1
|
Grazioli C, Abate M, Dossi N. PySpectro: A modular 3D printed, machine learning assisted optical device for recognition and quantification of samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 336:126058. [PMID: 40107133 DOI: 10.1016/j.saa.2025.126058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 03/05/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Over the past decade, science and technology have achieved great advancements driven by the synergy between materials and manufacturing processes; coupled with the growth of informatics, which offers powerful tools to process and interpret data, new analytical devices have been developed. This work describes a modular 3D printed instrument that utilizes the AS7262 light sensor coupled with a LED to perform absorbance and reflectance measurements. The mode of operation can be switched by conveniently attaching different 3D printed parts. An Arduino Nano is used for operating the electronics, and a python-based software is employed for data handling. The device, beside spectra acquisition, allows rapid identification and quantification of samples through a database and machine learning (ML) algorithms. A recursive methodology for regression specifically designed allowed sample quantification in a range spanning around 2.5 orders of magnitude with errors generally below 10%. PySpectro was used on homogeneous solution and on PADs (Paper-based Analytical Devices) for food dyes and phosphomolybdic assay for phosphate. The device may find applications in any colorimetric detection also outside the laboratory environment and can be a time-saving tool for fast preliminary determinations or educational purposes.
Collapse
Affiliation(s)
- Cristian Grazioli
- Sustainable Analytical Instrumentation Laboratory (Sustain Lab), Department of Agrifood, Environmental and Animal Science, University of Udine, via Cotonificio 108, I-33100 Udine, Italy.
| | - Michele Abate
- Sustainable Analytical Instrumentation Laboratory (Sustain Lab), Department of Agrifood, Environmental and Animal Science, University of Udine, via Cotonificio 108, I-33100 Udine, Italy
| | - Nicolò Dossi
- Sustainable Analytical Instrumentation Laboratory (Sustain Lab), Department of Agrifood, Environmental and Animal Science, University of Udine, via Cotonificio 108, I-33100 Udine, Italy.
| |
Collapse
|
2
|
Lingadharini P, Maji D. Eco-sustainable point-of-care devices: Progress in paper and fabric based electrochemical and colorimetric biosensors. Talanta 2025; 285:127397. [PMID: 39700723 DOI: 10.1016/j.talanta.2024.127397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Monitoring real-time health conditions is a rinsing demand in a pandemic prone era. Wearable Point-of-Care (POC) devices with paper and fabric-based sensors are emerging as simple, low-cost, portable, and disposable analytical tools for development of green POC devices (GPOCDs). Capabilities of passive fluid transportation, compatibility with biochemical analytes, disposability and high degree of tunability using vivid device fabrication strategies enables development of highly sensitive and economically feasible POC sensors in particularly post COVID-19 pandemic outbreak. Herein we focus mainly on development of biosensors for testing body fluids in the last 5 years using microfluidic technique through electrochemical and colorimetric principle which forms the two most competing sensing techniques providing quantitative and qualitative assessment modalities respectively and forms almost 80 % of the diagnostic platform worldwide. Present review highlights use of these popular substrates as well as various fabrication strategies for realization of GPOCDs ranging from costly and highly sophisticated photolithography to low cost, non conventional techniques like use of correction ink or marker based devices to even novel pop-up/origami induced patterning techniques. Insights into the advancements in colorimetric technique like distance, count or even text based semi-quantitative read-out modality as a on-hand diagnostic information has also been provided. Finally, future outlooks with other interdisciplinary modalities like use of novel materials, incorporation of digital tools like artificial intelligence (AI), machine learning (ML) and strategies for sensitivity and reliability improvement of future GPOCDs have also been discussed.
Collapse
Affiliation(s)
- P Lingadharini
- Department of Sensor and Biomedical Technology, School of Electronics Engineering (SENSE), Vellore Institute of Technology, Vellore, 632014, India
| | - Debashis Maji
- Department of Sensor and Biomedical Technology, School of Electronics Engineering (SENSE), Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
3
|
Na'es M, Lühl L, Kanngießer B. A new conservation material for gold in heritage wall paintings: polymer-stabilized nanogold gels (NGGs). NANOSCALE ADVANCES 2025; 7:1061-1076. [PMID: 39723235 PMCID: PMC11667577 DOI: 10.1039/d4na00877d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024]
Abstract
Gilded wall paintings such as those in Petra-Jordan undergo deterioration processes such as delamination and loss of the gold layer. The aim of this work is to produce a functioning long-lasting adhesive that compensates for binder and gold loss while stabilising the gold layer. Polymer-stabilised gold nanoparticles (AuNPs) as a conservation material for gilded heritage paintings (Nano Gold Gel (NGG)) were synthesised using two facile and affordable synthesis approaches. AuNPs enhance the stability of the adhesive polymer over time and introduce mass conservation to the gold layer. Two natural polymers and one synthetic polymer, frequently used in conservation as adhesives, were used as reducing agents and stabilisers for the nanoparticles. The chemical alteration of the polymers and the Au-polymer interaction at the molecular level were investigated with FTIR spectroscopy, while the chemical environment of gold was investigated with X-ray absorption spectroscopy (XANES/EXAFS). The synthesized NGG was applied on the replica samples to reattach the gold layer to its support. Characterisation results indicate that the formation of AuNPs stabilised by the three polymers did not alter the chemical structure of the polymers. The applied NGG successfully achieved re-adhesion and exhibited appropriate optical and chemical properties for use as a conservation material.
Collapse
Affiliation(s)
- Maram Na'es
- Institute for Optics and Atomic Physics, Technical University Berlin Hardenbergstr. 36 10623 Berlin Germany
| | - Lars Lühl
- Institute for Optics and Atomic Physics, Technical University Berlin Hardenbergstr. 36 10623 Berlin Germany
| | - Birgit Kanngießer
- Institute for Optics and Atomic Physics, Technical University Berlin Hardenbergstr. 36 10623 Berlin Germany
| |
Collapse
|
4
|
Leung M, Zhang L, Li X, Yu HZ. Superhydrophobic Paper Strips with Embedded Agarose-Anthocyanin Mini-Discs for Point-of-Need Quantitative pH Measurements. Anal Chem 2024; 96:15808-15815. [PMID: 39300344 DOI: 10.1021/acs.analchem.4c04242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Commercial pH paper is a quick and simple tool for measuring a solution's acidity/basicity, but it only provides qualitative or semi-quantitative results, and the synthetic indicator dyes within can be toxic or carcinogenic. Although pH meters enable more accurate and quantitative analysis, they are less convenient to operate and are tedious to calibrate. This presents a need for an alternative pH testing method for applications where it is not easy or possible to use a pH meter, yet quantitative results are desired. We report herein the fabrication of a pH test strip made from superhydrophobic paper and agarose-anthocyanin film discs. In the proposed method, test strips are dipped into samples and then imaged with a portable scanner (or a smartphone). The color of the film is extracted with ImageJ software (or a mobile app), using the RGB color system. By generating a calibration curve relating the film color to the sample pH using standard buffer solutions, we are able to quantify the pH of beverages and other liquids with an accuracy and precision comparable to that of a pH meter. The test strips offer the same convenience as conventional pH paper, with the added capabilities of quantitation and multiplexed testing, which presents a practical tool for point-of-need pH analysis.
Collapse
Affiliation(s)
- Michelle Leung
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Lingling Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Yuci, Shanxi 030600, China
| | - Xiaochun Li
- College of Biomedical Engineering, Taiyuan University of Technology, Yuci, Shanxi 030600, China
| | - Hua-Zhong Yu
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- College of Biomedical Engineering, Taiyuan University of Technology, Yuci, Shanxi 030600, China
| |
Collapse
|
5
|
Maiti S. Simultaneous quantification of serum albumin and gamma globulin using Zn(II)-metallosurfactant via a coffee ring pattern. Chem Commun (Camb) 2023; 59:6536-6539. [PMID: 37161733 DOI: 10.1039/d3cc01221b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Herein, we report interactivity and conjugate formation ability between a Zn(II)-metallosurfactant and two clinically relevant serum proteins, albumin (ALB) and γ-globulin (GGB). We found that the surfactant-ALB conjugate promotes coffee ring formation, whereas with GGB it gets suppressed, which is due to the difference in structural anisotropy and hydrophobicity of the conjugates. Additionally, validation of this biosensing platform has been established in human serum samples, and it has potential applications for on-spot rapid diagnostics in remote areas.
Collapse
Affiliation(s)
- Subhabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India.
| |
Collapse
|
6
|
Xiao J, Jiang J, Zhao Z, Guo J, Wang J. Clarity improvement of the discoloration boundary and detection of Hg 2+ ions by using a polystyrene nanoparticle-modified paper-based microdevice. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2366-2375. [PMID: 37129571 DOI: 10.1039/d3ay00174a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Distance-based microfluidic paper-based analytical devices (μPADs) can be used to calculate the analyte content by reading the length of the discolored area in the channel. A blurred discoloration boundary is difficult to distinguish, resulting in reading errors. In this study, we constructed a μPAD modified with carboxyl-containing polystyrene nanoparticles (PS-μPAD) to improve the discoloration-boundary clarity. The filling of the pores of the fibers with the deposited polystyrene nanoparticles (PS NPs) caused a decrease in the paper porosity, resulting in a flow delay. Meanwhile, the carboxyl groups carried by PS NPs were able to form hydrogen bonds with hydroxyl-containing compounds FLPI, a Hg2+ probe, and the two factors acted synergistically to fix the FLPI to react in situ, raising the discoloration-boundary clarity. Compared with the unmodified μPAD, the detection of Hg2+ ions using the PS-μPAD still had a good linear relationship. Importantly, the color-depth difference inside and outside the discoloration boundary improved by about four times and showed excellent reproducibility in different populations. The method was simple and easy to expand, thereby providing an idea for more widespread application of distance-based μPADs.
Collapse
Affiliation(s)
- Jingcheng Xiao
- College of Chemical & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Jingjing Jiang
- College of Chemical & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Zexu Zhao
- College of Chemical & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Jiahao Guo
- College of Chemical & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Jinyi Wang
- College of Chemical & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| |
Collapse
|
7
|
Macagno J, Gerlero GS, Satuf ML, Berli CL. Field-deployable aptasensor with automated analysis of stain patterns for the detection of chlorpyrifos in water. Talanta 2023; 252:123782. [DOI: 10.1016/j.talanta.2022.123782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/19/2022] [Accepted: 07/24/2022] [Indexed: 10/15/2022]
|
8
|
Yang M, Chen D, Hu J, Zheng X, Lin ZJ, Zhu H. The application of coffee-ring effect in analytical chemistry. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
9
|
Yang J, Yang J, Gong X, Zheng Y, Yi S, Cheng Y, Li Y, Liu B, Xie X, Yi C, Jiang L. Recent Progress in Microneedles-Mediated Diagnosis, Therapy, and Theranostic Systems. Adv Healthc Mater 2022; 11:e2102547. [PMID: 35034429 DOI: 10.1002/adhm.202102547] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/04/2022] [Indexed: 02/06/2023]
Abstract
Theranostic system combined diagnostic and therapeutic modalities is critical for the real-time monitoring of disease-related biomarkers and personalized therapy. Microneedles, as a multifunctional platform, are promising for transdermal diagnostics and drug delivery. They have shown attractive properties including painless skin penetration, easy self-administration, prominent therapeutic effects, and good biosafety. Herein, an overview of the microneedles-based diagnosis, therapies, and theranostic systems is given. Four microneedles-based detection methods are concluded based on the sensing mechanism: i) electrochemistry, ii) fluorometric, iii) colorimetric, and iv) Raman methods. Additionally, robust microneedles are suitable for implantable drug delivery. Microneedles-assisted transdermal drug delivery can be primarily classified as passive, active, and responsive drug release, based on the release mechanisms. Microneedles-assisted oral and implantable drug delivery mechanisms are also presented in this review. Furthermore, the key frontier developments in microneedles-mediated theranostic systems as the major selling points are emphasized in this review. These systems are classified into open-loop and closed-loop theranostic systems based on the indirectness and directness of feedback between the transdermal diagnosis and therapy, respectively. Finally, conclusions and future perspectives for next-generation microneedles-mediated theranostic systems are also discussed. Taken together, microneedle-based systems are promising as the new avenue for diagnosis, therapy, and disease-specific closed-loop theranostic applications.
Collapse
Affiliation(s)
- Jian Yang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Jingbo Yang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Xia Gong
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Ying Zheng
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Shengzhu Yi
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Yanxiang Cheng
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Yanjun Li
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Bin Liu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies School of Electronics and Information Technology Sun Yat‐Sen University Guangzhou 510006 P. R. China
| | - Changqing Yi
- Research Institute of Sun Yat‐Sen University in Shenzhen Shenzhen 518057 P. R. China
| | - Lelun Jiang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument School of Biomedical Engineering Shenzhen Campus of Sun Yat‐Sen University Shenzhen 518107 P. R. China
| |
Collapse
|
10
|
Tan W, Zhang L, Jarujamrus P, C G Doery J, Shen W. Improvement Strategies on Colorimetric Performance and Practical Applications of Paper-based Analytical Devices. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Zhao B, Qi L, Tai W, Zhao M, Chen X, Yu L, Shi J, Wang X, Lin JM, Hu Q. Paper-Based Flow Sensor for the Detection of Hyaluronidase via an Enzyme Hydrolysis-Induced Viscosity Change in a Polymer Solution. Anal Chem 2022; 94:4643-4649. [PMID: 35258931 DOI: 10.1021/acs.analchem.1c04552] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hyaluronidase (HAase) is implicated in inflammation, cancer development, and allergic reaction. The detection of HAase is significantly important in clinical diagnosis and medical treatment. Herein, we propose a new principle for the development of equipment-free and label-free paper-based flow sensors based on the enzymatic hydrolysis-induced viscosity change in a stimuli-responsive polymer solution, which increases the water flow distance on the pH indicator paper. The detection of HAase is demonstrated as an example. This facile and versatile method can overcome the potential drawbacks of traditional hydrogel-based sensors, including complex preparation steps, slow response time, or low sensitivity. Moreover, it can also avoid the use of specialized instruments, labeled molecules, or functionalized nanoparticles in the sensors developed using the polymer solutions. Using this strategy, the detection of HAase is achieved with a limit of detection as low as 0.2 U/mL. Also, it works well in human urine. Additionally, the detection of tannic acid, which is an inhibitor of HAase, is also fulfilled. Overall, a simple, efficient, high-throughput, and low-cost detection method is developed for the rapid and quantitative detection of HAase and its inhibitor without the use of labeled molecules, synthetic particles, and specialized instruments. As only minimal reagents of HAase, HA, and paper are used, it is very promising in the development of commercial kits for point-of-care testing.
Collapse
Affiliation(s)
- Binglu Zhao
- School of Pharmaceutical Sciences, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, China
| | - Lubin Qi
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| | - Wenjun Tai
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| | - Mei Zhao
- School of Pharmaceutical Sciences, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, China
| | - Xiangfeng Chen
- School of Pharmaceutical Sciences, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, China
| | - Li Yu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| | - Jianguo Shi
- Key Laboratory for Biosensors of Shandong Province, Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xiao Wang
- School of Pharmaceutical Sciences, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, China
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qiongzheng Hu
- School of Pharmaceutical Sciences, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, China
| |
Collapse
|
12
|
Zhang J, Zhang Y, Shi G. Interface engineering with self-assembling Au@Ag@β-cyclodextrin bimetal nanoparticles to fabricate a ring-like arrayed SERS substrate for sensitive recognition of phthalate esters based on a host-guest interaction and the coffee ring effect. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:259-268. [PMID: 34985059 DOI: 10.1039/d1ay01636a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Herein, Au@Ag@β-cyclodextrin (β-CD) nanoparticles with a relatively uniform shape and size of ∼13 nm in diameter have been successfully synthesized, and the surfaces of the synthesized nanoparticles are successful modified by β-CD. A highly efficient synthetic approach was developed for the preparation of a surface-enhanced Raman spectroscopy (SERS) substrate, which self-assembles Au@Ag@β-CD nanoparticles and analytes into a coffee ring pattern via the coffee ring effect. The coffee ring effect can make phthalates (PAEs) aggregate to the edge together with the Au@Ag@β-CD nanoparticles and concentration enrichment can be achieved. In addition, the surface of the core-shell Au@Ag@β-CD is modified with β-CD with a cavity structure, which can enrich analyte concentration by adsorbing the analytes into the hydrophobic cavity using host-guest recognition. This enrichment process not only improves the concentration of the surface of the analyte but also effectively distinguishes it from other substances in the analyte solution. The mechanism of enrichment and host-guest recognition is verified by subsequent molecular docking simulation. Thus, a ring-like arrayed SERS substrate with dual-strategy enrichment is used to detect PAEs. The experiments using the ring-like arrayed SERS substrate, gave a limit of detection of 0.2 nM for DOP detection, the recovery rate of the spiked samples ranged from 92.3% to 106.6%, and an RSD of less than 6% for PAE detection is obtained. This work provided a simple, rapid, low-cost, highly sensitive and stable method for PAE detection in life and the environment.
Collapse
Affiliation(s)
- Jingfei Zhang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China.
| | - Yu Zhang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China.
| | - Guoyue Shi
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China.
| |
Collapse
|
13
|
Kalinichev AV, Kravchenko AV, Gryazev IP, Kechin AA, Karpukhin OR, Khairullina EM, Kartsova LA, Golovkina AG, Kozynchenko VA, Peshkova MA, Tumkin II. Classification of ballpoint pen inks based on selective extraction and subsequent digital color and cluster analyses. Analyst 2022; 147:3055-3064. [DOI: 10.1039/d2an00482h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Extraction and color analysis coupled with machine learning allows clustering of pen inks and realizing preliminary classification when assessing document age.
Collapse
Affiliation(s)
- Andrey V. Kalinichev
- Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | | | - Ivan P. Gryazev
- Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Arseniy A. Kechin
- Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Oleg R. Karpukhin
- Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | | | - Liudmila A. Kartsova
- Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Anna G. Golovkina
- Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | | | - Maria A. Peshkova
- Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Ilya I. Tumkin
- Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| |
Collapse
|
14
|
Wang X, Zhang W, Wang S, Liu W, Liu N, Zhang D. A visual cardiovascular biomarker detection strategy based on distance as readout by the coffee-ring effect on microfluidic paper. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Guo Z, Chen P, Wang M, Zuo M, El-Seedi HR, Chen Q, Shi J, Zou X. Rapid enrichment detection of patulin and alternariol in apple using surface enhanced Raman spectroscopy with coffee-ring effect. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
A fluorescent and colorimetric dual-channel sensor based on acid phosphatase-triggered blocking of internal filtration effect. Mikrochim Acta 2021; 188:282. [PMID: 34341880 DOI: 10.1007/s00604-021-04951-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
A colorimetric and fluorescent dual-channel detection method for acid phosphatase (ACP) activity has been constructed, based on the internal filtering effect between oxidized 3,3',5,5'-tetramethylbenzidine (oxTMB) and rhodamine B (RB). Au3+, which in situ form gold nanoparticles (AuNPs), can oxidize colorless 3,3',5,5'-tetramethylbenzidine (TMB) to oxTMB (blue color). The fluorescence of RB can be quenched by oxTMB due to the spectral overlap of emission of RB and absorption of oxTMB. By means of the above process, ACP can be determined because ACP promotes the hydrolysis of 2-phospho-L-ascorbic acid trisodium salt (AAP) to generate ascorbic acid (AA), which can inhibit the internal filtering effect between RB and oxTMB. No material preparation was needed for the determination of ACP. The colorimetric and fluorimetric methods can quantify ACP in the range 0.06-5.0 mU/mL and 0.03-5.0 mU/mL, respectively. Furthermore, a smartphone-assisted sensing platform has been constructed for on-site monitoring of ACP in the range 0.75-50 mU/mL, and the detection limit is 0.3 mU/mL. The methods developed can measure ACP in human serum successfully.
Collapse
|
17
|
Feng LX, Tang C, Han XX, Zhang HC, Guo FN, Yang T, Wang JH. Simultaneous and sensitive detection of multiple small biological molecules by microfluidic paper-based analytical device integrated with zinc oxide nanorods. Talanta 2021; 232:122499. [PMID: 34074451 DOI: 10.1016/j.talanta.2021.122499] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 11/25/2022]
Abstract
In this work, ZnO nanorods (ZnO NRs) with different sizes were hydrothermally grown on the surface of Whatman filter paper for the fabrication of a microfluidic paper-based device (μPAD) for the simultaneous detection of glucose and uric acid. As dual enzymatic reaction was employed for the colorimetric detection in this μPAD, the presence of ZnO NRs promoted the enzyme immobilization thus significantly enhancing the colorimetric signal. The coffee ring effect was effectively conquered by the uniform distribution of ZnO NR as well as a specialized double-layered μPAD design. Meanwhile, two color indicators with distinct colors were used to provide complementary results to better quantify the concentration of the analytes by naked eye. As a result, two linear calibration curves were obtained for the detection of glucose (0.01-10 mmol L-1) and uric acid (0.01-5 mmol L-1), along with a LOD of 3 μmol L-1 for glucose and 4 μmol L-1 for uric acid, respectively. The practical usefulness of the proposed μPAD was further validated by the simultaneous analysis of glucose and uric acid in serum samples and urine samples.
Collapse
Affiliation(s)
- Li-Xia Feng
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Chao Tang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Xiao-Xuan Han
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Hui-Chao Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Feng-Na Guo
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Ting Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China.
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| |
Collapse
|
18
|
A novel surface-enhanced Raman scattering (SERS) strategy for ultrasensitive detection of bacteria based on three-dimensional (3D) DNA walker. Biosens Bioelectron 2020; 172:112758. [PMID: 33157406 DOI: 10.1016/j.bios.2020.112758] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 02/08/2023]
Abstract
Bacteria seriously endanger human life and health, and the detection of bacteria is vital for the prevention and treatment of related diseases. Surface-enhanced Raman scattering (SERS) is considered as a powerful technique for bacterial detection due to the inherent richness of spectral data. In this work, a novel SERS strategy based on three-dimensional (3D) DNA walker was developed for quantitative analysis of Salmonella typhimurium (S. ty). The complimentary DNA of S.ty-recognizing aptamer (cApt) was replaced from the double-stranded DNA (dsDNA) of Apt@cApt in the presence of S.ty, which can trigger the endonuclease mediated "DNA walker" on the surface of gold modified magnetic nanoparticles (AuMNPs). The DNA residues on the surface of AuMNPs can bind to SERS tag through base complementary pairing, and the complex of "AuMNPs@SERS tag" can be separated from the fluid by an external magnetic field for SERS analysis. It was found that the SERS intensity showed a good linear relationship with both lower (10-104 CFU/mL) and higher (104-106 CFU/mL) S.ty concentration. A superior limit of detection (LOD) as low as 4 CFU/mL was achieved due to the signal amplification effect of "DNA walker", and the preeminent selectivity of the proposed method was determined by the selectivity of the aptamer sequence. This strategy of separating the SERS tag from the biological matrix enables high stability and good repeatability of the SERS spectra, which presents a new method for SERS detection of biomaterials that can benefit various application scenarios.
Collapse
|
19
|
Huang C, Ma R, Luo Y, Shi G, Deng J, Zhou T. Stimulus Response of TPE-TS@Eu/GMP ICPs: Toward Colorimetric Sensing of an Anthrax Biomarker with Double Ratiometric Fluorescence and Its Coffee Ring Test Kit for Point-of-Use Application. Anal Chem 2020; 92:12934-12942. [DOI: 10.1021/acs.analchem.0c01570] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Chunyu Huang
- School of Ecological and Environmental Sciences, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
- Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| | - Ruixue Ma
- School of Ecological and Environmental Sciences, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
- Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| | - Yuxin Luo
- School of Ecological and Environmental Sciences, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
- Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| | - Guoyue Shi
- Department of Chemistry, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jingjing Deng
- School of Ecological and Environmental Sciences, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
- Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| | - Tianshu Zhou
- School of Ecological and Environmental Sciences, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
- Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
20
|
Distance-based quantification of miRNA-21 by the coffee-ring effect using paper devices. Mikrochim Acta 2020; 187:513. [DOI: 10.1007/s00604-020-04500-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022]
|
21
|
Chu T, Chu J, Gao B, He B. Modern evolution of paper-based analytical devices for wearable use: from disorder to order. Analyst 2020; 145:5388-5399. [PMID: 32700700 DOI: 10.1039/d0an00994f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Paper devices have attracted great attention for their rapid development in multiple fields, such as life sciences, biochemistry, and materials science. When manufacturing paper chips, flexible materials, such as cellulose paper or other porous flexible membranes, can offer several advantages in terms of their flexibility, lightweight, low cost, safety and wearability. However, traditional cellulose paper sheets with chaotic cellulose fiber constitutions do not have special structures and optical characteristics, leading to poor repeatability and low sensitivity during biochemical sensing, limiting their wide application. Recent evidence showed that the addition of ordered structure provides a promising method for manufacturing intelligent flexible devices, making traditional flexible devices with multiple functions (microfluidics, motion detection and optical display). There is an urgent need for an overall summary of the evolution of paper devices so that readers can fully understand the field. Hence, in this review, we summarized the latest developments in intelligent paper devices, starting with the fabrication of paper and smart flexible paper devices, in the fields of biology, chemistry, electronics, etc. First, we outlined the manufacturing methods and applications of both traditional cellulose paper devices and modern smart devices based on pseudopaper (order paper). Then, considering different materials, such as cellulose, nitrocellulose, nature sourced photonic crystals (photonic crystals sourced from nature directly) and artificial photonic crystals, we summarized a new type of smart flexible device containing an ordered structure. Next, the applications of paper devices in biochemical sensing, wearable sensing, and cross-scale sensing were discussed. Finally, we summarized the development direction of this field. The aim of this review is to take an integral cognition approach to the development of smart flexible paper devices in multiple fields and promote communications between materials science, biology, chemistry and electrical science.
Collapse
Affiliation(s)
- Tianshu Chu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | | | | | | |
Collapse
|
22
|
Wu C, Gao G, Zhai K, Xu L, Zhang D. A visual Hg 2+ detection strategy based on distance as readout by G-quadruplex DNAzyme on microfluidic paper. Food Chem 2020; 331:127208. [PMID: 32554309 DOI: 10.1016/j.foodchem.2020.127208] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 05/27/2020] [Accepted: 05/31/2020] [Indexed: 12/26/2022]
Abstract
In this work, we have developed a simple, fast and visual Hg2+ detection strategy based on distance as readout on paper chip by the Hg2+-mediated formation of G-quadruplex-hemin DNAzymes. In the presence of Hg2+, the two oligonucleotides hybridize to form G-quadruplex DNA by T-Hg2+-T base pair, which was able to bind hemin to form the catalytically active G-quadruplex-hemin DNAzymes. Once DNAzymes were added to react with the precipitated 3,3,5,5-tetramethyl benzidine (TMB) immobilized on the sample area, a visible color band was produced, and the formed length was positively correlated with the concentration of Hg2+. This biosensor is capable of selectively detecting mercuric ions with good reproducibility and satisfactory dynamic range. The limit of detection was low to 0.23 nM. Therefore, this strategy not only provides a visual and quick screen of Hg2+, but also shows a promising future in monitoring analysis of other metal ions in POC diagnostic field.
Collapse
Affiliation(s)
- Chao Wu
- Suzhou Engineering and Technological Research Center of Natural Medicine and Functional Food, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, China
| | - Guizhen Gao
- Suzhou Engineering and Technological Research Center of Natural Medicine and Functional Food, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, China
| | - Kefeng Zhai
- Suzhou Engineering and Technological Research Center of Natural Medicine and Functional Food, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, China
| | - Lisheng Xu
- Suzhou Engineering and Technological Research Center of Natural Medicine and Functional Food, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, China
| | - Dagan Zhang
- Suzhou Engineering and Technological Research Center of Natural Medicine and Functional Food, School of Biology and Food Engineering, Suzhou University, Suzhou 234000, China; Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
23
|
|
24
|
Song L, Huang Y, Nie Z, Chen T. Macroscopic two-dimensional monolayer films of gold nanoparticles: fabrication strategies, surface engineering and functional applications. NANOSCALE 2020; 12:7433-7460. [PMID: 32219290 DOI: 10.1039/c9nr09420b] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In the last few decades, two-dimensional monolayer films of gold nanoparticles (2D MFGS) have attracted increasing attention in various fields, due to their superior attributes of macroscopic size and accessible fabrication, controllable electromagnetic enhancement, distinctive optical harvesting and electron transport capabilities. This review will focus on the recent progress of 2D monolayer films of gold nanoparticles in construction approaches, surface engineering strategies and functional applications in the optical and electric fields. The research challenges and prospective directions of 2D MFGS are also discussed. This review would promote a better understanding of 2D MFGS and establish a necessary bridge among the multidisciplinary research fields.
Collapse
Affiliation(s)
- Liping Song
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
| | - Youju Huang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China. and College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China and National Engineering Research Centre for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou 450002, P. R. China
| | - Zhihong Nie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China.
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
| |
Collapse
|
25
|
Xue X, Gao M, Rao H, Luo M, Wang H, An P, Feng T, Lu X, Xue Z, Liu X. Photothermal and colorimetric dual mode detection of nanomolar ferric ions in environmental sample based on in situ generation of prussian blue nanoparticles. Anal Chim Acta 2020; 1105:197-207. [DOI: 10.1016/j.aca.2020.01.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/28/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022]
|
26
|
Rao H, Huang H, Zhang X, Xue X, Luo M, Liu H, Xue Z. A simple thermometer-based photothermometric assay for alkaline phosphatase activity based on target-induced nanoprobe generation. NEW J CHEM 2020. [DOI: 10.1039/d0nj03920a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Alkaline phosphatase (ALP)-induced in situ generation of Prussian blue nanoparticles for photothermometric ALP detection.
Collapse
Affiliation(s)
- Honghong Rao
- College of Chemistry and Chemical Engineering
- Lanzhou City University
- Lanzhou
- China
| | - Huiyi Huang
- College of Chemistry and Chemical Engineering
- Lanzhou City University
- Lanzhou
- China
- College of Chemistry and Chemical Engineering
| | - Xinyuan Zhang
- College of Chemistry and Chemical Engineering
- Lanzhou City University
- Lanzhou
- China
- College of Chemistry and Chemical Engineering
| | - Xin Xue
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Mingyue Luo
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| | - Haixia Liu
- College of Chemistry and Chemical Engineering
- Lanzhou City University
- Lanzhou
- China
| | - Zhonghua Xue
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- China
| |
Collapse
|
27
|
Zhang YJ, Chen S, Yu YL, Wang JH. A miniaturized photoacoustic device with laptop readout for point-of-care testing of blood glucose. Talanta 2019; 209:120527. [PMID: 31892079 DOI: 10.1016/j.talanta.2019.120527] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/23/2019] [Accepted: 10/29/2019] [Indexed: 01/27/2023]
Abstract
Photoacoustic (PA) effect has been widely applied in many fields, e.g., physics, chemistry and biomedicine. Herein, a miniaturized PA device is developed by integrating laser source, photo chopper, PA cell, microphone, and laptop for point-of-care testing in bioassay. With glucose assay as model, a piece of paper strip preloading chitosan, starch-potassium iodide (KI) and glucose oxidase (GOD) as lab-on-paper is employed for loading sample prior to PA detection. In the presence of glucose, the product generated on the paper strip would give rise to a strong PA signal in the PA cell under the irradiation of frequency-modulated laser at 520 nm via laptop readout. With a sample volume of 20 μL, a detection limit of 0.03 mM is obtained for glucose assay, along with a linear range of 0.08-1 mM. The accuracy and practicability of the present PA device is well demonstrated by detecting glucose in whole blood. Differing from the conventional PA instrument, the present PA device is really small in bulk with competitive sensitivity and excellent stability, offering a promising tool for point-of-care testing in bioassay.
Collapse
Affiliation(s)
- Ya-Jie Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Shuai Chen
- College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China.
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| |
Collapse
|
28
|
Qi J, Li B, Zhou N, Wang X, Deng D, Luo L, Chen L. The strategy of antibody-free biomarker analysis by in-situ synthesized molecularly imprinted polymers on movable valve paper-based device. Biosens Bioelectron 2019; 142:111533. [DOI: 10.1016/j.bios.2019.111533] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/12/2019] [Accepted: 07/22/2019] [Indexed: 12/18/2022]
|
29
|
Liu MM, Lian X, Liu H, Guo ZZ, Huang HH, Lei Y, Peng HP, Chen W, Lin XH, Liu AL, Xia XH. A colorimetric assay for sensitive detection of hydrogen peroxide and glucose in microfluidic paper-based analytical devices integrated with starch-iodide-gelatin system. Talanta 2019; 200:511-517. [DOI: 10.1016/j.talanta.2019.03.089] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/20/2019] [Accepted: 03/24/2019] [Indexed: 02/03/2023]
|
30
|
Liu MM, Lian X, Guo ZZ, Liu H, Lei Y, Chen Y, Chen W, Lin XH, Liu AL, Xia XH. Improving quantitative control and homogeneous distribution of samples on paper-based analytical devices via drop-on-demand inkjet printing. Analyst 2019; 144:4013-4023. [PMID: 31139775 DOI: 10.1039/c9an00481e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A standard desktop printer with multiple ink cartridges can accurately deposit a broad variety of biomaterials on microfluidic paper-based analytical devices (μPADs) which have been extensively applied to environmental monitoring and screening of food and beverage contamination. Finding ways to realize sample quantitative control by tuning the CMYK value, however, remains challenging. Herein, we studied the influence of the CMYK value on the ink volume jetted by ink cartridges. The regularity research on a single-color and two-colors was performed in two print mode-grayscale printing and color printing. The results demonstrated that the number of ink dots increased with the increase of the gray value and opacity value, which means that the amount of the bio-ink increases with the increase of the CMYK value. The 3,3',5,5'-tetramethylbenzidine-horseradish peroxidase-hydrogen peroxide, glucose oxidase-horseradish peroxidase and bull serum albumin-citrate buffer-tetrabromophenol blue systems were chosen as examples to prove the print regularity. Samples and assay reagents can be quantitatively deposited on a substrate by adjusting the CMYK value with as many as four ink cartridges. The present approach has been successfully applied to assay the targets in real serum samples, showing the potential application of the most common office piezoelectric printer in μPADs.
Collapse
Affiliation(s)
- Meng-Meng Liu
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Li L, Geng Y, Xiang Y, Qiang H, Wang Y, Chang J, Zhao H, Zhang L. Instrument-free enrichment and detection of phosphopeptides using paper-based Phos-PAD. Anal Chim Acta 2019; 1062:102-109. [DOI: 10.1016/j.aca.2019.02.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/05/2019] [Indexed: 01/24/2023]
|
32
|
Zhang D, Gao B, Zhao C, Liu H. Visualized Quantitation of Trace Nucleic Acids Based on the Coffee-Ring Effect on Colloid-Crystal Substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:248-253. [PMID: 30512960 DOI: 10.1021/acs.langmuir.8b03609] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We report a visualized quantitative detection method for nucleic acid amplification tests based on the coffee-ring effect on colloid-crystal substrates. The solution for loop-mediated isothermal amplification (LAMP) of DNA is drop cast on a colloid-crystal surface. After complete drying, a coffee ring containing the LAMP byproduct (i.e., magnesium pyrophosphate) is formed, and it is found that the width of the coffee ring is linearly correlated to the logarithm of the original DNA concentration before the isothermal amplification. Importantly, compared with other substrates, we found that the colloid-crystal substrate is an appropriate substrate for carrying out the assay of high sensitivity. On the basis of these findings, we develop a coffee-ring-based assay for quantitative readout of trace DNA in a sample. The assay requires 0.50 μL of the sample and is completed in 5 min in a homemade chamber with constant humidity. Semiquantitative detection of trace DNA is performed using naked eyes. With the use of a smartphone, the DNA in a sample can be quantitatively detected with a limit of detection of 20 copies.
Collapse
Affiliation(s)
- Dagan Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Bingbing Gao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Chao Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Hong Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| |
Collapse
|
33
|
Zhang Y, Zhang L, Cui K, Ge S, Cheng X, Yan M, Yu J, Liu H. Flexible Electronics Based on Micro/Nanostructured Paper. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801588. [PMID: 30066444 DOI: 10.1002/adma.201801588] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/02/2018] [Indexed: 05/26/2023]
Abstract
Over the past several years, a new surge of interest in paper electronics has arisen due to the numerous merits of simple micro/nanostructured substrates. Herein, the latest advances and principal issues in the design and fabrication of paper-based flexible electronics are highlighted. Following an introduction of the fascinating properties of paper matrixes, the construction of paper substrates from diverse functional materials for flexible electronics and their underlying principles are described. Then, notable progress related to the development of versatile electronic devices is discussed. Finally, future opportunities and the remaining challenges are examined. It is envisioned that more design concepts, working principles, and advanced papermaking techniques will be developed in the near future for the advanced functionalization of paper, paving the way for the mass production and commercial applications of flexible paper-based electronic devices.
Collapse
Affiliation(s)
- Yan Zhang
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, 250022, China
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022, China
| | - Kang Cui
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, 250022, China
| | - Xin Cheng
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022, China
| | - Mei Yan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, 250022, China
| |
Collapse
|
34
|
Sun M, Li Z, Xia Y, Zhao C, Liu H. Concentration cell-based potentiometric analysis for point-of-care testing with minimum background. Anal Chim Acta 2018; 1046:110-114. [PMID: 30482287 DOI: 10.1016/j.aca.2018.09.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/11/2018] [Accepted: 09/13/2018] [Indexed: 11/28/2022]
Abstract
One of the most critical problems of point-of-care testing is how to reduce the interference of background, especially under resource-limited conditions when sample pretreatment is not available. In this work we report a potentiometric method for point-of-care testing with minimum background. The method is based on the principles of a concentration cell which is a type of galvanic cells. It is an electrochemical cell having two carbon electrodes. The potential of each electrode is determined by ratio of a redox couple (i.e. Fe(CN)64-/3-) on the electrode surface. On one electrode, the adsorbed enzyme catalyzes the oxidation of analyte by Fe(CN)63- which produces Fe(CN)64-. The shift of the potential was because of the analyte as well as the background. In the other channel, no enzyme was present so that the shift of the potential, if any, is owing to the background. By measuring the potential difference between the two electrodes (i.e. voltage of the concentration cell), analyte can be quantitatively determined with most of the background eliminated. As the proof-of-concept analyte, blood glucose is quantitatively detected using a voltammeter with acceptable selectivity and accuracy. Noble metal electrodes that are indispensable for conventional electrochemical sensing are not required. All these features simplify the fabrication procedure and reduce the cost for the detection. Therefore, we believe it is promising for electrochemical point-of-care testing.
Collapse
Affiliation(s)
- Mi Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Zhiyang Li
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, PR China
| | - Yanyan Xia
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, PR China
| | - Chao Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Hong Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China.
| |
Collapse
|
35
|
de Freitas SV, de Souza FR, Rodrigues Neto JC, Vasconcelos GA, Abdelnur PV, Vaz BG, Henry CS, Coltro WKT. Uncovering the Formation of Color Gradients for Glucose Colorimetric Assays on Microfluidic Paper-Based Analytical Devices by Mass Spectrometry Imaging. Anal Chem 2018; 90:11949-11954. [DOI: 10.1021/acs.analchem.8b02384] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Soraia V. de Freitas
- Instituto de Química, Universidade Federal de Goiás, Campus Samambaia, Goiânia, Goiás 74690-900, Brazil
| | - Fabrício R. de Souza
- Instituto de Química, Universidade Federal de Goiás, Campus Samambaia, Goiânia, Goiás 74690-900, Brazil
| | - Jorge C. Rodrigues Neto
- Instituto de Química, Universidade Federal de Goiás, Campus Samambaia, Goiânia, Goiás 74690-900, Brazil
- Embrapa Agroenergia, Empresa Brasileira de Pesquisa Agropecuária, Brasília, Distrito Federal 70770-901, Brazil
| | - Géssica A. Vasconcelos
- Instituto de Química, Universidade Federal de Goiás, Campus Samambaia, Goiânia, Goiás 74690-900, Brazil
| | - Patrícia V. Abdelnur
- Instituto de Química, Universidade Federal de Goiás, Campus Samambaia, Goiânia, Goiás 74690-900, Brazil
- Embrapa Agroenergia, Empresa Brasileira de Pesquisa Agropecuária, Brasília, Distrito Federal 70770-901, Brazil
| | - Boniek G. Vaz
- Instituto de Química, Universidade Federal de Goiás, Campus Samambaia, Goiânia, Goiás 74690-900, Brazil
| | - Charles S. Henry
- Colorado State University, Fort Collins, Colorado 80523, United States
| | - Wendell K. T. Coltro
- Instituto de Química, Universidade Federal de Goiás, Campus Samambaia, Goiânia, Goiás 74690-900, Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Campinas, Sao Paulo 13084-971, Brazil
| |
Collapse
|
36
|
Gerold CT, Bakker E, Henry CS. Selective Distance-Based K+ Quantification on Paper-Based Microfluidics. Anal Chem 2018; 90:4894-4900. [DOI: 10.1021/acs.analchem.8b00559] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chase T. Gerold
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80521, United States
- Department of Inorganic and Analytical Chemistry, The University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva 4, Switzerland
| | - Eric Bakker
- Department of Inorganic and Analytical Chemistry, The University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva 4, Switzerland
| | - Charles S. Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80521, United States
| |
Collapse
|