1
|
Khymenets O, Vilarroya O, Benet G, Feixas G, Arranz Betegon A, McLeod MD, Pozo OJ. Profile of steroid metabolites in human breast milk in different stages of lactation. Food Funct 2025. [PMID: 40277187 PMCID: PMC12023736 DOI: 10.1039/d4fo05713a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/02/2025] [Indexed: 04/26/2025]
Abstract
Breast milk (BM), as an optimal food, provides the newborn with a variety of minor compounds relevant for health and wellbeing. Endogenous steroids, also minor constituents, are mainly secreted in BM as conjugated metabolites. Recent research has revealed the relevance of steroid conjugates in many physiological processes. Thus, their presence in BM appears to be very intriguing, especially in relation to breastfeeding. The objective of our study was to profile conjugated steroid metabolites present in BM in relation to the lactation stage, and to promote further evaluation of their importance in breastfeeding. For this purpose, we developed and used a direct UHPLC-MS/MS metabolomics approach capable to detect more than 60 conjugated metabolites (mono-sulfated, mono-glucuronylated, bis-sulfated and sulfate-glucuronylated) from all steroid families. We compared the occurrence of these metabolites in samples collected from breastfeeding mothers and stratified by lactation stages: colostrum, transitional and mature milk. Our results showed that many biologically relevant conjugated steroids are secreted in BM. Their concentrations were highest in colostrum, decreased remarkably in transitional and were much lower in mature milk, with some exceptions. The profile of metabolites also differed considerably between lactation stages. The approximate daily secretion in BM indicated that infants are exposed to significant oral doses of steroid conjugates during the first week of lactation. The supply of these metabolites in BM declined and became constant after the second week postpartum. Overall, our data provide a foundation for further investigation on the physiological relevance of BM secreted steroid metabolites in relation to both mother and child.
Collapse
Affiliation(s)
- Olha Khymenets
- Applied Metabolomics Research Group, Neurosciences Research Programme, Hospital del Mar Research Institute, Barcelona, Spain.
| | - Oscar Vilarroya
- Department of Psychiatry and Legal Medicine, Autonomous University of Barcelona, Barcelona, Spain
- Neuroimaging Research Group, Neurosciences Programme, Hospital del Mar Research Institute, Barcelona, Spain
| | - Georgina Benet
- Neuroimaging Research Group, Neurosciences Programme, Hospital del Mar Research Institute, Barcelona, Spain
| | - Georgina Feixas
- BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Clínic and Hospital Sant Joan de Deu, Institut Clinic de Ginecologia, Obstetricia i Neonatologia, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Angela Arranz Betegon
- BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Clínic and Hospital Sant Joan de Deu, Institut Clinic de Ginecologia, Obstetricia i Neonatologia, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Malcolm D McLeod
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Oscar J Pozo
- Applied Metabolomics Research Group, Neurosciences Research Programme, Hospital del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
2
|
Sun Y, Giacomello G, Girreser U, Steff J, Bureik M, de la Torre X, Botrè F, Parr MK. Characterization and quantitation of a sulfoconjugated metabolite for detection of methyltestosterone misuse and direct identification by LC-MS. J Steroid Biochem Mol Biol 2024; 242:106527. [PMID: 38710312 DOI: 10.1016/j.jsbmb.2024.106527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 05/08/2024]
Abstract
Methyltestosterone (MT) is one of the most frequently misused anabolic androgenic steroids detected in doping control analysis. The metabolism of MT in humans leads to several phase І metabolites and their corresponding phase Ⅱ conjugates. Previous studies have postulated the 3α-sulfoconjugate of 17α-methyl-5β-androstane-3α,17β-diol (S2) as principal sulfate metabolite of MT, with a detection window exceeding 10 days. However, a final direct and unambiguous confirmation of the structure of this metabolite is missing until now. In this study, we established an approach to detect and identify S2, using intact analysis by liquid chromatography hyphenated with tandem mass spectrometry (LC-MS/MS) without complex sample pretreatment. An in vitro study yielded the LC-MS/MS reference retention times of all 3-sulfated 17-methylandrostane-3,17-diol diastereomers, allowing for accurate structure assignment of potentially detected metabolites. In an in vivo excretion study with a single healthy male volunteer, the presence of the metabolite S2 was confirmed after a single oral dose of 10 mg MT. The reference standard was chemically synthesized, characterized by accurate mass mass spectrometry (MS) and nuclear magnetic resonance (NMR), and quantified by quantitative NMR (qNMR). Thus, this study finally provides accurate structure information on the S2 metabolite and a direct analytical method for detection of MT misuse. The availability of the reference material is expected to facilitate further evaluation and subsequent analytical method validation in anti-doping research.
Collapse
Affiliation(s)
- Yanan Sun
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2 + 4, Berlin 14195, Germany
| | - Ginevra Giacomello
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2 + 4, Berlin 14195, Germany
| | - Ulrich Girreser
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Christian-Albrechts-Universität zu Kiel, Kiel 24118, Germany
| | - Jakob Steff
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2 + 4, Berlin 14195, Germany
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, 92 Weijin Lu, Nankai District, Tianjin 300072, China
| | | | - Francesco Botrè
- Laboratorio Antidoping FMSI, Largo Giulio Onesti 1, Rome 00197, Italy,; REDs - Research and Expertise on Antidoping sciences, ISSUL - Institute des sciences du sport, Université de Lausanne, Synathlon 3224 - Quartier Centre, Lausanne 1015, Switzerland
| | - Maria Kristina Parr
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2 + 4, Berlin 14195, Germany,.
| |
Collapse
|
3
|
Jiang PY, Yuan L, Liu DX, Yu HL, Bi XJ, Lv Q, Yang Y, Liu CC. Revealing nitrogenous VX metabolites and the whole-molecule VX metabolism in the urine of guinea pigs. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134400. [PMID: 38691927 DOI: 10.1016/j.jhazmat.2024.134400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
VX, a well-known organophosphorus nerve agent (OPNA), poses a significant threat to public safety if employed by terrorists. Obtaining complete metabolites is critical to unequivocally confirm its alleged use/exposure and elucidate its whole-molecular metabolism. However, the nitrogenous VX metabolites containing 2-diisopropylaminoethyl moiety from urinary excretion remain unknown. Therefore, this study applied a newly developed untargeted workflow platform to discover and identify them using VX-exposed guinea pigs as animal models. 2-(N,N-diisopropylamino)ethanesulfonic acid (DiPSA) was revealed as a novel nitrogenous VX metabolite in urine, and 2-(Diisopropylaminoethyl) methyl sulfide (DAEMS) was confirmed as another in plasma, indicating that VX metabolism differed between urine and plasma. It is the first report of a nitrogenous VX metabolite in urine and a complete elucidation of the VX metabolic pathway. DiPSA was evaluated as an excellent VX exposure biomarker. The whole-molecule VX metabolism in urine was characterized entirely for the first time via the simultaneous quantification of DiPSA and two known P-based biomarkers. About 52.1% and 32.4% of VX were excreted in urine as P-based and nitrogenous biomarkers within 24 h. These findings provide valuable insights into the unambiguous detection of OPNA exposure/intoxication and human and environmental exposure risk assessment.
Collapse
Affiliation(s)
- Pei-Yu Jiang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Ling Yuan
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Dong-Xin Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Hui-Lan Yu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Xiao-Jing Bi
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Qiao Lv
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Yang Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Chang-Cai Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| |
Collapse
|
4
|
Sun Y, Tang S, Li E, Wang C, Chang H, Huang Y, Yang Y, Jiao L, Yan W, Lu Y, Wan Y. Identification of Sulfur-Containing Chlorinated Paraffin Structural Analogues in Human Serum: Origination from Biotransformation or Bioaccumulation? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38324775 DOI: 10.1021/acs.est.3c10056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Chlorinated paraffins (CPs) are manufactured and used in high quantities and have diverse structural analogues. It is generally recognized that sulfur-containing structural analogues of CPs are mainly derived from sulfate-conjugated phase II metabolism. In this study, we non-targeted identified three classes of sulfur-containing CP structural analogues (CPs-S) in human serum, including 44 CP sulfates (CPs-SO4H/CPs-SO4H-OH), 14 chlorinated benzene sulfates (CBs-SO4H), and 19 CP sulfite esters (CPs-SO3/CPs-S2O6), which were generated during the production of commercial mixtures of CPs and, thus, bioaccumulated via environmental exposures. We first wrote a program to screen CPs-S, which were baseline-separated from CPs according to their polar functional groups. Then, mass spectral analyses of alkalization-acidification liquid-liquid extracts of serum samples and Orbitrap mass spectrometry analyses in the presence and absence of tetraphenylphosphonium chloride (Ph4PCl), respectively, were performed to determine the ionization forms ([M + Cl]- or [M - H]-) of CPs-S. The presence of fragment ions (SO4H-, SO3-, SO2Cl-, and HSO3-) revealed the structures of CPs-S, which were validated by their detections in commercial mixtures of CPs. The estimated total concentrations of CPs-S in the human serum samples were higher than the concentrations of medium- and long-chain CPs. The profiles of CPs-S in human serum were similar to those detected in CP commercial mixtures and rats exposed to the commercial mixtures, but CPs-S were not detected in human liver S9 fractions or rat tissues after exposure to CP standards. These results, together with the knowledge of the processes used to chemically synthesize CPs, demonstrate that CPs-S in humans originates from environmental bioaccumulation.
Collapse
Affiliation(s)
- Yibin Sun
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, People's Republic of China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, People's Republic of China
| | - Enrui Li
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Sciences & Engineering, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Chao Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, People's Republic of China
| | - Hong Chang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Sciences & Engineering, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Yixuan Huang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Yi Yang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Ling Jiao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Wenyan Yan
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, People's Republic of China
| | - Yifu Lu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, People's Republic of China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
5
|
Wang RH, Zhang Z, Li B, Zhu GF, Shi J, Tang L. p-Cresol-Enabled Nickel-Catalyzed Intermolecular Redox-Economical Coupling of Allyl Alcohols with Alkynes through oxa-Nickelacycle. Org Lett 2023; 25:8463-8468. [PMID: 37982592 DOI: 10.1021/acs.orglett.3c03320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
An intermolecular redox-economical coupling reaction of allyl alcohols with alkynes, catalyzed by Ni-Brønsted acid cocatalysis, has been developed. This method allows for the synthesis of a diverse range of γ,δ-unsaturated ketones with yields ranging from 40% to 94%, while maintaining excellent compatibility with various functional groups. The transformation of the resulting product demonstrates the significant practical value of this method. Further mechanistic investigations have revealed that the reaction proceeds through the formation of an oxa-nickelacycle intermediate.
Collapse
Affiliation(s)
- Rong-Hua Wang
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| | - Zhou Zhang
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| | - Bo Li
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| | - Gao-Feng Zhu
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| | - Jing Shi
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| | - Lei Tang
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China
| |
Collapse
|
6
|
Murray KJ, Villalta PW, Griffin TJ, Balbo S. Discovery of Modified Metabolites, Secondary Metabolites, and Xenobiotics by Structure-Oriented LC-MS/MS. Chem Res Toxicol 2023; 36:1666-1682. [PMID: 37862059 DOI: 10.1021/acs.chemrestox.3c00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Exogenous compounds and metabolites derived from therapeutics, microbiota, or environmental exposures directly interact with endogenous metabolic pathways, influencing disease pathogenesis and modulating outcomes of clinical interventions. With few spectral library references, the identification of covalently modified biomolecules, secondary metabolites, and xenobiotics is a challenging task using global metabolomics profiling approaches. Numerous liquid chromatography-coupled mass spectrometry (LC-MS) small molecule analytical workflows have been developed to curate global profiling experiments for specific compound groups of interest. These workflows exploit shared structural moiety, functional groups, or elemental composition to discover novel and undescribed compounds through nontargeted small molecule discovery pipelines. This Review introduces the concept of structure-oriented LC-MS discovery methodology and aims to highlight common approaches employed for the detection and characterization of covalently modified biomolecules, secondary metabolites, and xenobiotics. These approaches represent a combination of instrument-dependent and computational techniques to rapidly curate global profiling experiments to detect putative ions of interest based on fragmentation patterns, predictable phase I or phase II metabolic transformations, or rare elemental composition. Application of these methods is explored for the detection and identification of novel and undescribed biomolecules relevant to the fields of toxicology, pharmacology, and drug discovery. Continued advances in these methods expand the capacity for selective compound discovery and characterization that promise remarkable insights into the molecular interactions of exogenous chemicals with host biochemical pathways.
Collapse
Affiliation(s)
- Kevin J Murray
- Department of Biochemistry, Molecular Biology, and Biophysics, College of Biological Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Peter W Villalta
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Timothy J Griffin
- Department of Biochemistry, Molecular Biology, and Biophysics, College of Biological Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Silvia Balbo
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
7
|
Albertsdóttir AD, Van Gansbeke W, Van Eenoo P, Polet M. Evaluation of alternative gas chromatographic and mass spectrometric behaviour of trimethylsilyl-derivatives of non-hydrolysed sulfated anabolic steroids. Drug Test Anal 2023; 15:1344-1355. [PMID: 36843396 DOI: 10.1002/dta.3462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/28/2023]
Abstract
Sulfated metabolites have shown to have potential as long-term markers (LTMs) of anabolic-androgenic steroid (AAS) abuse. The compatibility of gas chromatography-mass spectrometry (GC-MS) with trimethylsilyl (TMS)-derivatives of non-hydrolysed sulfated steroids has been demonstrated, where, after derivatisation, generally, two closely eluting isomers are formed that both have the same molecular ion [M-H2 SO4 ]•+ . Sulfated reference standards are in limited commercial availability, and therefore, the current knowledge of the GC-MS behaviour of these compounds is mainly based on sulfating and analysing the available standard reference material. This procedure can unfortunately not cover all of the current known LTMs as these are often not available as pure substance. Therefore, in theory, some metabolites could be missed as they exhibit alternative behaviour. To investigate the matter, in-house sulfated reference materials that bear resemblance to known sulfated LTMs were analysed on GC-MS in their TMS-derivatised non-hydrolysed state. The (alternative) gas chromatographic and mass spectrometric behaviour was mapped, evaluated and linked to the corresponding steroid structures. Afterwards, using fraction collection, known sulfated LTMs were isolated from excretion urine to confirm the observed findings. The categories that were selected were mono-hydroxy-diones, 17-methyl-3,17-diols and 17-keto-3,16-diols as these are commonly encountered AAS conformations. The ability to predict the GC-MS behaviour of non-hydrolysed sulfated AAS metabolites is the corner stone of finding new metabolites. This knowledge is also essential, for example, for understanding AAS detection analyses, for the mass spectrometric characterization of metabolites of new designer steroids or when one needs to characterize an unknown steroid structure.
Collapse
Affiliation(s)
| | - Wim Van Gansbeke
- Doping Control Laboratory (DoCoLab), Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Peter Van Eenoo
- Doping Control Laboratory (DoCoLab), Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Michael Polet
- Doping Control Laboratory (DoCoLab), Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Fitzgerald CCJ, Bowen C, Elbourne M, Cawley A, McLeod MD. Energy-Resolved Fragmentation Aiding the Structure Elucidation of Steroid Biomarkers. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1276-1281. [PMID: 35791638 DOI: 10.1021/jasms.2c00092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The identification and confirmation of steroid sulfate metabolites in biological samples are essential to various fields, including anti-doping analysis and clinical sciences. Ultra-high-performance liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS) is the leading method for the detection of intact steroid conjugates in biofluids, but because of the inherent complexity of biological samples and the low concentration of many targets of interest, metabolite identification based solely on mass spectrometry remains a major challenge. The confirmation of new metabolites typically depends on a comparison with synthetically derived reference materials that encompass a range of possible conjugation sites and stereochemistries. Herein, energy-resolved collision-induced dissociation (CID) is used as part of UHPLC-HRMS/MS analysis to distinguish between regio- and stereo-isomeric steroid sulfate compounds. This wholly MS-based approach was employed to guide the synthesis of reference materials to unambiguously confirm the identity of an equine steroid sulfate biomarker of testosterone propionate administration.
Collapse
Affiliation(s)
- Christopher C J Fitzgerald
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Christopher Bowen
- Mass Spectrometry Business Unit, Shimadzu Scientific Instruments (Australasia), Rydalmere, New South Wales 2116, Australia
| | - Madysen Elbourne
- Centre for Forensic Science, University of Technology Sydney, Broadway, New South Wales 2007, Australia
| | - Adam Cawley
- Australian Racing Forensic Laboratory, Racing NSW, Sydney, New South Wales 2000, Australia
| | - Malcolm D McLeod
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
9
|
Fitzgerald CCJ, McLeod MD. Synthesis of stable isotope labelled steroid bis(sulfate) conjugates and their behaviour in collision induced dissociation experiments. Org Biomol Chem 2022; 20:3311-3322. [PMID: 35354200 DOI: 10.1039/d2ob00375a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Steroid bis(sulfate) metabolites derived from the two-fold sulfation of unconjugated precursors represent an important yet understudied portion of the steroid profile. The investigation of these compounds in fields such as medicine or anti-doping science relies on mass spectrometry (MS) as the principal tool to identify and quantify biomarkers of interest and depends in turn on access to steroid reference materials and their stable isotope labelled (SIL) derivatives. A new [18O] stable isotope label for sulfate metabolites is reported, which allows for the selective, late-stage and 'one-pot' synthesis of a variety of SIL-steroid conjugates suitable as MS probes and internal standards. The method is applied to more comprehensively study the MS behaviour of steroid bis(sulfate) compounds through collision-induced dissociation (CID) experiments.
Collapse
Affiliation(s)
| | - Malcolm D McLeod
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
10
|
Gomez-Gomez A, Rodríguez-Morató J, Haro N, Marín-Corral J, Masclans JR, Pozo OJ. Untargeted detection of the carbonyl metabolome by chemical derivatization and liquid chromatography-tandem mass spectrometry in precursor ion scan mode: Elucidation of COVID-19 severity biomarkers. Anal Chim Acta 2022; 1196:339405. [DOI: 10.1016/j.aca.2021.339405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 01/18/2023]
|
11
|
Fitzgerald CCJ, Hedman R, Uduwela DR, Paszerbovics B, Carroll AJ, Neeman T, Cawley A, Brooker L, McLeod MD. Profiling Urinary Sulfate Metabolites With Mass Spectrometry. Front Mol Biosci 2022; 9:829511. [PMID: 35281273 PMCID: PMC8906285 DOI: 10.3389/fmolb.2022.829511] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/12/2022] [Indexed: 12/21/2022] Open
Abstract
The study of urinary phase II sulfate metabolites is central to understanding the role and fate of endogenous and exogenous compounds in biological systems. This study describes a new workflow for the untargeted metabolic profiling of sulfated metabolites in a urine matrix. Analysis was performed using ultra-high-performance liquid chromatography-high resolution tandem mass spectrometry (UHPLC-HRMS/MS) with data dependent acquisition (DDA) coupled to an automated script-based data processing pipeline and differential metabolite level analysis. Sulfates were identified through k-means clustering analysis of sulfate ester derived MS/MS fragmentation intensities. The utility of the method was highlighted in two applications. Firstly, the urinary metabolome of a thoroughbred horse was examined before and after administration of the anabolic androgenic steroid (AAS) testosterone propionate. The analysis detected elevated levels of ten sulfated steroid metabolites, three of which were identified and confirmed by comparison with synthesised reference materials. This included 5α-androstane-3β,17α-diol 3-sulfate, a previously unreported equine metabolite of testosterone propionate. Secondly, the hydrolytic activity of four sulfatase enzymes on pooled human urine was examined. This revealed that Pseudomonas aeruginosa arylsulfatases (PaS) enzymes possessed higher selectivity for the hydrolysis of sulfated metabolites than the commercially available Helix pomatia arylsulfatase (HpS). This novel method provides a rapid tool for the systematic, untargeted metabolic profiling of sulfated metabolites in a urinary matrix.
Collapse
Affiliation(s)
| | - Rikard Hedman
- Research School of Chemistry, Australian National University, Acton, ACT, Australia
| | - Dimanthi R. Uduwela
- Research School of Chemistry, Australian National University, Acton, ACT, Australia
| | - Bettina Paszerbovics
- Research School of Chemistry, Australian National University, Acton, ACT, Australia
| | - Adam J. Carroll
- Research School of Chemistry, Australian National University, Acton, ACT, Australia
| | - Teresa Neeman
- Research School of Chemistry, Australian National University, Acton, ACT, Australia
| | - Adam Cawley
- Australian Racing Forensic Laboratory, Racing NSW, Sydney, NSW, Australia
| | - Lance Brooker
- Australian Sports Drug Testing Laboratory, National Measurement Institute, Sydney, NSW, Australia
| | - Malcolm D. McLeod
- Research School of Chemistry, Australian National University, Acton, ACT, Australia
- *Correspondence: Malcolm D. McLeod,
| |
Collapse
|
12
|
Yu JS, Nothias LF, Wang M, Kim DH, Dorrestein PC, Kang KB, Yoo HH. Tandem Mass Spectrometry Molecular Networking as a Powerful and Efficient Tool for Drug Metabolism Studies. Anal Chem 2022; 94:1456-1464. [DOI: 10.1021/acs.analchem.1c04925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jun Sang Yu
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
| | - Louis-Félix Nothias
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Mingxun Wang
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Dong Hyun Kim
- Department of Pharmacology, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Pieter C. Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Kyo Bin Kang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Republic of Korea
| | - Hye Hyun Yoo
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
13
|
Mueller JW, Vogg N, Lightning TA, Weigand I, Ronchi CL, Foster PA, Kroiss M. Steroid Sulfation in Adrenal Tumors. J Clin Endocrinol Metab 2021; 106:3385-3397. [PMID: 33739426 DOI: 10.1210/clinem/dgab182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT The adrenal cortex produces specific steroid hormones including steroid sulfates such as dehydroepiandrosterone sulfate (DHEAS), the most abundant steroid hormone in the human circulation. Steroid sulfation involves a multistep enzyme machinery that may be impaired by inborn errors of steroid metabolism. Emerging data suggest a role of steroid sulfates in the pathophysiology of adrenal tumors and as potential biomarkers. EVIDENCE ACQUISITION Selective literature search using "steroid," "sulfat*," "adrenal," "transport," "mass spectrometry" and related terms in different combinations. EVIDENCE SYNTHESIS A recent study highlighted the tissue abundance of estrogen sulfates to be of prognostic impact in adrenocortical carcinoma tissue samples using matrix-assisted laser desorption ionization mass spectrometry imaging. General mechanisms of sulfate uptake, activation, and transfer to substrate steroids are reasonably well understood. Key aspects of this pathway, however, have not been investigated in detail in the adrenal; these include the regulation of substrate specificity and the secretion of sulfated steroids. Both for the adrenal and targeted peripheral tissues, steroid sulfates may have relevant biological actions beyond their cognate nuclear receptors after desulfation. Impaired steroid sulfation such as low DHEAS in Cushing adenomas is of diagnostic utility, but more comprehensive studies are lacking. In bioanalytics, the requirement of deconjugation for gas-chromatography/mass-spectrometry has precluded the study of steroid sulfates for a long time. This limitation may be overcome by liquid chromatography/tandem mass spectrometry. CONCLUSIONS A role of steroid sulfation in the pathophysiology of adrenal tumors has been suggested and a diagnostic utility of steroid sulfates as biomarkers is likely. Recent analytical developments may target sulfated steroids specifically.
Collapse
Affiliation(s)
- Jonathan Wolf Mueller
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, UK
| | - Nora Vogg
- Department of Internal Medicine I, Division of Endocrinology and Diabetology, University Hospital Würzburg, University of Würzburg, Würzburg(Germany)
| | - Thomas Alec Lightning
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
| | - Isabel Weigand
- Department of Medicine IV, University Hospital München, Ludwig-Maximilians-Universität München, München, Germany
| | - Cristina L Ronchi
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, UK
- Department of Internal Medicine I, Division of Endocrinology and Diabetology, University Hospital Würzburg, University of Würzburg, Würzburg(Germany)
| | - Paul A Foster
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, UK
| | - Matthias Kroiss
- Department of Internal Medicine I, Division of Endocrinology and Diabetology, University Hospital Würzburg, University of Würzburg, Würzburg(Germany)
- Department of Medicine IV, University Hospital München, Ludwig-Maximilians-Universität München, München, Germany
| |
Collapse
|
14
|
Colicino E, Ferrari F, Cowell W, Niedzwiecki MM, Foppa Pedretti N, Joshi A, Wright RO, Wright RJ. Non-linear and non-additive associations between the pregnancy metabolome and birthweight. ENVIRONMENT INTERNATIONAL 2021; 156:106750. [PMID: 34256302 PMCID: PMC9244839 DOI: 10.1016/j.envint.2021.106750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/11/2021] [Accepted: 07/01/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND Birthweight is an indicator of fetal growth and environmental-related alterations of birthweight have been linked with multiple disorders and conditions progressing into adulthood. Although a few studies have assessed the association between birthweight and the totality of exogenous exposures and their downstream molecular responses in maternal urine and cord blood; no prior research has considered a) the maternal serum prenatal metabolome, which is enriched for hormones, and b) non-linear and synergistic associations among exposures. METHODS We measured the maternal serum metabolome during pregnancy using an untargeted metabolomics approach and birthweight for gestational age (BWGA) z-score in 410 mother-child dyads enrolled in the PRogramming of Intergenerational Stress Mechanisms (PRISM) cohort. We leveraged a Bayesian factor analysis for interaction to select the most important metabolites associated with BWGA z-score and to evaluate their linear, non-linear and non-additive associations. We also assessed the primary biological functions of the identified proteins using the MetaboAnalyst, a centralized repository of curated functional information. We compared our findings with those of a traditional metabolite-wide association study (MWAS) in which metabolites are individually associated with BWGA z-score. RESULTS Among 1110 metabolites, 46 showed evidence of U-shape associations with BWGA z-score. Most of the identified metabolites (85%) were lipids primarily enriched for pathways central to energy production, immune function, and androgen and estrogen metabolism, which are essential for pregnancy and parturition processes. Metabolites within the same class, i.e. steroids and phospholipids, showed synergistic relationships with each other. CONCLUSIONS Our results support that the aspects of the maternal metabolome during pregnancy contribute linearly, non-linearly and synergistically to variation in newborn birthweight.
Collapse
Affiliation(s)
- E Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - F Ferrari
- Department of Statistical Science, Duke University, Durham, NC, USA
| | - W Cowell
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M M Niedzwiecki
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - N Foppa Pedretti
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - A Joshi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - R O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Kravis Children's Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - R J Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Kravis Children's Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
15
|
Kiousi P, Fragkaki AG, Kioukia-Fougia N, Angelis YS. Liquid chromatography-mass spectrometry behavior of Girard's reagent T derivatives of oxosteroid intact phase II metabolites for doping control purposes. Drug Test Anal 2021; 13:1822-1834. [PMID: 33942526 DOI: 10.1002/dta.3056] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 11/10/2022]
Abstract
Intact phase II steroid metabolites have poor product ion mass spectra under collision-induced dissociation (CID) conditions. Therefore, we present herein the liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/(MS)) behavior of intact phase II metabolites of oxosteroids after derivatization. Based on the fact that Girard's reagent T (GRT), as derivatization reagent, was both convenient and efficient in terms of the enhancement in the ionization efficiency and the production of diagnostic product ions related to the steroid moiety, the latter was preferably selected between methoxamine and hydroxylamine upon the model compounds of androsterone glucuronide and androsterone sulfate. Sixteen different glucuronides and 29 sulfate conjugated metabolites of anabolic androgenic steroids (AASs), available either as pure reference materials or synthesized/extracted from administration studies, were derivatized with GRT, and their product ion spectra are presented. Product ion spectra include in all cases high number of product ions that in some cases are characteristic for certain structures of the steroid backbone. More specifically, preliminary results have shown major differences in fragmentation pattern for 17α/17β-isomers of the sulfate conjugates, but limited differentiation for 17α/17β-isomers of glucuronide conjugates and for 3α/3β- and 5α/5β-stereoisomers of both sulfate and glucuronide conjugates. Further to the suggestion of the current work, application on mesterolone administration studies confirmed-according to the World Anti-Doping Agency (WADA) TD2015IDCR-the presence of seven intact phase II metabolites, one glucuronide and six sulfates with use of LC-ESI-MS/(MS).
Collapse
Affiliation(s)
- Polyxeni Kiousi
- Doping Control Laboratory of Athens, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Argyro G Fragkaki
- Doping Control Laboratory of Athens, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Nassia Kioukia-Fougia
- Doping Control Laboratory of Athens, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Yiannis S Angelis
- Doping Control Laboratory of Athens, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Athens, Greece
| |
Collapse
|
16
|
Lightning TA, Gesteira TF, Mueller JW. Steroid disulfates - Sulfation double trouble. Mol Cell Endocrinol 2021; 524:111161. [PMID: 33453296 DOI: 10.1016/j.mce.2021.111161] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 02/08/2023]
Abstract
Sulfation pathways have recently come into the focus of biomedical research. For steroid hormones and related compounds, sulfation represents an additional layer of regulation as sulfated steroids are more water-soluble and tend to be biologically less active. For steroid diols, an additional sulfation is possible, carried out by the same sulfotransferases that catalyze the first sulfation step. The steroid disulfates that are formed are the focus of this review. We discuss both their biochemical production as well as their putative biological function. Steroid disulfates have also been linked to various clinical conditions in numerous untargeted metabolomics studies. New analytical techniques exploring the biosynthetic routes of steroid disulfates have led to novel insights, changing our understanding of sulfation in human biology. They promise a bright future for research into sulfation pathways, hopefully too for the diagnosis and treatment of several associated diseases.
Collapse
Affiliation(s)
- Thomas Alec Lightning
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Tarsis F Gesteira
- College of Optometry, University of Houston, Houston, TX, USA; Optimvia, LLC, Batavia, OH, USA
| | - Jonathan Wolf Mueller
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.
| |
Collapse
|
17
|
Ângelo ML, de Lima Moreira F, Araújo Santos AL, Nunes Salgado HR, de Araújo MB. A Review of Analytical Methods for the Determination of Tibolone: Pharmacokinetics and Pharmaceutical Formulations Analysis and Application in Doping Control. CURR PHARM ANAL 2020. [DOI: 10.2174/1573412916666191025143214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Tibolone is a synthetic steroid commercialized by Organon under the brand
name Livial (Org OD14), which is used in hormone therapy for menopause management and treatment
of postmenopausal osteoporosis. Tibolone is defined as a selective tissue estrogenic activity regulator
(STEAR) demonstrating tissue-specific effects on several organs such as brain, breast, urogenital tract,
endometrium, bone and cardiovascular system.
Aims:
This work aims to (1) present an overview of important published literature on existing methods
for the analysis of tibolone and/or its metabolites in pharmaceutical formulations and biological fluids
and (2) to conduct a critical comparison of the analytical methods used in doping control, pharmacokinetics
and pharmaceutical formulations analysis of tibolone and its metabolites.
Results and conclusions:
The major analytical method described for the analysis of tibolone in pharmaceutical
formulations is High Pressure Liquid Chromatography (HPLC) coupled with ultraviolet
(UV) detection, while Liquid Chromatography (LC) or Gas Chromatography (GC) used in combination
with Mass Spectrometry (MS) or tandem mass spectrometry (MS/MS) is employed for the analysis of
tibolone and/or its metabolites in biological fluids.
Collapse
Affiliation(s)
- Marilene Lopes Ângelo
- Faculty of Pharmaceutical Sciences, Federal University of Alfenas, 700, Rua Gabriel Monteiro da Silva, 37130-000, Alfenas, MG, Brazil
| | - Fernanda de Lima Moreira
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, 14040-903, Ribeirao Preto, SP, Brazil
| | | | - Hérida Regina Nunes Salgado
- Faculty of Pharmaceutical Sciences, UNESP, Campus Araraquara, Rodovia Araraquara Jau, km 01, 14800-903, Araraquara, SP, Brazil
| | - Magali Benjamim de Araújo
- Faculty of Pharmaceutical Sciences, Federal University of Alfenas, 700, Rua Gabriel Monteiro da Silva, 37130-000, Alfenas, MG, Brazil
| |
Collapse
|
18
|
Guo Z, Huang S, Wang J, Feng YL. Recent advances in non-targeted screening analysis using liquid chromatography - high resolution mass spectrometry to explore new biomarkers for human exposure. Talanta 2020; 219:121339. [DOI: 10.1016/j.talanta.2020.121339] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/16/2020] [Accepted: 06/09/2020] [Indexed: 12/29/2022]
|
19
|
Li HS, Lu SC, Chang ZX, Hao L, Li FR, Xia C. Rhodium-Catalyzed Ring-Opening Hydroacylation of Alkylidenecyclopropanes with Chelating Aldehydes for the Synthesis of γ,δ-Unsaturated Ketones. Org Lett 2020; 22:5145-5150. [PMID: 32610932 DOI: 10.1021/acs.orglett.0c01751] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The first intermolecular ring-opening hydroacylation of alkylidenecyclopropanes with chelating aldehydes through a rhodium-catalyzed acrylamide-promoted protocol is reported. This highly efficient catalytic system enables the direct synthesis of a diverse range of linear γ,δ-unsaturated ketones. Good functional group compatibility is demonstrated for the completely atom-economical and remarkably selective proximal C-C bond cleavage process. Mechanistic studies reveal that the bidentate coordination of N,N-dimethylmethacrylamide (L1) to the acylrhodium intermediates might facilitate the cyclopropane ring fragmentation and isomerization.
Collapse
Affiliation(s)
- Hong-Shuang Li
- Institute of Pharmacology, School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, 619 Changcheng Road, Taian 271016, P.R. China
| | - Shi-Chao Lu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2A Nanwei Road, Xicheng District, Beijing 100050, P.R. China
| | - Zhi-Xin Chang
- Institute of Pharmacology, School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, 619 Changcheng Road, Taian 271016, P.R. China
| | - Liqiang Hao
- Institute of Pharmacology, School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, 619 Changcheng Road, Taian 271016, P.R. China
| | - Fu-Rong Li
- Institute of Pharmacology, School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, 619 Changcheng Road, Taian 271016, P.R. China
| | - Chengcai Xia
- Institute of Pharmacology, School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, 619 Changcheng Road, Taian 271016, P.R. China
| |
Collapse
|
20
|
Zhang CX, Wang XY, Lin ZZ, Wang HD, Qian YX, Li WW, Yang WZ, Guo DA. Highly selective monitoring of in-source fragmentation sapogenin product ions in positive mode enabling group-target ginsenosides profiling and simultaneous identification of seven Panax herbal medicines. J Chromatogr A 2020; 1618:460850. [DOI: 10.1016/j.chroma.2020.460850] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/28/2019] [Accepted: 01/02/2020] [Indexed: 01/17/2023]
|
21
|
Schiffer L, Barnard L, Baranowski ES, Gilligan LC, Taylor AE, Arlt W, Shackleton CHL, Storbeck KH. Human steroid biosynthesis, metabolism and excretion are differentially reflected by serum and urine steroid metabolomes: A comprehensive review. J Steroid Biochem Mol Biol 2019; 194:105439. [PMID: 31362062 PMCID: PMC6857441 DOI: 10.1016/j.jsbmb.2019.105439] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 02/07/2023]
Abstract
Advances in technology have allowed for the sensitive, specific, and simultaneous quantitative profiling of steroid precursors, bioactive steroids and inactive metabolites, facilitating comprehensive characterization of the serum and urine steroid metabolomes. The quantification of steroid panels is therefore gaining favor over quantification of single marker metabolites in the clinical and research laboratories. However, although the biochemical pathways for the biosynthesis and metabolism of steroid hormones are now well defined, a gulf still exists between this knowledge and its application to the measured steroid profiles. In this review, we present an overview of steroid hormone biosynthesis and metabolism by the liver and peripheral tissues, specifically highlighting the pathways linking and differentiating the serum and urine steroid metabolomes. A brief overview of the methodology used in steroid profiling is also provided.
Collapse
Affiliation(s)
- Lina Schiffer
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
| | - Lise Barnard
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Elizabeth S Baranowski
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK; Department of Paediatric Endocrinology and Diabetes, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Lorna C Gilligan
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
| | - Angela E Taylor
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK; NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust & University of Birmingham, Birmingham, UK
| | - Cedric H L Shackleton
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK; UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - Karl-Heinz Storbeck
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK; Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
22
|
Sun N, Kunzke T, Sbiera S, Kircher S, Feuchtinger A, Aichler M, Herterich S, Ronchi CL, Weigand I, Schlegel N, Waldmann J, Candida Villares Fragoso M, Whitsett TG, Gill AJ, Fassnacht M, Walch A, Kroiss M. Prognostic Relevance of Steroid Sulfation in Adrenocortical Carcinoma Revealed by Molecular Phenotyping Using High-Resolution Mass Spectrometry Imaging. Clin Chem 2019; 65:1276-1286. [PMID: 31492715 DOI: 10.1373/clinchem.2019.306043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/23/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Adrenocortical carcinoma (ACC) is a rare tumor with variable prognosis even within the same tumor stage. Cancer-related sex hormones and their sulfated metabolites in body fluids can be used as tumor markers. The role of steroid sulfation in ACC has not yet been studied. MALDI mass spectrometry imaging (MALDI-MSI) is a novel tool for tissue-based chemical phenotyping. METHODS We performed phenotyping of formalin-fixed, paraffin-embedded tissue samples from 72 ACC by MALDI-MSI at a metabolomics level. RESULTS Tumoral steroid hormone metabolites-estradiol sulfate [hazard ratio (HR) 0.26; 95% CI, 0.10-0.69; P = 0.005] and estrone 3-sulfate (HR 0.22; 95% CI, 0.07-0.63; P = 0.003)-were significantly associated with prognosis in Kaplan-Meier analyses and after multivariable adjustment for age, tumor stage, and sex (HR 0.29; 95% CI, 0.11-0.79; P = 0.015 and HR 0.30; 95% CI, 0.10-0.91; P = 0.033, respectively). Expression of sulfotransferase SULT2A1 was associated with prognosis to a similar extent and was validated to be a prognostic factor in two published data sets. We discovered the presence of estradiol-17β 3,17-disulfate (E2S2) in a subset of tumors with particularly poor overall survival. Electron microscopy revealed novel membrane-delimited organelles in only these tumors. By applying cluster analyses of metabolomic data, 3 sulfation-related phenotypes exhibited specific metabolic features unrelated to steroid metabolism. CONCLUSIONS MALDI-MSI provides novel insights into the pathophysiology of ACC. Steroid hormone sulfation may be used for prognostication and treatment stratification. Sulfation-related metabolic reprogramming may be of relevance also in conditions beyond the rare ACC and can be directly investigated by the use of MALDI-MSI.
Collapse
Affiliation(s)
- Na Sun
- Research Unit Analytical Pathology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany;
| | - Thomas Kunzke
- Research Unit Analytical Pathology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany;
| | - Silviu Sbiera
- Department of Internal Medicine, Division of Endocrinology and Diabetology, University Hospital Würzburg, Würzburg, Germany
| | - Stefan Kircher
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michaela Aichler
- Research Unit Analytical Pathology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Sabine Herterich
- Central Laboratory, University Hospital Würzburg, Würzburg, Germany
| | - Cristina L Ronchi
- Department of Internal Medicine, Division of Endocrinology and Diabetology, University Hospital Würzburg, Würzburg, Germany.,Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Isabel Weigand
- Department of Internal Medicine, Division of Endocrinology and Diabetology, University Hospital Würzburg, Würzburg, Germany
| | - Nicolas Schlegel
- Department of General, Visceral, Vascular, and Paediatric Surgery, University Hospital Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | | | | | | | - Anthony J Gill
- Royal North Shore Hospital and The University of Sydney, Sydney, Australia
| | - Martin Fassnacht
- Department of Internal Medicine, Division of Endocrinology and Diabetology, University Hospital Würzburg, Würzburg, Germany.,Central Laboratory, University Hospital Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Matthias Kroiss
- Department of Internal Medicine, Division of Endocrinology and Diabetology, University Hospital Würzburg, Würzburg, Germany; .,Central Laboratory, University Hospital Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| |
Collapse
|
23
|
Polet M, Van Gansbeke W, Albertsdóttir AD, Coppieters G, Deventer K, Van Eenoo P. Gas chromatography−mass spectrometry analysis of non‐hydrolyzed sulfated steroids by degradation product formation. Drug Test Anal 2019; 11:1656-1665. [DOI: 10.1002/dta.2606] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Michael Polet
- Department of Diagnostic Sciences, Doping Control LaboratoryGhent University Zwijnaarde Belgium
| | - Wim Van Gansbeke
- Department of Diagnostic Sciences, Doping Control LaboratoryGhent University Zwijnaarde Belgium
| | | | - Gilles Coppieters
- Department of Diagnostic Sciences, Doping Control LaboratoryGhent University Zwijnaarde Belgium
| | - Koen Deventer
- Department of Diagnostic Sciences, Doping Control LaboratoryGhent University Zwijnaarde Belgium
| | - Peter Van Eenoo
- Department of Diagnostic Sciences, Doping Control LaboratoryGhent University Zwijnaarde Belgium
| |
Collapse
|
24
|
Pranata A, Fitzgerald CC, Khymenets O, Westley E, Anderson NJ, Ma P, Pozo OJ, McLeod MD. Synthesis of steroid bisglucuronide and sulfate glucuronide reference materials: Unearthing neglected treasures of steroid metabolism. Steroids 2019; 143:25-40. [PMID: 30513322 DOI: 10.1016/j.steroids.2018.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/24/2018] [Accepted: 11/26/2018] [Indexed: 02/06/2023]
Abstract
Doubly or bisconjugated steroid metabolites have long been known as minor components of the steroid profile that have traditionally been studied by laborious and indirect fractionation, hydrolysis and gas chromatography-mass spectrometry (GC-MS) analysis. Recently, the synthesis and characterisation of steroid bis(sulfate) (aka disulfate or bis-sulfate) reference materials enabled the liquid chromatography-tandem mass spectrometry (LC-MS/MS) study of this metabolite class and the development of a constant ion loss (CIL) scan method for the direct and untargeted detection of steroid bis(sulfate) metabolites. Methods for the direct LC-MS/MS detection of other bisconjugated steroids, such as steroid bisglucuronide and mixed steroid sulfate glucuronide metabolites, have great potential to reveal a more complete picture of the steroid profile. However, access to steroid bisglucuronide or sulfate glucuronide reference materials necessary for LC-MS/MS method development, metabolite identification or quantification is severely limited. In this work, ten steroid bisglucuronide and ten steroid sulfate glucuronide reference materials were synthesised through an ordered combination of chemical sulfation and/or enzymatic glucuronylation reactions. All compounds were purified and characterised using NMR and MS methods. Chemistry for the preparation of stable isotope labelled steroid {13C6}-glucuronide internal standards has also been developed and applied to the preparation of two selectively mono-labelled steroid bisglucuronide reference materials used to characterise more completely MS fragmentation pathways. The electrospray ionisation and fragmentation of the bisconjugated steroid reference materials has been studied. Preliminary targeted ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis of the reference materials prepared revealed the presence of three steroid sulfate glucuronides as endogenous human urinary metabolites.
Collapse
Affiliation(s)
- Andy Pranata
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | | | - Olha Khymenets
- Integrative Pharmacology and Systems Neuroscience Group, IMIM, Hospital del Mar, Doctor Aiguader 88, Barcelona, Spain
| | - Erin Westley
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Natasha J Anderson
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Paul Ma
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Oscar J Pozo
- Integrative Pharmacology and Systems Neuroscience Group, IMIM, Hospital del Mar, Doctor Aiguader 88, Barcelona, Spain
| | - Malcolm D McLeod
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
25
|
Shackleton C, Pozo OJ, Marcos J. GC/MS in Recent Years Has Defined the Normal and Clinically Disordered Steroidome: Will It Soon Be Surpassed by LC/Tandem MS in This Role? J Endocr Soc 2018. [PMID: 30094411 DOI: 10.1210/js.2018-00135.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Gas chromatography/mass spectrometry (GC/MS) has been used for steroid analysis since the 1960s. The advent of protective derivatization, capillary columns, and inexpensive electron ionization bench-top single quadrupole soon made it the method of choice for studying disorders of steroid synthesis and metabolism. However, the lengthy sample workup prevented GC/MS from becoming routine for steroid hormone measurement, which was dominated by radioimmunoassay. It was the emergence of liquid chromatography/tandem MS (LC/MS/MS) that sparked a renewed interest in GC/MS for the multicomponent analysis of steroids. GC/MS is excellent at providing an integrated picture of a person's steroid metabolome, or steroidome, as we term it. We review the recent work on newly described disorders and discuss the technical advances such as GC coupling to triple quadrupole and ion trap analyzers, two-dimensional GC/MS, and alternative ionization and detection systems such as atmospheric pressure chemical ionization (APCI) and time of flight. We believe that no novel GC/MS-based technique has the power of GC(electron ionization)/MS/MS as a "discovery tool," although APCI might provide ultimate sensitivity, which might be required in tissue steroidomics. Finally, we discuss the role of LC/MS/MS in steroidomics. This remains a challenge but offers shorter analysis times and advantages in the detection and discovery of steroids with a known structure. We describe recent advances in LC/MS steroidomics of hydrolyzed and intact steroid conjugates and suggest the technique is catching up with GC/MS in this area. However, in the end, both techniques will likely remain complementary and both should be available in advanced analytical laboratories.
Collapse
Affiliation(s)
- Cedric Shackleton
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom.,UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, California
| | - Oscar J Pozo
- Integrative Pharmacology and Systems Neuroscience Research Group, Institut Hospital del Mar d'Investigacions Mèdiques-Hospital del Mar Research Institute, Barcelona, Spain
| | - Josep Marcos
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
26
|
Pozo OJ, Marcos J, Khymenets O, Pranata A, Fitzgerald CC, McLeod MD, Shackleton C. SULFATION PATHWAYS: Alternate steroid sulfation pathways targeted by LC-MS/MS analysis of disulfates: application to prenatal diagnosis of steroid synthesis disorders. J Mol Endocrinol 2018; 61:M1-M12. [PMID: 29459491 DOI: 10.1530/jme-17-0286] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 02/19/2018] [Indexed: 01/01/2023]
Abstract
The steroid disulfates (aka bis-sulfates) are a significant but minor fraction of the urinary steroid metabolome that have not been widely studied because major components are not hydrolyzed by the commercial sulfatases commonly used in steroid metabolomics. In early studies, conjugate fractionation followed by hydrolysis using acidified solvent (solvolysis) was used for the indirect detection of this fraction by GC-MS. This paper describes the application of a specific LC-MS/MS method for the direct identification of disulfates in urine, and their use as markers for the prenatal diagnosis of disorders causing reduced estriol production: STSD (steroid sulfatase deficiency), SLOS (Smith-Lemli-Opitz syndrome) and PORD (P450 oxidoreductase deficiency). Disulfates were detected by monitoring a constant ion loss (CIL) from the molecular di-anion. While focused on disulfates, our methodology included an analysis of intact steroid glucuronides and monosulfates because steroidogenic disorder diagnosis usually requires an examination of the complete steroid profile. In the disorders studied, a few individual steroids (as disulfates) were found particularly informative: pregn-5-ene-3β,20S-diol, pregn-5-ene-3β,21-diol (STSD, neonatal PORD) and 5α-pregnane-3β,20S-diol (pregnancy PORD). Authentic steroid disulfates were synthesized for use in this study as aid to characterization. Tentative identification of 5ξ-pregn-7-ene-3ξ,20S-diol and 5ξ-pregn-7-ene-3ξ,17,20S-triol disulfates was also obtained in samples from SLOS affected pregnancies. Seven ratios between the detected metabolites were applied to distinguish the three selected disorders from control samples. Our results show the potential of the direct detection of steroid conjugates in the diagnosis of pathologies related with steroid biosynthesis.
Collapse
Affiliation(s)
- Oscar J Pozo
- Integrative Pharmacology and Systems Neuroscience GroupIMIM, Hospital del Mar, Barcelona, Spain
| | - Josep Marcos
- Department of Experimental and Health SciencesUniversitat Pompeu Fabra, Barcelona, Spain
- Cerba InternacionalBarcelona, Spain
| | - Olha Khymenets
- Integrative Pharmacology and Systems Neuroscience GroupIMIM, Hospital del Mar, Barcelona, Spain
| | - Andy Pranata
- Research School of ChemistryAustralian National University, Canberra, Australia
| | | | - Malcolm D McLeod
- Research School of ChemistryAustralian National University, Canberra, Australia
| | - Cedric Shackleton
- Institute of Metabolism and Systems Research (IMSR)University of Birmingham, College of Medical and Dental Sciences, Birmingham, UK
- UCSF Benioff Children's Hospital Oakland Research InstituteOakland, California, USA
| |
Collapse
|
27
|
Foster PA, Mueller JW. SULFATION PATHWAYS: Insights into steroid sulfation and desulfation pathways. J Mol Endocrinol 2018; 61:T271-T283. [PMID: 29764919 DOI: 10.1530/jme-18-0086] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 12/18/2022]
Abstract
Sulfation and desulfation pathways represent highly dynamic ways of shuttling, repressing and re-activating steroid hormones, thus controlling their immense biological potency at the very heart of endocrinology. This theme currently experiences growing research interest from various sides, including, but not limited to, novel insights about phospho-adenosine-5'-phosphosulfate synthase and sulfotransferase function and regulation, novel analytics for steroid conjugate detection and quantification. Within this review, we will also define how sulfation pathways are ripe for drug development strategies, which have translational potential to treat a number of conditions, including chronic inflammatory diseases and steroid-dependent cancers.
Collapse
Affiliation(s)
- Paul A Foster
- Institute of Metabolism and Systems Research (IMSR)University of Birmingham, Birmingham, UK
- Centre for EndocrinologyDiabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, UK
| | - Jonathan Wolf Mueller
- Institute of Metabolism and Systems Research (IMSR)University of Birmingham, Birmingham, UK
- Centre for EndocrinologyDiabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, UK
| |
Collapse
|
28
|
Shackleton C, Pozo OJ, Marcos J. GC/MS in Recent Years Has Defined the Normal and Clinically Disordered Steroidome: Will It Soon Be Surpassed by LC/Tandem MS in This Role? J Endocr Soc 2018; 2:974-996. [PMID: 30094411 PMCID: PMC6080058 DOI: 10.1210/js.2018-00135] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/02/2018] [Indexed: 12/17/2022] Open
Abstract
Gas chromatography/mass spectrometry (GC/MS) has been used for steroid analysis since the 1960s. The advent of protective derivatization, capillary columns, and inexpensive electron ionization bench-top single quadrupole soon made it the method of choice for studying disorders of steroid synthesis and metabolism. However, the lengthy sample workup prevented GC/MS from becoming routine for steroid hormone measurement, which was dominated by radioimmunoassay. It was the emergence of liquid chromatography/tandem MS (LC/MS/MS) that sparked a renewed interest in GC/MS for the multicomponent analysis of steroids. GC/MS is excellent at providing an integrated picture of a person's steroid metabolome, or steroidome, as we term it. We review the recent work on newly described disorders and discuss the technical advances such as GC coupling to triple quadrupole and ion trap analyzers, two-dimensional GC/MS, and alternative ionization and detection systems such as atmospheric pressure chemical ionization (APCI) and time of flight. We believe that no novel GC/MS-based technique has the power of GC(electron ionization)/MS/MS as a “discovery tool,” although APCI might provide ultimate sensitivity, which might be required in tissue steroidomics. Finally, we discuss the role of LC/MS/MS in steroidomics. This remains a challenge but offers shorter analysis times and advantages in the detection and discovery of steroids with a known structure. We describe recent advances in LC/MS steroidomics of hydrolyzed and intact steroid conjugates and suggest the technique is catching up with GC/MS in this area. However, in the end, both techniques will likely remain complementary and both should be available in advanced analytical laboratories.
Collapse
Affiliation(s)
- Cedric Shackleton
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom.,UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, California
| | - Oscar J Pozo
- Integrative Pharmacology and Systems Neuroscience Research Group, Institut Hospital del Mar d'Investigacions Mèdiques-Hospital del Mar Research Institute, Barcelona, Spain
| | - Josep Marcos
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
29
|
Rapid tentative identification of synthetic cathinones in seized products taking advantage of the full capabilities of triple quadrupole analyzer. Forensic Toxicol 2018. [DOI: 10.1007/s11419-018-0432-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Grosser G, Bennien J, Sánchez-Guijo A, Bakhaus K, Döring B, Hartmann M, Wudy SA, Geyer J. Transport of steroid 3-sulfates and steroid 17-sulfates by the sodium-dependent organic anion transporter SOAT (SLC10A6). J Steroid Biochem Mol Biol 2018; 179:20-25. [PMID: 28951227 DOI: 10.1016/j.jsbmb.2017.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/15/2017] [Accepted: 09/21/2017] [Indexed: 01/08/2023]
Abstract
UNLABELLED The sodium-dependent organic anion transporter SOAT/Soat shows highly specific transport activity for sulfated steroids. SOAT substrates identified so far include dehydroepiandrosterone sulfate, 16α-hydroxydehydroepiandrosterone sulfate, estrone-3-sulfate, pregnenolone sulfate, 17β-estradiol-3-sulfate, and androstenediol sulfate. Apart from these compounds, many other sulfated steroids occur in mammals. Therefore, we aimed to expand the substrate spectrum of SOAT and analyzed the SOAT-mediated transport of eight different sulfated steroids by combining in vitro transport experiments in SOAT-transfected HEK293 cells with LC-MS/MS analytics of cell lysates. In addition, we aimed to better understand the structural requirements for SOAT substrates and so selected structural pairs varying only at specific positions: 3α/3β-sulfate, 17α/17β-sulfate, mono-sulfate/di-sulfate, and 17α-hydroxylation. We found significant and sodium-dependent SOAT-mediated transport of 17α-hydroxypregnenolone sulfate, 17β-estradiol-17-sulfate, androsterone sulfate, epiandrosterone sulfate, testosterone sulfate, epitestosterone sulfate, and 5α-dihydrotestosterone sulfate. However, 17β-estradiol-3,17-disulfate was not transported by SOAT. IN CONCLUSION SOAT substrates from the group of sulfated steroids are characterized by a planar and lipophilic steroid backbone in trans-trans-trans conformation of the rings and a negatively charged mono-sulfate group at positions 3' or 17' with flexibility for α- or β- orientation. Furthermore, 5α-reduction, 16α-hydroxylation, and 17α-hydroxylation are acceptable for SOAT substrate recognition, whereas addition of a second negatively charged sulfate group seems to abolish substrate binding to SOAT, and so 17β-estradiol-3,17-disulfate is not transported by SOAT.
Collapse
Affiliation(s)
- Gary Grosser
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Germany
| | - Josefine Bennien
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Germany
| | - Alberto Sánchez-Guijo
- Steroid Research and Mass Spectrometry Unit, Pediatric Endocrinology and Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University Giessen, Germany
| | - Katharina Bakhaus
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Germany
| | - Barbara Döring
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Germany
| | - Michaela Hartmann
- Steroid Research and Mass Spectrometry Unit, Pediatric Endocrinology and Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University Giessen, Germany
| | - Stefan A Wudy
- Steroid Research and Mass Spectrometry Unit, Pediatric Endocrinology and Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University Giessen, Germany
| | - Joachim Geyer
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Germany.
| |
Collapse
|
31
|
Abstract
Urine is a biological matrix that contains hundreds of metabolic end products which constitute the urinary metabolome. The development and advances on LC-MS/MS have revolutionized the analytical study of biomolecules by enabling their accurate identification and quantification in an unprecedented manner. Nowadays, LC-MS/MS is helping to unveil the complexity of urine metabolome, and the results obtained have multiple biomedical applications. This review focuses on the targeted LC-MS/MS analysis of the urine metabolome. In the first part, we describe general considerations (from sample collection to quantitation) required for a proper targeted metabolic analysis. In the second part, we address the urinary analysis and recent applications of four relevant families: amino acids, catecholamines, lipids and steroids.
Collapse
|
32
|
Esquivel A, Matabosch X, Kotronoulas A, Balcells G, Joglar J, Ventura R. Ionization and collision induced dissociation of steroid bisglucuronides. JOURNAL OF MASS SPECTROMETRY : JMS 2017; 52:759-769. [PMID: 28732133 DOI: 10.1002/jms.3973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
Studies on steroid metabolism are of utmost importance to improve the detection capabilities of anabolic androgenic steroids (AASs) misuse in sports drug testing. In humans, glucuronoconjugates are the most abundant phase II metabolites of AAS. Bisglucuronidation is a reaction where two separated functional groups on the same molecule are conjugated with glucuronic acid. These metabolites have not been studied in depth for steroids and could be interesting markers for doping control. The aim of the present work was to study the ionization and collision-induced dissociation of steroid bisglucuronides to be able to develop mass spectrometric analytical strategies for their detection in urine samples after AAS administration. Because steroid bisglucuronides are not commercially available, 19 of them were qualitatively synthesized to study their mass spectrometric behavior. Bisglucuronides ionized as [M+NH4 ]+ in positive mode, and as [M-H]- and [M-2H]2- in negative mode. The most specific product ions of steroid bisglucuronides in positive mode resulted from the neutral losses of 387 and 405 Da (corresponding to [M+NH4 -NH3 -2gluc-H2 O]+ and [M+NH4 -NH3 -2gluc-2H2 O]+ , respectively, being "gluc" a dehydrated glucuronide moiety), and in negative mode, the fragmentation of [M-2H]2- showed ion losses of m/z 175 and 75 (gluc- and HOCH2 CO2- , respectively). On the basis of the common behavior, a selected reaction monitoring method was developed to detect bisglucuronide metabolites in urine samples. As a proof of concept, urines obtained after administration of norandrostenediol were studied, and a bisglucuronide metabolite was detected in those urines. The results demonstrate the usefulness of the analytical strategy to detect bisglucuronide metabolites in urine samples, and the formation of these metabolites after administration of AAS.
Collapse
Affiliation(s)
- Argitxu Esquivel
- Barcelona Antidoping Laboratory, Doping Control Research Group, IMIM, Hospital del Mar Medical Research Institute, Doctor Aiguader 88, 08003, Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Xavier Matabosch
- Barcelona Antidoping Laboratory, Doping Control Research Group, IMIM, Hospital del Mar Medical Research Institute, Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Aristotelis Kotronoulas
- Department of Biological Chemistry and Molecular Modeling, Instituto de Química Avanzada de Cataluña, Consejo Superior de Investigaciones Científicas (IQAC-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
- Integrative Pharmacology and Systems Neurocience Research Group, IMIM, Hospital del Mar Medical Research Institute, Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Georgina Balcells
- Barcelona Antidoping Laboratory, Doping Control Research Group, IMIM, Hospital del Mar Medical Research Institute, Doctor Aiguader 88, 08003, Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Jesús Joglar
- Department of Biological Chemistry and Molecular Modeling, Instituto de Química Avanzada de Cataluña, Consejo Superior de Investigaciones Científicas (IQAC-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Rosa Ventura
- Barcelona Antidoping Laboratory, Doping Control Research Group, IMIM, Hospital del Mar Medical Research Institute, Doctor Aiguader 88, 08003, Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Doctor Aiguader 88, 08003, Barcelona, Spain
| |
Collapse
|