1
|
Baig MS, Ahmad A, Pathan RR, Mishra RK. Precision Nanomedicine with Bio-Inspired Nanosystems: Recent Trends and Challenges in Mesenchymal Stem Cells Membrane-Coated Bioengineered Nanocarriers in Targeted Nanotherapeutics. J Xenobiot 2024; 14:827-872. [PMID: 39051343 PMCID: PMC11270309 DOI: 10.3390/jox14030047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/09/2024] [Accepted: 06/15/2024] [Indexed: 07/27/2024] Open
Abstract
In the recent past, the formulation and development of nanocarriers has been elaborated into the broader fields and opened various avenues in their preclinical and clinical applications. In particular, the cellular membrane-based nanoformulations have been formulated to surpass and surmount the limitations and restrictions associated with naïve or free forms of therapeutic compounds and circumvent various physicochemical and immunological barriers including but not limited to systemic barriers, microenvironmental roadblocks, and other cellular or subcellular hinderances-which are quite heterogeneous throughout the diseases and patient cohorts. These limitations in drug delivery have been overcome through mesenchymal cells membrane-based precision therapeutics, where these interventions have led to the significant enhancements in therapeutic efficacies. However, the formulation and development of nanocarriers still focuses on optimization of drug delivery paradigms with a one-size-fits-all resolutions. As mesenchymal stem cell membrane-based nanocarriers have been engineered in highly diversified fashions, these are being optimized for delivering the drug payloads in more and better personalized modes, entering the arena of precision as well as personalized nanomedicine. In this Review, we have included some of the advanced nanocarriers which have been designed and been utilized in both the non-personalized as well as precision applicability which can be employed for the improvements in precision nanotherapeutics. In the present report, authors have focused on various other aspects of the advancements in stem cells membrane-based nanoparticle conceptions which can surmount several roadblocks and barriers in drug delivery and nanomedicine. It has been suggested that well-informed designing of these nanocarriers will lead to appreciable improvements in the therapeutic efficacy in therapeutic payload delivery applications. These approaches will also enable the tailored and customized designs of MSC-based nanocarriers for personalized therapeutic applications, and finally amending the patient outcomes.
Collapse
Affiliation(s)
- Mirza Salman Baig
- Anjuman-I-Islam Kalsekar Technical Campus School of Pharmacy, Sector-16, Near Thana Naka, Khandagao, New Panvel, Navi Mumbai 410206, Maharashtra, India;
| | - Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC), Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Hotchkiss Brain Institute, Cumming School of Medicine, Foothills Medical Centre, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | | - Rakesh Kumar Mishra
- School of Health Sciences and Technology, University of Petroleum and Energy Studies (UPES), Bidholi, Dehradun 248007, Uttarakhand, India;
| |
Collapse
|
2
|
Casadevall C, Lage A, Mu M, Greer HF, Antón-García D, Butt JN, Jeuken LJC, Watson GW, García-Melchor M, Reisner E. Size-dependent activity of carbon dots for photocatalytic H 2 generation in combination with a molecular Ni cocatalyst. NANOSCALE 2023; 15:15775-15784. [PMID: 37740380 PMCID: PMC10551879 DOI: 10.1039/d3nr03300g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/27/2023] [Indexed: 09/24/2023]
Abstract
Carbon dots (CDs) are low-cost light-absorbers in photocatalytic multicomponent systems, but their wide size distribution has hampered rational design and the identification of the factors that lead to their best performance. To address this challenge, we report herein the use of gel filtration size exclusion chromatography to separate amorphous, graphitic, and graphitic N-doped CDs depending on their lateral size to study the effect of their size on photocatalytic H2 evolution with a DuBois-type Ni cocatalyst. Transmission electron microscopy and dynamic light scattering confirm the size-dependent separation of the CDs, whereas UV-vis and fluorescence spectroscopy of the more monodisperse fractions show a distinct response which computational modelling attributes to a complex interplay between CD size and optical properties. A size-dependent effect on the photocatalytic H2 evolution performance of the CDs in combination with a molecular Ni cocatalyst is demonstrated with a maximum activity at approximately 2-3 nm CD diameter. Overall, size separation leads to a two-fold increase in the specific photocatalytic activity for H2 evolution using the monodisperse CDs compared to the as synthesized polydisperse samples, highlighting the size-dependent effect on photocatalytic performance.
Collapse
Affiliation(s)
- Carla Casadevall
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Ava Lage
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Manting Mu
- School of Chemistry, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Heather F Greer
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Daniel Antón-García
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Julea N Butt
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Lars J C Jeuken
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA, Leiden, The Netherlands
| | - Graeme W Watson
- School of Chemistry, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Max García-Melchor
- School of Chemistry, Trinity College Dublin, College Green, Dublin 2, Ireland
- CRANN and AMBER Research Centres, College Green, Dublin 2, Ireland.
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
3
|
Yao F, Wang ZG, Liu SL, Wang H, Zhu J, He R, Yang X, Liu X, Wu Q, Wu JK. Purified fluorescent nanohybrids based on quantum dot-HER2-antibody for breast tumor target imaging. Talanta 2023; 260:124560. [PMID: 37116362 DOI: 10.1016/j.talanta.2023.124560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/30/2023]
Abstract
Quantum dots (QDs) have been widely used for bioimaging in vivo because of their excellent optical properties. As part of the preparation process of QD-based nanohybrids, purification is an important step for minimizing contaminants and improving the quality of the product. In this work, we describe high-performance size exclusion chromatography (HPSEC) used to purify nanohybrids of CdSe/ZnS QDs and anti-human epidermal growth factor receptor 2 antibodies (QD-HER2-Ab). The unbound antibody and suspended agglomerates were removed from freshly prepared QD-HER2-Ab via HPSEC. Pure and homogeneous QD-HER2-Ab were then used as immunofluorescence target imaging bioprobes in vivo. The QD-HER2-Ab did not cause any obvious acute toxicity in mice one week after a single intravenous injection of 15 nmol/kg. The purified QD-HER2-Ab bioprobes showed high tumor targeting ability in a human breast tumor xenograft nude mouse model (24 h after injected) with the possibility of in vivo immunofluorescence tumor imaging. The immunofluorescence imaging background signal and acute toxicity in vivo were minimized because of the reduction of residual QDs. HPSEC-purified QD-HER2-Ab is an accurate and convenient tool for in vivo tumor target imaging and HER2 detection, thus providing a basis for the purification of other QD-based bioprobes.
Collapse
Affiliation(s)
- Fude Yao
- NanoAgro Center, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, PR China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin, 300071, PR China
| | - Hezhong Wang
- NanoAgro Center, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jie Zhu
- Henan Napu Biotechnology Co., Ltd., Henan Academy of Science, Zhengzhou, 450002, China
| | - Rui He
- NanoAgro Center, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xifa Yang
- NanoAgro Center, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiangyang Liu
- NanoAgro Center, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Qingnan Wu
- NanoAgro Center, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jia-Kai Wu
- NanoAgro Center, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
4
|
Bai X, Wang K, Chen L, Zhou J, Wang J. Semiconducting polymer dots as fluorescent probes for in vitro biosensing. J Mater Chem B 2022; 10:6248-6262. [PMID: 35971822 DOI: 10.1039/d2tb01385a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Semiconducting polymer dots (Pdots) have emerged as novel fluorescent probes with excellent characteristics, such as ultrahigh molar extinction coefficient, easy tunable absorption and emission bands, high brightness, and excellent photostability. Combined with good biocompatibility properties, much effort has been devoted to Pdots for in vivo biological imaging and therapy applications, such as deep-tissue fluorescent imaging, photodynamic therapy, photothermal therapy, and nanocarriers of genes or chemical drugs. Many reviews have been presented in these fields. On the other hand, a large number of studies employing Pdots for in vitro biosensing applications have been reported during the past few years, and there are barely any relevant reports to summarize the progress in this area. Hence, it is necessary to review these studies to promote the comprehensive application of Pdots. Herein, we introduce the properties and functionalization of Pdots, and systematically summarize the progress in the in vitro applications of Pdots, including the detection of DNAs, microRNAs, proteins, enzymatic activity, and some biological small molecules and ions. Finally, we share our perspectives on the future direction of this field.
Collapse
Affiliation(s)
- Xinnan Bai
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, China.,Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Ke Wang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, China.,Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Lei Chen
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, China.,Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Jianhua Zhou
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, China.,Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Jiasi Wang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, China.,Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
5
|
CHEN G, GUO Z, CAO Y, FAN L, LIU W, MA Y, CAO C, ZHANG Q. In-site electrophoretic elution of excessive fluorescein isothiocyanate from fluorescent particles in gel for image analysis. Se Pu 2022; 40:610-615. [PMID: 35791599 PMCID: PMC9404076 DOI: 10.3724/sp.j.1123.2022.04023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
去除荧光标记后残余荧光染料可以提高荧光颗粒检测的灵敏度、准确度和效率。该文发展了一种原位电泳洗脱(electrophoretic elution, EE)模型,用于在荧光标记后快速去除多余的荧光探针,实现荧光颗粒的灵敏检测。将牛血清蛋白(BSA)和磁珠(MBs)作为模式蛋白和微颗粒,混合孵育获得MBs-BSA,用异硫氰酸荧光素(FITC)对MBs-BSA标记,得到MBs-BSAFITC复合物。将含有多余FITC的MBs-BSAFITC溶液与低凝聚温度琼脂糖凝胶溶液按1:5的体积比混合,并将混合物凝胶和纯琼脂糖凝胶分段填充到电泳通道中。电泳过程中,利用颗粒尺寸与凝胶孔径的差异来保留MBs-BSAFITC,同时将游离的FITC洗脱。经过30 min的电泳洗脱,通道内多余的FITC清除率达到97.6%,同时目标颗粒荧光信号保留了27.8%。成像系统曝光时间为1.35 s时,电泳洗脱将颗粒与背景的荧光信号比(P/B ratio, PBr)从1.08增加到12.2。CCD相机的曝光时间增加到2.35 s,可以将PBr提高到15.5,可进一步实现对微弱荧光亮点的高灵敏检测。该模型有以下优点:(1)能对颗粒表面非特异性吸附的FITC实现有效洗脱,提高了检测的特异性;(2)能够将97%以上的游离FITC清除;(3) 30 min内能够使凝胶内的背景荧光大幅降低,提高了PBr和检测灵敏度。因此,该方法具有在凝胶中进行基于磁珠/荧光颗粒点的免疫检测、在免疫电泳或凝胶电泳中对蛋白质/核酸条带进行荧光染色等领域的应用潜力。
Collapse
|
6
|
Sun A, Ji Y, Li Y, Xie W, Liu Z, Li T, Jin T, Qi W, Li K, Wu C, Xi L. Multicolor Photoacoustic Volumetric Imaging of Subcellular Structures. ACS NANO 2022; 16:3231-3238. [PMID: 35080378 DOI: 10.1021/acsnano.1c11103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photoacoustic imaging (PAI) has been widely used in multiscale and multicontrast imaging of biological structures and functions. Optical resolution photoacoustic microscopy (OR-PAM), an emerging submodality of PAI, features high lateral resolution and rich optical contrast, indicating great potential in visualizing cellular and subcellular structures. However, three-dimensional (3D) imaging of subcellular structures using OR-PAM has remained a challenge due to the limited axial resolution. In this study, we propose a multicolor 3D photoacoustic microscopy with high lateral/axial resolutions of 0.42/2 and 0.5/2.5 μm at 532 and 780 nm excitation, respectively. Owing to the significantly increased axial resolution, we could visualize the volumetric subcellular structures of melanoma cells using intrinsic contrast. In addition, we carried out multicolor imaging of labeled microtubules/clathrin-coated pits (CCP) and microtubules/mitochondria, respectively, with one scanning by using two different excitation wavelengths. The internal connections between different subcellular structures are revealed by quantitatively comparing the spatial distributions of microtubules/CCP and microtubules/mitochondria in a single cell. Current results suggest that the proposed OR-PAM may serve as an efficient tool for subcellular and cytophysiological studies.
Collapse
Affiliation(s)
- Aihui Sun
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yaoyao Ji
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yaxi Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenhui Xie
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhihe Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tingting Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tian Jin
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Weizhi Qi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Kai Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lei Xi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
7
|
Dai X, Ma J, Zhang Q, Xu Q, Yang L, Gao F. Simultaneous inhibition of planktonic and biofilm bacteria by self-adapting semiconducting polymer dots. J Mater Chem B 2021; 9:6658-6667. [PMID: 34378630 DOI: 10.1039/d1tb01070k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biofilm infections present an enormous challenge in today's healthcare settings. Currently, pH-switchable antibacterial agents are being developed to eradicate biofilms. However, most pH-switchable antibacterial agents are less lethal to planktonic bacteria under neutral conditions, and cannot prevent the dispersed bacteria from seeding acute infection again. Herein, this work reports the applications of semiconducting polymer dots (Pdots) with a double adhesion mechanism in imaging and inhibiting bacteria inside (weak acidic conditions) and outside (neutral conditions) biofilms. Clew-like Pdots were prepared by covalently linking phenylboronic acid (PBA) and pH-responsive naphthalimide (NA) ramification in semiconducting polymers. Under neutral conditions, the Pdots combined with bacteria through the formation of boronate esters between PBA and diols. Under weakly acidic conditions, the partial borate bond fractured, and the Pdots adhered onto the bacterial surface through the positively charged NA in Pdots. Furthermore, the Pdots display negligible toxicity to mammalian cells and tissues. More importantly, the Pdots can selectively damage the bacterial membrane and inhibit bacteria in vivo. This work highlights the feasibility of using semiconducting Pdots to image and inhibit bacteria inside and outside biofilms, which represents a highly effective strategy to cope with biofilm infections.
Collapse
Affiliation(s)
- Xiaomei Dai
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | | | | | | | | | | |
Collapse
|
8
|
Verma M, Chan YH, Saha S, Liu MH. Recent Developments in Semiconducting Polymer Dots for Analytical Detection and NIR-II Fluorescence Imaging. ACS APPLIED BIO MATERIALS 2021; 4:2142-2159. [PMID: 35014343 DOI: 10.1021/acsabm.0c01185] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In recent years, semiconducting polymer dots (Pdots) have attracted enormous attention in applications from fundamental analytical detection to advanced deep-tissue bioimaging due to their ultrahigh fluorescence brightness with excellent photostability and minimal cytotoxicity. Pdots have therefore been widely adopted for a variety types of molecular sensing for analytical detection. More importantly, the recent development of Pdots for use in the optical window between 1000 and 1700 nm, popularly known as the "second near-infrared window" (NIR-II), has emerged as a class of optical transparent imaging technology in the living body. The advantages of the NIR-II region over the traditional NIR-I (700-900 nm) window in fluorescence imaging originate from the reduced autofluorescence, minimal absorption and scattering of light, and improved penetration depths to yield high spatiotemporal images for biological tissues. Herein, we discuss and summarize the recent developments of Pdots employed for analytical detection and NIR-II fluorescence imaging. Starting with their preparation, the recent developments for targeting various analytes are then highlighted. After that, the importance of and latest progress in NIR-II fluorescence imaging using Pdots are reported. Finally, perspectives and challenges associated with the emergence of Pdots in different fields are given.
Collapse
Affiliation(s)
- Meenakshi Verma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Yang-Hsiang Chan
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan.,Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 30050, Taiwan.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Ming-Ho Liu
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
9
|
Wang S, Huang M, Hua J, Wei L, Lin S, Xiao L. Digital counting of single semiconducting polymer nanoparticles for the detection of alkaline phosphatase. NANOSCALE 2021; 13:4946-4955. [PMID: 33629092 DOI: 10.1039/d0nr09232k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Alkaline phosphatase (ALP) as a necessary hydrolase in phosphate metabolism is closely related to various diseases. Ultrasensitive detection of ALP with a convenient and sensitive method is of fundamental importance. In this work, a fluorescence resonance energy transfer (FRET)-based single-particle enumeration (SPE) method is proposed for the quantitative analysis of ALP. This strategy is based on the effective fluorescence suppression by a polydopamine (PDA) shell on the surface of semiconducting polymer nanoparticles (SPNs). PDA with broadband absorption in the UV-vis region can serve as an excellent quencher for SPNs. However, ascorbic acid (AA), the product of the hydrolysis of 2-phosphate-l-ascorbic acid trisodium salt (AAP) in the presence of ALP, can effectively inhibit the self-polymerization of dopamine (DA) to form a PDA layer. Therefore, ALP can be accurately quantified by counting the concentration-related fluorescent particles in the fluorescence image. A linear range from 0.031 to 12.4 μU mL-1 and a limit-of-detection (LOD) of 0.01 μU mL-1 for ALP determination are achieved. The spiked recoveries for ALP determination in a human serum sample are between 90% and 108% with RSD less than 3.1%. In summary, this convenient and sensitive approach proposed here provides promising prospects for ALP detection in a complex biological matrix.
Collapse
Affiliation(s)
- Shumin Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China. and State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Mengna Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Jianhao Hua
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lin Wei
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Shen Lin
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lehui Xiao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
10
|
Qian Y, Li Y, Qin Y, Jiang D, Chen HY. Ion-selective polymer dots for photoelectrochemical detection of potassium ions. Analyst 2021; 146:450-453. [PMID: 33210677 DOI: 10.1039/d0an02062a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Potassium-selective polymer dots (K-Pdots) containing potassium ionophores were for the first time used for photoelectrochemical (PEC) analysis and yielded sensitive and specific detection of potassium ions. The successful PEC analysis using ion-selective Pdots underscored the effectiveness of the strategy deployed and suggested the potential universality of this strategy for the detection of metal ions, which should advance the development of PEC sensors in ion analysis.
Collapse
Affiliation(s)
- Yingzi Qian
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210092, China.
| | | | | | | | | |
Collapse
|
11
|
Zhang Y, Zhao Y, Shi L, Zhang L, Du H, Huang H, Xiao Y, Zhang Y, He X, Wang K. Novel pyrene-pyridine oligomer nanorods for super-sensitive fluorescent detection of Pd 2. Analyst 2020; 145:5631-5637. [PMID: 32638711 DOI: 10.1039/d0an00049c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Conjugated polymers (CPs) can be fabricated into conjugated polymer nanoparticles of various shapes, thus tuning the hydrophobicity and sensing performances of the parent polymers. Herein, two new hydrophobic oligomeric CPs containing pyrene-pyridyl moieties, P1 and P2, were directly prepared and conveniently converted into hydrophilic nanorods, i.e. P1NRs and P2NRs (about 4-21 and 6-20 nm in diameter), by a modified microemulsion method. Notably, separated P1NRs exhibit excellent stability while P2NRs tend to stack on each other perhaps due to their different rigidity of π-delocalized backbones, which may have a profound effect on their fluorescence properties. In addition, Pd2+ can coordinate with the pyridyl N atoms, thereby causing ultrasensitive fluorescence quenching of P1NRs and P2NRs owing to the aggregation of oligomeric CP nanorods. These two simple nanosensors can help to determine Pd2+ with detection limits as low as 1 and 70 nM, respectively. It is worth noting that biocompatible P1NRs with bright blue fluorescence can be employed for efficient imaging of trace level Pd2+ ions in live cells.
Collapse
Affiliation(s)
- Yanran Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
P Yiu HH, Chari DM. How can nanoparticles help neural cell transplantation therapy? Nanomedicine (Lond) 2020; 15:2103-2106. [PMID: 32787617 DOI: 10.2217/nnm-2020-0279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Humphrey H P Yiu
- Chemical Engineering, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Divya M Chari
- Neural Tissue Engineering Keele group, School of Medicine, Keele University, Staffordshire, ST5 5BG, UK
| |
Collapse
|
13
|
Recent advances on the biosensing and bioimaging based on polymer dots as advanced nanomaterial: Analytical approaches. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Liu X, Yang Z, Sun J, Ma T, Hua F, Shen Z. A brief review of cytotoxicity of nanoparticles on mesenchymal stem cells in regenerative medicine. Int J Nanomedicine 2019; 14:3875-3892. [PMID: 31213807 PMCID: PMC6539172 DOI: 10.2147/ijn.s205574] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/21/2019] [Indexed: 12/30/2022] Open
Abstract
Multipotent mesenchymal stem cells have shown great promise for application in regenerative medicine owing to their particular therapeutic effects, such as significant self-renewability, low immunogenicity, and ability to differentiate into a variety of specialized cells. However, there remain certain complicated and unavoidable problems that limit their further development and application. One of the challenges is to noninvasively monitor the delivery and biodistribution of transplanted stem cells during treatment without relying on behavioral endpoints or tissue histology, and it is important to explore the potential mechanisms to clarify how stem cells work in vivo. To solve these problems, various nanoparticles (NPs) and their corresponding imaging methods have been developed recently and have made great progress. In this review, we mainly discuss NPs used to label stem cells and their toxic effects on the latter, the imaging techniques to detect such NPs, and the current existing challenges in this field.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, People's Republic of China
| | - Ziying Yang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, People's Republic of China
| | - Jiacheng Sun
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, People's Republic of China
| | - Teng Ma
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, People's Republic of China
| | - Fei Hua
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, People's Republic of China
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
15
|
A novel fluorescent nanosensor based on small-sized conjugated polyelectrolyte dots for ultrasensitive detection of phytic acid. Talanta 2019; 202:214-220. [PMID: 31171173 DOI: 10.1016/j.talanta.2019.04.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/21/2019] [Accepted: 04/28/2019] [Indexed: 11/23/2022]
Abstract
A novel nanosensor is developed for selective and highly sensitive detection of phytic acid (PA) based on small-sized conjugated polyelectrolyte dots (Pdots) fabricated from a new conjugated polymer (P1) by a modified reprecipitation method. P1 featuring a π-delocalized backbone bearing meta-substituted pyridyl groups can be endowed with enhanced flexibility and hence is beneficial for the synthesis of ultrasmall Pdots (i.e. Pdot-1, ∼3.8 nm in average diameter) as well as for the binding of Fe3+, thus leading to the obvious fluorescence quenching of Pdot-1 (∼444 nm) in the presence of Fe3+ via an electron transfer (ET) process. In addition, phytic acid with six phosphate groups exhibits strong chelating ability. When phytic acid is added, phytic acid readily binds to Fe3+ and the fluorescence of Pdot-1 around 444 nm can be recovered, rendering the supersensitive and selective sensing of PA. Under the optimum conditions, this ultra-small Pdot-based nanoprobe favors the fluorescent determination of PA with the detection limit as low as 10 nM. Particularly, Pdot-1 with bright blue fluorescence exhibits low cytotoxicity. Furthermore, the small-sized and biocompatible Pdot-1 can be applied to the sensitive fluorescence assay for PA in cell extracts and the efficient imaging of PA in live cells.
Collapse
|
16
|
Wang F, Chen H, Liu Z, Mi F, Fang X, Liu J, Wang M, Lo PK, Li Q. Conjugated polymer dots for biocompatible siRNA delivery. NEW J CHEM 2019. [DOI: 10.1039/c9nj03277k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The constructed nanoplatform not only retained the outstanding fluorescence properties and biocompatibility but also enhanced delivery efficiency of siRNA.
Collapse
Affiliation(s)
- Fei Wang
- Department of Biomedical Engineering
- Southern University of Science and Technology
- Shenzhen
- China
- Department of Chemistry
| | - Haobin Chen
- Department of Biomedical Engineering
- Southern University of Science and Technology
- Shenzhen
- China
| | - Zhihe Liu
- Department of Biomedical Engineering
- Southern University of Science and Technology
- Shenzhen
- China
| | - Feixue Mi
- Department of Biomedical Engineering
- Southern University of Science and Technology
- Shenzhen
- China
| | - Xiaofeng Fang
- Department of Biomedical Engineering
- Southern University of Science and Technology
- Shenzhen
- China
| | - Jie Liu
- Department of Biomedical Engineering
- Southern University of Science and Technology
- Shenzhen
- China
| | - Mingxue Wang
- Department of Biomedical Engineering
- Southern University of Science and Technology
- Shenzhen
- China
| | - Pik Kwan Lo
- Department of Chemistry
- City University of Hong Kong
- Tat Chee Avenue
- China
| | - Qiong Li
- Collaborative Innovation Center of Tumor Marker Detection Technology
- Equipment and Diagnosis-Therapy Integration in Universities of Shandong
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers
- College of Chemistry and Chemical Engineering
- Linyi University
| |
Collapse
|
17
|
Hou W, Yuan Y, Sun Z, Guo S, Dong H, Wu C. Ratiometric Fluorescent Detection of Intracellular Singlet Oxygen by Semiconducting Polymer Dots. Anal Chem 2018; 90:14629-14634. [DOI: 10.1021/acs.analchem.8b04859] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Weiying Hou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, China
| | - Ye Yuan
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, China
| | - Zezhou Sun
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, China
| | - Shuxu Guo
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, China
| | - Haowen Dong
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 510855, China
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 510855, China
| |
Collapse
|