID: 39721470 DOI: 10.1016/j.jhazmat.2024.136859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024]
Abstract
It is well known that metals and metal oxides with different crystal facets exhibit varying sensitivity in gas sensors, but this strategy is rarely used in metal-organic frameworks (MOFs). Herein, we proved for the first time that Cu metal-organic with high energy crystal facets (Cu-MOF-74-300) shows a much higher sensitivity than the low energy crystal facets (Cu-MOF-74-110), with a up to 2 times response more than Cu-MOF-74-110 and ultra-low limit of detection (LOD) of 68 ppb to toluene vapors. In addition, this strategy was further demonstrated on MOF-14 and HKUST-1, which are also Cu-centered and exhibit clear recognition effects on benzene and xylene, respectively. Furthermore, the Cu-MOF-74-300 shows high selectivity (92 %) and excellent stability, with a minor reduction in response of less than 1.9 % after 6 months. Additionally, the sensitive mechanism is explored by DFT and GCMC methods. The simulations reveal that Cu-MOF-74 includes two adsorption sites, one is Cu site with adsorption enthalpy (ΔH) of -59.04 kJ/mol, another is the benzene ring site (ΔH is -67.50 kJ/mol) in the ligand. The difference in charge densities reveal that the Cu2+ and benzene ring on the surface of Cu-MOF-74-300 enables synergistic sensing, leading to more electron transfer in toluene than that of Cu-MOF-74-110 (only benzene ring site). Finally, based on the temperature-varying experiments, the experimental adsorption energy (-51.35 kJ/mol) was obtained by calculations. Combined quasi-in-situ XPS, implying Cu is the critical role to the improvement of Cu-MOF-74-300 sensitivity to toluene.
Collapse
Affiliation(s)
- Zhiheng Ma
- NEST Lab., Department of Chemistry, College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yu Zhang
- NEST Lab., Department of Chemistry, College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Tongwei Yuan
- NEST Lab., Department of Chemistry, College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yu Fan
- NEST Lab., Department of Chemistry, College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Xiaowu Wang
- NEST Lab., Department of Chemistry, College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Zhenggang Xue
- NEST Lab., Department of Chemistry, College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Aihua Zhong
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Jiaqiang Xu
- NEST Lab., Department of Chemistry, College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| |
Collapse
|
2
|
Zhang Z, Yi C, Chen T, Zhao Y, Zhang Y, Jin H. Solid-State Gas Sensors with Ni-Based Sensing Materials for Highly Selective Detecting NOx. SENSORS (BASEL, SWITZERLAND) 2024; 24:7378. [PMID: 39599154 PMCID: PMC11598561 DOI: 10.3390/s24227378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Precise monitoring of NOx concentrations in nitric oxide delivery systems is crucial to ensure the safety and well-being of patients undergoing inhaled nitric oxide (iNO) therapy for pulmonary arterial hypertension. Currently, NOx sensing in commercialized iNO instruments predominantly relies on chemiluminescence sensors, which not only drives up costs but also limits their portability. Herein, we developed solid-state gas sensors utilizing Ni-based sensing materials for effectively tracking the levels of NO and NO2 in the NO delivery system. These sensors comprised of NiO-SE or (NiFe2O4 + 30 wt.% Fe2O3)-SE vs. Mn-based RE demonstrated high selectivity toward 100 ppm NO under the interference of 10 ppm NO2 or 3 ppm NO2 under the interference of 100 ppm NO, respectively. Meanwhile, excellent stability, repeatability, and humidity resistance were also verified for the proposed sensors. Sensing mechanisms were thoroughly investigated through assessments of adsorption capabilities and electrochemical reactivity. It turns out that the superior electrochemical reactivity of NiO toward NO, alongside the NO2 favorable adsorption characteristics of (NiFe2O4 + 30 wt.% Fe2O3), is the primary reason for the high selectivity to NOx. These findings indicate a bright future for the application of these NOx sensors in innovative iNO treatment technologies.
Collapse
Affiliation(s)
- Zhenghu Zhang
- Institute of Micro-Nano Science and Technology & National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (Z.Z.); (C.Y.)
| | - Chenghan Yi
- Institute of Micro-Nano Science and Technology & National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (Z.Z.); (C.Y.)
| | - Tao Chen
- Nanjing Novlead Biotechnology Co., Ltd., Nanjing 211800, China; (T.C.); (Y.Z.); (Y.Z.)
| | - Yangbo Zhao
- Nanjing Novlead Biotechnology Co., Ltd., Nanjing 211800, China; (T.C.); (Y.Z.); (Y.Z.)
| | - Yanyu Zhang
- Nanjing Novlead Biotechnology Co., Ltd., Nanjing 211800, China; (T.C.); (Y.Z.); (Y.Z.)
| | - Han Jin
- Institute of Micro-Nano Science and Technology & National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (Z.Z.); (C.Y.)
- Medical School, Henan University, Kaifeng 475004, China
- National Engineering Research Center for Nanotechnology, Shanghai 200241, China
- Wuzhen Laboratory, Tongxiang 314500, China
| |
Collapse
|
3
|
Lewis DP, Schultze KP, Vandergriff EF, Gilliland WM. A Low-Cost Method for Producing User-Specified Concentrations of VOCs. Anal Chem 2024; 96:15846-15851. [PMID: 39316778 DOI: 10.1021/acs.analchem.4c02682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Monitoring volatile organic compounds is critical to mitigate the risks they pose to human health and the environment. Developing technologies for detection of VOCs requires methods to produce the desired concentrations for benchmarking. Herein, we present a simple, inexpensive, and flexible platform capable of producing user-specified concentrations of a gas-phase analyte for the purpose of fine-tuning and benchmarking VOC detection technologies. This technology, the gas-phase dilution apparatus (GPDA), is built around two mass flow controllers that mix precise flows of the analyte and dilution gas. We used a custom APPI-MS configuration as well as a commercial photoionization detector to detect benzene and toluene. These two detection methods were employed to assess the linear output of concentrations over a combined range of 1-20 000 ppbV which yielded average R2 values of 0.9980 and 0.9988 for benzene and toluene, respectively. Additionally, output stability was assessed at 10 ppbV, 1 ppmV, and 5 ppmV of benzene and toluene. Six measurements were averaged over the course of 30 min, and RSDs were below 2% for all three concentrations of both compounds. These results suggest that GPDA is capable of producing precise and repeatable concentrations of gas-phase analytes.
Collapse
Affiliation(s)
- D P Lewis
- Furman University, Greenville, South Carolina 29613, United States
| | - K P Schultze
- 908 Devices, Incorporated, Boston, Massachusetts 02210, United States
| | - E F Vandergriff
- Furman University, Greenville, South Carolina 29613, United States
| | - W M Gilliland
- Furman University, Greenville, South Carolina 29613, United States
| |
Collapse
|
4
|
Han S, Qiao X, Zhao Q, Guo J, Yu D, Xu J, Zhuang S, Wang D, Fang X, Zhang D. Ultrafast and Parts-per-Billion-Level MEMS Gas Sensors by Hetero-Interface Engineering of 2D/2D Cu-TCPP@ZnIn 2S 4 with Enriched Surface Sulfur Vacancies. NANO LETTERS 2024. [PMID: 38842083 DOI: 10.1021/acs.nanolett.4c01555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The primary challenge for resonant-gravimetric gas sensors is the synchronous improvement of the sensitivity and response time, which is restricted by low adsorption capacity and slow mass transfer in the sensing process and remains a great challenge. In this study, a novel 2D/2D Cu-TCPP@ZnIn2S4 composite is successfully constructed, in which Cu-TCPP MOF is used as a core substrate for the growth of 2D ultrathin ZnIn2S4 nanosheets with well-defined {0001} crystalline facets. The Cu-TCPP@ZnIn2S4 sensor exhibited high sensitivity (1.5 Hz@50 and 2.3 Hz@100 ppb), limit of detection (LOD: 50 ppb), and ultrafast (9 s @500 ppb) detection of triethylamine (TEA), which is the lowest LOD and the fastest sensor among the reported TEA sensors at room temperature, tackling the bottleneck for the ultrafast detection of the resonant-gravimetric sensor. These above results provide an innovative and easily achievable pathway for the synthesis of heterogeneous structure sensing materials.
Collapse
Affiliation(s)
- Sancan Han
- School of Materials and Chemistry, School of Optoelectronic and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Xianyu Qiao
- School of Materials and Chemistry, School of Optoelectronic and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Qingqiang Zhao
- School of Materials and Chemistry, School of Optoelectronic and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Jie Guo
- School of Materials and Chemistry, School of Optoelectronic and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Dechao Yu
- School of Materials and Chemistry, School of Optoelectronic and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Jingcheng Xu
- School of Materials and Chemistry, School of Optoelectronic and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Songlin Zhuang
- School of Materials and Chemistry, School of Optoelectronic and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Ding Wang
- School of Materials and Chemistry, School of Optoelectronic and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Xiaosheng Fang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, People's Republic of China
| | - Dawei Zhang
- School of Materials and Chemistry, School of Optoelectronic and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| |
Collapse
|
5
|
Ma Z, Zhang Y, Xue Z, Fan Y, Wang L, Wang H, Zhong A, Xu J. Thermodynamically and Kinetically Enhanced Benzene Vapor Sensor Based on the Cu-TCPP-Cu MOF with Extremely Low Limit of Detection. ACS Sens 2024; 9:1906-1915. [PMID: 38565844 DOI: 10.1021/acssensors.3c02659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
As a carcinogenic and highly neurotoxic hazardous gas, benzene vapor is particularly difficult to be distinguished in BTEX (benzene, toluene, ethylbenzene, xylene) atmosphere and be detected in low concentrations due to its chemical inertness. Herein, we develop a depth-related pore structure in Cu-TCPP-Cu to thermodynamically and kinetically enhance the adsorption of benzene vapor and realize the detection of ultralow-temperature benzene gas. We find that the in-plane π electronic nature and proper pore sizes in Cu-TCPP-Cu can selectively induce the adsorption and diffusion of BTEX. Interestingly, the theoretical calculations (including density functional theory (DFT) and grand canonical Monte Carlo (GCMC) simulations) exhibit that benzene molecules are preferred to adsorb and array as a consecutive arrangement mode in the Cu-TCPP-Cu pore, while the TEX (toluene, ethylbenzene, xylene) dominate the jumping arrangement model. The differences in distribution behaviors can allow adsorption and diffusion of more benzene molecules within limited room. Furthermore, the optimal pore-depth range (60-65 nm) of Cu-TCPP-Cu allows more exposure of active sites and hinders the gas-blocking process. The optimized sensor exhibits ultrahigh sensitivity to benzene vapor (155 Hz/μg@1 ppm), fast response time (less than 10 s), extremely low limit of detection (65 ppb), and excellent selectivity (83%). Our research thus provides a fundamental understanding to design and optimize two-dimensional metal-organic framework (MOF)-based gas sensors.
Collapse
Affiliation(s)
- Zhiheng Ma
- NEST Lab, Department of Chemistry, College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yu Zhang
- NEST Lab, Department of Chemistry, College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Zhenggang Xue
- NEST Lab, Department of Chemistry, College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yu Fan
- NEST Lab, Department of Chemistry, College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Lingli Wang
- NEST Lab, Department of Chemistry, College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - He Wang
- NEST Lab, Department of Chemistry, College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Aihua Zhong
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jiaqiang Xu
- NEST Lab, Department of Chemistry, College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
6
|
Li D, Yadav A, Zhou H, Roy K, Thanasekaran P, Lee C. Advances and Applications of Metal-Organic Frameworks (MOFs) in Emerging Technologies: A Comprehensive Review. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300244. [PMID: 38356684 PMCID: PMC10862192 DOI: 10.1002/gch2.202300244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/19/2023] [Indexed: 02/16/2024]
Abstract
Metal-organic frameworks (MOFs) that are the wonder material of the 21st century consist of metal ions/clusters coordinated to organic ligands to form one- or more-dimensional porous structures with unprecedented chemical and structural tunability, exceptional thermal stability, ultrahigh porosity, and a large surface area, making them an ideal candidate for numerous potential applications. In this work, the recent progress in the design and synthetic approaches of MOFs and explore their potential applications in the fields of gas storage and separation, catalysis, magnetism, drug delivery, chemical/biosensing, supercapacitors, rechargeable batteries and self-powered wearable sensors based on piezoelectric and triboelectric nanogenerators are summarized. Lastly, this work identifies present challenges and outlines future opportunities in this field, which can provide valuable references.
Collapse
Affiliation(s)
- Dongxiao Li
- Department of Electrical and Computer EngineeringNational University of SingaporeSingapore117583Singapore
- Center for Intelligent Sensors and MEMSNational University of SingaporeSingapore117608Singapore
| | - Anurag Yadav
- Department of ChemistryPondicherry UniversityPuducherry605014India
| | - Hong Zhou
- Department of Electrical and Computer EngineeringNational University of SingaporeSingapore117583Singapore
- Center for Intelligent Sensors and MEMSNational University of SingaporeSingapore117608Singapore
| | - Kaustav Roy
- Department of Electrical and Computer EngineeringNational University of SingaporeSingapore117583Singapore
- Center for Intelligent Sensors and MEMSNational University of SingaporeSingapore117608Singapore
| | | | - Chengkuo Lee
- Department of Electrical and Computer EngineeringNational University of SingaporeSingapore117583Singapore
- Center for Intelligent Sensors and MEMSNational University of SingaporeSingapore117608Singapore
| |
Collapse
|
7
|
Zhang X, Tian B, Ma Z, Wang H, Cheng Z, Xu J. Microgravimetric Modeling-A New Method for Extracting Adsorption Parameters of Functionalized MIL-101(Cr). NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2072. [PMID: 37513083 PMCID: PMC10386390 DOI: 10.3390/nano13142072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
As a volatile air pollutant, formaldehyde can enter people's living environment through interior decoration, furniture and paint, causing serious harm to human health. Therefore, it is necessary to develop a sensor for the real-time detection of formaldehyde in low concentrations. According to the chemical interaction between amino groups and formaldehyde, a MIL-101(Cr) aminated-material-based formaldehyde cantilever sensor was prepared, of which ethylenediamine- functionalized MIL-101(Cr) named ED-MIL-101(Cr)) showed the best gas sensing performance. Using quasi-in situ infrared spectroscopy, ED-MIL-101(Cr) was found bound to formaldehyde through a Schiff base. The adsorption enthalpy of formaldehyde-bound ED-MIL-101(Cr) was -52.6 kJ/mol, which corresponds to weak chemical adsorption, so the material showed good selectivity. In addition, ED-MIL-101(Cr) has the most active sites, so its response value to formaldehyde is larger and it takes longer to reach saturation adsorption than bare MIL-101(Cr). Through the research on the gas sensing performance of functionalized MIL-101(Cr) material, we found that it has a strong application potential in the field of formaldehyde monitoring, and the material performance can be quantitatively and accurately evaluated through combining calculation and experimentation for understanding the gas sensing mechanism.
Collapse
Affiliation(s)
- Xu Zhang
- NEST Laboratory, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Bo Tian
- NEST Laboratory, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Zhiheng Ma
- NEST Laboratory, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - He Wang
- NEST Laboratory, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Zhixuan Cheng
- NEST Laboratory, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Jiaqiang Xu
- NEST Laboratory, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|
8
|
Ma Z, Yuan T, Fan Y, Chen Y, Bai Y, Xu J. Mesoporous-Structure MOF-14-Based QCM p-Xylene Gas Sensor. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111743. [PMID: 37299647 DOI: 10.3390/nano13111743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023]
Abstract
In this work, a facile synthesis method was adopted to synthesize MOF-14 with mesoporous structure. The physical properties of the samples were characterized by PXRD, FESEM, TEM and FT-IR spectrometry. By coating the mesoporous-structure MOF-14 on the surface of a quartz crystal microbalance (QCM), the fabricated gravimetric sensor exhibits high sensitivity to p-toluene vapor even at trace levels. Additionally, the limit of detection (LOD) of the sensor obtained experimentally is lower than 100 ppb, and the theoretical detection limit is 57 ppb. Furthermore, good gas selectivity and fast response (15 s) and recovery (20 s) abilities are also illustrated along with high sensitivity. These sensing data indicate the excellent performance of the fabricated mesoporous-structure MOF-14-based p-xylene QCM sensor. On the basis of temperature-varying experiments, an adsorption enthalpy of -59.88 kJ/mol was obtained, implying the existence of moderate and reversible chemisorption between MOF-14 and p-xylene molecules. This is the crucial factor that endows MOF-14 with exceptional p-xylene-sensing abilities. This work has proved that MOF materials such as MOF-14 are promising in gravimetric-type gas-sensing applications and worthy of future study.
Collapse
Affiliation(s)
- Zhiheng Ma
- NEST Lab, Department of Physics, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Tongwei Yuan
- NEST Lab, Department of Physics, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Yu Fan
- NEST Lab, Department of Physics, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Yang Chen
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yueling Bai
- NEST Lab, Department of Physics, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Jiaqiang Xu
- NEST Lab, Department of Physics, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|
9
|
Ma Z, Yuan T, Fan Y, Chen Y, Bai Y, Cheng Z, Xu J. New Application of Quartz Crystal Microbalance: A Minimalist Strategy to Extract Adsorption Enthalpy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4035. [PMID: 36432320 PMCID: PMC9693904 DOI: 10.3390/nano12224035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The capture and separation of CO2 is an important means to solve the problem of global warming. MOFs (metal-organic frameworks) are considered ideal candidates for capturing CO2, where the adsorption enthalpy is a crucial indicator for the screening of materials. For this purpose, we propose a new minimalist solution using QCM (quartz crystal microbalance) to extract the CO2 adsorption enthalpy on MOFs. Three kinds of MOFs with different properties, sizes and morphologies were employed to study the adsorption enthalpy of CO2 using a QCM platform and a commercial gas sorption analyzer. A Gaussian simulation calculation and previously data reported were used for comparison. It was found that the measuring errors were between 5.4% and 6.8%, proving the reliability and versatility of our new method. This low-cost, easy-to-use, and high-accuracy method will provide a rapid screening solution for CO2 adsorption materials, and it has potential in the evaluation of the adsorption of other gases.
Collapse
|
10
|
Huang X, Gong Z, Lv Y. Advances in Metal-Organic Frameworks-based Gas Sensors for Hazardous Substances. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Zhang X, Li T, Wei J, Tian GH, Cao QL, Wang YJ, Hou WL, Zhou WF, Zhang ZW, Hu H, Zhang YZ, Zhang DS, Li Q, Geng L. Interpenetrated metal-organic frameworks with enhanced photoluminescence for selective recognition of m-xylene from xylene isomers. Dalton Trans 2022; 51:4790-4797. [PMID: 35253813 DOI: 10.1039/d1dt03968g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Two novel luminescent metal-organic frameworks (MOFs), [Zn3(TCA)2(BPB)2]n (DZU-101, where H3TCA = 4,4',4''-tricarboxyltriphenylamine and BPB = 1,4-bis(pyrid-4-yl)benzene) and [Zn3(TCA)2(BPB)DMA]n (DZU-102), based on the same ligands and metal ions were synthesized by regulating the amount of water in the solvothermal reaction system. Structural analyses show that the two MOFs have pillar-layered frameworks with Zn3 clusters connected by the TCA3- and BPB ligands. Interestingly, DZU-102 possessed a two-fold interpenetrated framework distinct from the individual network of DZU-101. As a result, DZU-102 showed a visual fluorescence color change from chartreuse to azure in m-xylene, while the fluorescence color was turquoise in p-/o-xylene with no change. Furthermore, compared with p/o-xylene, the fluorescence emission peak of DZU-102 in m-xylene suspension produced an obvious blue shift. Moreover, selective fluorescence sensing experiments were also carried out, which demonstrated that the degree of peak shift was related to the concentration of m-xylene, indicating the potential application of DZU-102 in fluorescence sensing of m-xylene from xylene isomers and further revealed the application of structural interpenetration for luminescence tuning of MOFs.
Collapse
Affiliation(s)
- Xiuling Zhang
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China. .,School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China.,School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Tingting Li
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China. .,School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Jiao Wei
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China.
| | - Gao-Hua Tian
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China.
| | - Qing-Ling Cao
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China.
| | - Yu-Jie Wang
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China.
| | - Wen-Li Hou
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China.
| | - Wen-Feng Zhou
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China. .,School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Zhen-Wei Zhang
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China. .,School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Hui Hu
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China.
| | - Yong-Zheng Zhang
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China.
| | - Da-Shuai Zhang
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China. .,School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Qing Li
- School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Longlong Geng
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China. .,School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| |
Collapse
|
12
|
Yuan H, Li N, Fan W, Cai H, Zhao D. Metal-Organic Framework Based Gas Sensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104374. [PMID: 34939370 PMCID: PMC8867161 DOI: 10.1002/advs.202104374] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/16/2021] [Indexed: 05/08/2023]
Abstract
The ever-increasing concerns over indoor/outdoor air quality, industrial gas leakage, food freshness, and medical diagnosis require miniaturized gas sensors with excellent sensitivity, selectivity, stability, low power consumption, cost-effectiveness, and long lifetime. Metal-organic frameworks (MOFs), featuring structural diversity, large specific surface area, controllable pore size/geometry, and host-guest interactions, hold great promises for fabricating various MOF-based devices for diverse applications including gas sensing. Tremendous progress has been made in the past decade on the fabrication of MOF-based sensors with elevated sensitivity and selectivity toward various analytes due to their preconcentrating and molecule-sieving effects. Although several reviews have recently summarized different aspects of this field, a comprehensive review focusing on MOF-based gas sensors is absent. In this review, the latest advance of MOF-based gas sensors relying on different transduction mechanisms, for example, chemiresistive, capacitive/impedimetric, field-effect transistor or Kelvin probe-based, mass-sensitive, and optical ones are comprehensively summarized. The latest progress for making large-area MOF films essential to the mass-production of relevant gas sensors is also included. The structural and compositional features of MOFs are intentionally correlated with the sensing performance. Challenges and opportunities for the further development and practical applications of MOF-based gas sensors are also given.
Collapse
Affiliation(s)
- Hongye Yuan
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
- State Key Laboratory for Mechanical Behavior of MaterialsShaanxi International Research Center for Soft MatterSchool of Materials Science and EngineeringXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Nanxi Li
- Institute of MicroelectronicsA*STAR (Agency for Science, Technology and Research)2 Fusionopolis Way, #08‐02 Innovis TowerSingapore138634Singapore
| | - Weidong Fan
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
| | - Hong Cai
- Institute of MicroelectronicsA*STAR (Agency for Science, Technology and Research)2 Fusionopolis Way, #08‐02 Innovis TowerSingapore138634Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
| |
Collapse
|
13
|
Yan X, Qu H, Chang Y, Duan X. Application of Metal-Organic Frameworks in Gas Pre-concentration, Pre-separation and Detection. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22030134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Qin P, Okur S, Li C, Chandresh A, Mutruc D, Hecht S, Heinke L. A photoprogrammable electronic nose with switchable selectivity for VOCs using MOF films. Chem Sci 2021; 12:15700-15709. [PMID: 35003601 PMCID: PMC8654041 DOI: 10.1039/d1sc05249g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/12/2021] [Indexed: 02/02/2023] Open
Abstract
Advanced analytical applications require smart materials and sensor systems that are able to adapt or be configured to specific tasks. Based on reversible photochemistry in nanoporous materials, we present a sensor array with a selectivity that is reversibly controlled by light irradiation. The active material of the sensor array, or electronic nose (e-nose), is based on metal-organic frameworks (MOFs) with photoresponsive fluorinated azobenzene groups that can be optically switched between their trans and cis state. By irradiation with light of different wavelengths, the trans-cis ratio can be modulated. Here we use four trans-cis values as defined states and employ a four-channel quartz-crystal microbalance for gravimetrically monitoring the molecular uptake by the MOF films. We apply the photoprogrammable e-nose to the sensing of different volatile organic compounds (VOCs) and analyze the sensor array data with simple machine-learning algorithms. When the sensor array is in a state with all sensors either in the same trans- or cis-rich state, cross-sensitivity between the analytes occurs and the classification accuracy is not ideal. Remarkably, the VOC molecules between which the sensor array shows cross-sensitivity vary by switching the entire sensor array from trans to cis. By selectively programming the e-nose with light of different colors, each sensor exhibits a different isomer ratio and thus a different VOC affinity, based on the polarity difference between the trans- and cis-azobenzenes. In such photoprogrammed state, the cross-sensitivity is reduced and the selectivity is enhanced, so that the e-nose can perfectly identify the tested VOCs. This work demonstrates for the first time the potential of photoswitchable and thus optically configurable materials as active sensing material in an e-nose for intelligent molecular sensing. The concept is not limited to QCM-based azobenzene-MOF sensors and can also be applied to diverse sensing materials and photoswitches.
Collapse
Affiliation(s)
- Peng Qin
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Salih Okur
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Chun Li
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Abhinav Chandresh
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Dragos Mutruc
- Humboldt-Universität zu Berlin, Department of Chemistry & IRIS Adlershof Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Stefan Hecht
- Humboldt-Universität zu Berlin, Department of Chemistry & IRIS Adlershof Brook-Taylor-Strasse 2 12489 Berlin Germany
- DWI - Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52074 Aachen Germany
- RWTH Aachen University, Institute of Technical and Macromolecular Chemistry Worringer Weg 2 52074 Aachen Germany
| | - Lars Heinke
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
15
|
Yang J, Wang D, Li M, Yu H, Xu P, Li X. Anatase porous titania nanosheets for resonant-gravimetric detection of ppb-level NO 2 at room-temperature. Analyst 2021; 146:4042-4048. [PMID: 34047323 DOI: 10.1039/d1an00424g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The trace-level detection of harmful NO2 gas at room-temperature is very important for environmental protection and public health. This paper reports the resonant-gravimetric detection of ppb-level NO2 at room-temperature using two-dimensional porous TiO2 nanosheets (PTNSs) as highly active sensing materials. They are synthesized by a facile high-temperature calcination approach based on a graphene oxide self-sacrificial template. The PTNS sample prepared at 500 °C (TiO2-500 °C) show an anatase structure, while the sample prepared at 800 °C (TiO2-800 °C) contains an impurity rutile phase. By loading pure anatase PTNSs onto resonant microcantilevers, the sensors exhibit high sensitivity to NO2 gas with a limit of detection as low as 15 ppb. Compared with the TiO2-800 °C sample, the much higher sensitivity of the TiO2-500 °C sample can be attributed to the bigger adsorption enthalpy (-ΔH°) of pure anatase TiO2 to NO2 gas molecules (21.7 and 57.8 kJ mol-1, respectively). Density functional theory calculations further demonstrate that the existence of the rutile impurity phase in the TiO2-800 °C sample results in its significantly decreased adsorption activity to NO2. This work approves the great application potential of anatase PTNSs for the highly sensitive resonant-gravimetric detection of NO2 gas at room-temperature.
Collapse
Affiliation(s)
- Jialin Yang
- School of Material Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China and State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Ding Wang
- School of Material Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ming Li
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China. and School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haitao Yu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Pengcheng Xu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China. and School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinxin Li
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China. and School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Jia H, Xu P, Li X. Integrated Resonant Micro/Nano Gravimetric Sensors for Bio/Chemical Detection in Air and Liquid. MICROMACHINES 2021; 12:mi12060645. [PMID: 34073049 PMCID: PMC8227694 DOI: 10.3390/mi12060645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
Resonant micro/nanoelectromechanical systems (MEMS/NEMS) with on-chip integrated excitation and readout components, exhibit exquisite gravimetric sensitivities which have greatly advanced the bio/chemical sensor technologies in the past two decades. This paper reviews the development of integrated MEMS/NEMS resonators for bio/chemical sensing applications mainly in air and liquid. Different vibrational modes (bending, torsional, in-plane, and extensional modes) have been exploited to enhance the quality (Q) factors and mass sensing performance in viscous media. Such resonant mass sensors have shown great potential in detecting many kinds of trace analytes in gas and liquid phases, such as chemical vapors, volatile organic compounds, pollutant gases, bacteria, biomarkers, and DNA. The integrated MEMS/NEMS mass sensors will continuously push the detection limit of trace bio/chemical molecules and bring a better understanding of gas/nanomaterial interaction and molecular binding mechanisms.
Collapse
|
17
|
Zhang L, Zhou Y, Han S. The Role of Metal–Organic Frameworks in Electronic Sensors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202006402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Lin‐Tao Zhang
- Institute of Microscale Optoelectronics Shenzhen University Shenzhen 518060 P. R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Ye Zhou
- Institute for Advanced Study Shenzhen University Shenzhen 518060 P. R. China
| | - Su‐Ting Han
- Institute of Microscale Optoelectronics Shenzhen University Shenzhen 518060 P. R. China
| |
Collapse
|
18
|
Zhang L, Zhou Y, Han S. The Role of Metal–Organic Frameworks in Electronic Sensors. Angew Chem Int Ed Engl 2021; 60:15192-15212. [DOI: 10.1002/anie.202006402] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/25/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Lin‐Tao Zhang
- Institute of Microscale Optoelectronics Shenzhen University Shenzhen 518060 P. R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Ye Zhou
- Institute for Advanced Study Shenzhen University Shenzhen 518060 P. R. China
| | - Su‐Ting Han
- Institute of Microscale Optoelectronics Shenzhen University Shenzhen 518060 P. R. China
| |
Collapse
|
19
|
Shellaiah M, Sun KW. Inorganic-Diverse Nanostructured Materials for Volatile Organic Compound Sensing. SENSORS (BASEL, SWITZERLAND) 2021; 21:633. [PMID: 33477501 PMCID: PMC7831086 DOI: 10.3390/s21020633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/05/2021] [Accepted: 01/14/2021] [Indexed: 11/17/2022]
Abstract
Environmental pollution related to volatile organic compounds (VOCs) has become a global issue which attracts intensive work towards their controlling and monitoring. To this direction various regulations and research towards VOCs detection have been laid down and conducted by many countries. Distinct devices are proposed to monitor the VOCs pollution. Among them, chemiresistor devices comprised of inorganic-semiconducting materials with diverse nanostructures are most attractive because they are cost-effective and eco-friendly. These diverse nanostructured materials-based devices are usually made up of nanoparticles, nanowires/rods, nanocrystals, nanotubes, nanocages, nanocubes, nanocomposites, etc. They can be employed in monitoring the VOCs present in the reliable sources. This review outlines the device-based VOC detection using diverse semiconducting-nanostructured materials and covers more than 340 references that have been published since 2016.
Collapse
Affiliation(s)
| | - Kien Wen Sun
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan;
| |
Collapse
|
20
|
Lai C, Wang Z, Qin L, Fu Y, Li B, Zhang M, Liu S, Li L, Yi H, Liu X, Zhou X, An N, An Z, Shi X, Feng C. Metal-organic frameworks as burgeoning materials for the capture and sensing of indoor VOCs and radon gases. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213565] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Razavi SAA, Morsali A. Metal ion detection using luminescent-MOFs: Principles, strategies and roadmap. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213299] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
22
|
Ni J, Zhao T, Tang L, Qiu P, Jiang W, Wang L, Xu P, Luo W. Solution-phase synthesis of ordered mesoporous carbon as resonant-gravimetric sensing material for room-temperature H2S detection. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.11.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Yan X, Qu H, Chang Y, Pang W, Wang Y, Duan X. Surface Engineering of Metal-Organic Framework Prepared on Film Bulk Acoustic Resonator for Vapor Detection. ACS APPLIED MATERIALS & INTERFACES 2020; 12:10009-10017. [PMID: 31927971 DOI: 10.1021/acsami.9b22407] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Gravimetric resonators based on micro/nanoelectromechanical systems (M/NEMS) are potential candidates in developing smaller, less expensive, and higher-performance gas sensors. Metal-organic frameworks (MOFs) with high surface areas have recently come into focus as advanced nanoporous sensitive materials in microgravimetric gas sensors. The surface of MOFs on those sensors is critical in offering water stability and varying absorption behaviors. However, the influences of the surface on sensing performance are less explored and the strategy to tune surface properties of MOFs mounted on gravimetric resonators is still rare. In this paper, a straightforward strategy to engineer surface properties of MOFs, specifically Cu3(benzenetricarboxylate)2 (known as HKUST-1), is reported and the surface hydrophilicity/hydrophobicity of HKUST-1 is tuned by chemical vapor deposition combined with monolayer self-assembly. It was found that the hybrid inorganic and organic surface engineering strategy not only preserves the absorption capacity of inner MOFs but also significantly enhances the sensor's stability toward water.
Collapse
Affiliation(s)
- Xu Yan
- State Key Laboratory of Precision Measuring Technology & Instruments , Tianjin University , Tianjin 300072 , China
- College of Precision Instrument and Opto-electronics Engineering , Tianjin University , Tianjin 300072 , China
| | - Hemi Qu
- State Key Laboratory of Precision Measuring Technology & Instruments , Tianjin University , Tianjin 300072 , China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) , Nankai University , Tianjin 300071 , China
- College of Precision Instrument and Opto-electronics Engineering , Tianjin University , Tianjin 300072 , China
| | - Ye Chang
- State Key Laboratory of Precision Measuring Technology & Instruments , Tianjin University , Tianjin 300072 , China
- College of Precision Instrument and Opto-electronics Engineering , Tianjin University , Tianjin 300072 , China
| | - Wei Pang
- State Key Laboratory of Precision Measuring Technology & Instruments , Tianjin University , Tianjin 300072 , China
- College of Precision Instrument and Opto-electronics Engineering , Tianjin University , Tianjin 300072 , China
| | - Yanyan Wang
- State Key Laboratory of Precision Measuring Technology & Instruments , Tianjin University , Tianjin 300072 , China
- College of Precision Instrument and Opto-electronics Engineering , Tianjin University , Tianjin 300072 , China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology & Instruments , Tianjin University , Tianjin 300072 , China
- College of Precision Instrument and Opto-electronics Engineering , Tianjin University , Tianjin 300072 , China
| |
Collapse
|
24
|
Prantl E, Kohl B, Ryvlin D, Biegger P, Wadepohl H, Rominger F, Bunz UHF, Mastalerz M, Waldvogel SR. Microporous Triptycene-Based Affinity Materials on Quartz Crystal Microbalances for Tracing of Illicit Compounds. Chempluschem 2020; 84:1239-1244. [PMID: 31944043 DOI: 10.1002/cplu.201900189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/09/2019] [Indexed: 12/20/2022]
Abstract
Triptycene-based organic molecules of intrinsic microporosity (OMIMs) with extended functionalized π-surfaces are excellent materials for gas sorption and separation. In this study, the affinities of triptycene-based OMIM affinity materials on 195 MHz high-fundamental-frequency quartz crystal microbalances (HFF-QCMs) for hazardous and illicit compounds such as piperonal and (-)-norephedrine were determined. Both new and existing porous triptycene-based affinity materials were investigated, resulting in very high sensitivities and selectivities that could be applied for sensing purposes. Remarkable results were found for safrole - a starting material for illicit compounds such as ecstasy. A systematic approach highlights the effects of different size of π-surfaces of these affinity materials, allowing a classification of the properties that might be optimal for the design of future OMIM-based affinity materials.
Collapse
Affiliation(s)
- Ephraim Prantl
- Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Bernd Kohl
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Dimitrij Ryvlin
- Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Philipp Biegger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Hubert Wadepohl
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 271, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Uwe H F Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Siegfried R Waldvogel
- Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
25
|
Li HY, Zhao SN, Zang SQ, Li J. Functional metal–organic frameworks as effective sensors of gases and volatile compounds. Chem Soc Rev 2020; 49:6364-6401. [DOI: 10.1039/c9cs00778d] [Citation(s) in RCA: 434] [Impact Index Per Article: 86.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review summarizes the recent advances of metal organic framework (MOF) based sensing of gases and volatile compounds.
Collapse
Affiliation(s)
- Hai-Yang Li
- Green Catalysis Center, and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Shu-Na Zhao
- Green Catalysis Center, and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Shuang-Quan Zang
- Green Catalysis Center, and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Jing Li
- Department of Chemistry and Chemical Biology
- Rutgers University
- Piscataway
- USA
| |
Collapse
|
26
|
Hu ML, Razavi SAA, Piroozzadeh M, Morsali A. Sensing organic analytes by metal–organic frameworks: a new way of considering the topic. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01617a] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this review, our goal is comparison of advantageous and disadvantageous of MOFs about signal-transduction in different instrumental methods for detection of different categories of organic analytes.
Collapse
Affiliation(s)
- Mao-Lin Hu
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- China
| | | | - Maryam Piroozzadeh
- Department of Chemistry
- Faculty of Sciences
- Tarbiat Modares University
- Tehran
- Iran
| | - Ali Morsali
- Department of Chemistry
- Faculty of Sciences
- Tarbiat Modares University
- Tehran
- Iran
| |
Collapse
|
27
|
Cai S, Li W, Xu P, Xia X, Yu H, Zhang S, Li X. In situ construction of metal–organic framework (MOF) UiO-66 film on Parylene-patterned resonant microcantilever for trace organophosphorus molecules detection. Analyst 2019; 144:3729-3735. [DOI: 10.1039/c8an02508h] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
UiO-66 film is directly grown on the sensing area of a resonant microcantilever for toxic organophosphorus molecules detection.
Collapse
Affiliation(s)
- Shengran Cai
- State Key Lab of Transducer Technology
- Shanghai Institute of Microsystem and Information Technology
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Wei Li
- State Key Lab of Transducer Technology
- Shanghai Institute of Microsystem and Information Technology
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Pengcheng Xu
- State Key Lab of Transducer Technology
- Shanghai Institute of Microsystem and Information Technology
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Xiaoyuan Xia
- State Key Lab of Transducer Technology
- Shanghai Institute of Microsystem and Information Technology
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Haitao Yu
- State Key Lab of Transducer Technology
- Shanghai Institute of Microsystem and Information Technology
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Sen Zhang
- College of Life and Environmental Sciences
- Shanghai Normal University
- Shanghai 200234
- China
| | - Xinxin Li
- State Key Lab of Transducer Technology
- Shanghai Institute of Microsystem and Information Technology
- Chinese Academy of Sciences
- Shanghai 200050
- China
| |
Collapse
|
28
|
Liu X, Gong Y, Xiong W, Cui L, Hu K, Che Y, Zhao J. Highly Selective Detection of Benzene, Toluene, and Xylene Hydrocarbons Using Coassembled Microsheets with Förster Resonance Energy Transfer-Enhanced Photostability. Anal Chem 2018; 91:768-771. [DOI: 10.1021/acs.analchem.8b04680] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xiaoling Liu
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanjun Gong
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Xiong
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linfeng Cui
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Hu
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanke Che
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
29
|
Li Y, Xiao AS, Zou B, Zhang HX, Yan KL, Lin Y. Advances of metal–organic frameworks for gas sensing. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.07.028] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
|
31
|
Metal-organic framework and Tenax-TA as optimal sorbent mixture for concurrent GC-MS analysis of C1 to C5 carbonyl compounds. Sci Rep 2018; 8:5033. [PMID: 29567947 PMCID: PMC5864741 DOI: 10.1038/s41598-018-23391-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/12/2018] [Indexed: 11/08/2022] Open
Abstract
We report a multi adsorbent-based method using combinations of metal-organic frameworks (MOFs) and a commercial sorbent Tenax-TA for sampling and thermal desorption (TD) gas chromatography-mass spectrometry (GC-MS) quantification of mixtures of six (C1 to C5) aldehydes. The feasibility of this approach was demonstrated along with the optical analytical conditions for maximum recovery. Optimal TD conditions for adsorption and desorption of aldehydes using MOF-5 (Zn-based MOF)+ Tenax-TA were determined as -25 °C and 150 °C, respectively (purge volume: 100 ml). These conditions yielded good linearity (R2 = 0.997), precision, and high sensitivity. Analysis of the aldehyde mixtures yielded slightly smaller R2 values than the analysis of single species. Additionally, the performance of MOF-5+ Tenax-TA was compared with other combinations comprising of Cu-based MOF-199 and Zr-based MOF of UiO-66 topology. The results of the theoretical modelling analyses propose simultaneous interaction of the C=O group of aldehydes with open metal sites of the studied MOFs and van der Waals interaction of hydrocarbon "tail" of aldehydes with linkers of MOFs. The combined interactions significantly increased the enthalpy (eV/molecule) of formaldehyde adsorption on MOF. Our findings unravel a potential way to extend the application of GC-based detection toward concurrent analysis of organic molecules of variable sizes.
Collapse
|
32
|
Ueki Y, Okabayashi J, Kitazawa T. Guest Molecule Inserted Spin Crossover Complexes: Fe[4-(3-Pentyl)pyridine]2[Au(CN)2]2·Guest. CHEM LETT 2017. [DOI: 10.1246/cl.170149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yusuke Ueki
- Department of Chemistry, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510
| | - Jun Okabayashi
- Research Center for Spectrochemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033
| | - Takafumi Kitazawa
- Department of Chemistry, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510
- Research Center for Materials with Integrated Properties, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510
| |
Collapse
|