1
|
Grimaud A, Babović M, Holck FH, Jensen ON, Schwämmle V. How to Deal With Internal Fragment Ions? Mol Cell Proteomics 2025; 24:100896. [PMID: 39954811 DOI: 10.1016/j.mcpro.2024.100896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/29/2024] [Accepted: 12/15/2024] [Indexed: 02/17/2025] Open
Abstract
Tandem mass spectrometry of peptides and proteins generates 3mass spectra of their gas-phase fragmentation product ions, including N-terminal, C-terminal, and internal fragment ions. While N- and C-terminal ions are routinely assigned and identified using computational methods, internal fragment ions are often difficult to annotate correctly. They become particularly relevant for long peptides and full proteoforms where the peptide backbone is more likely to be fragmented multiple times. Internal fragment ions potentially offer tremendous information regarding amino acid sequences and positions of post-translational modifications of peptides and intact proteins. However, their practical application is challenged by the vast number of theoretical internal fragments that exist for long amino acid sequences, leading to a high risk of false-positive annotations. We analyze the mass spectral contributions of internal fragment ions in spectra from middle-down and top-down experiments and introduce a novel graph-based annotation approach designed to manage the complexity of internal fragments. Our graph-based representation allows us to compare multiple candidate proteoforms in a single graph, and to assess different candidate annotations in a fragment ion spectrum. We demonstrate cases from middle-down and top-down data where internal ions enhance amino acid sequence coverage of polypeptides and proteins and accurate localization of post-translational modifications. We conclude that our graph-based method provides a general approach to process complex tandem mass spectra, enhance annotation of internal fragment ions, and improve proteoform sequencing and characterization by mass spectrometry.
Collapse
Affiliation(s)
- Arthur Grimaud
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| | - Maša Babović
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Frederik Haugaard Holck
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Veit Schwämmle
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
2
|
Takemori A, Kaulich PT, Tholey A, Takemori N. PEPPI-MS: gel-based sample pre-fractionation for deep top-down and middle-down proteomics. Nat Protoc 2025:10.1038/s41596-024-01100-0. [PMID: 39820051 DOI: 10.1038/s41596-024-01100-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 10/11/2024] [Indexed: 01/19/2025]
Abstract
Top-down analysis of intact proteins and middle-down analysis of proteins subjected to limited digestion require efficient detection of traces of proteoforms in samples, necessitating the reduction of sample complexity by thorough pre-fractionation of the proteome components in the sample. SDS-PAGE is a simple and inexpensive high-resolution protein-separation technique widely used in biochemical and molecular biology experiments. Although its effectiveness for sample preparation in bottom-up proteomics has been proven, establishing a method for highly efficient recovery of intact proteins from the gel matrix has long been a challenge for its implementation in top-down and middle-down proteomics. As a much-awaited solution to this problem, we present an experimental protocol for efficient proteoform fractionation from complex biological samples using passively eluting proteins from polyacrylamide gels as intact species for mass spectrometry (PEPPI-MS), a rapid method for extraction of intact proteins separated by SDS-PAGE. PEPPI-MS allows recovery of proteins below 100 kDa separated by SDS-PAGE in solution with a median efficiency of 68% within 10 min and, unlike conventional electroelution methods, requires no special equipment, contributing to a remarkably economical implementation. The entire protocol from electrophoresis to protein purification can be performed in <5 h. By combining the resulting PEPPI fraction with other protein-separation techniques, such as reversed-phase liquid chromatography and ion mobility techniques, multidimensional proteome separations for in-depth proteoform analysis can be easily achieved.
Collapse
Affiliation(s)
- Ayako Takemori
- Advanced Research Support Center, Ehime University, Ehime, Japan
| | - Philipp T Kaulich
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Nobuaki Takemori
- Advanced Research Support Center, Ehime University, Ehime, Japan.
| |
Collapse
|
3
|
Soo PC, Lee CC, Shie MF, Patil AA, Descanzo MJN, Chin YC, Chen HA, Horng YT, Lin CB, Lee JJ, Chiang CK, Peng WP. Enhancing the sequence coverage of nanodiamond-extracted early secretory proteins from the Mycobacterium tuberculosis complex. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3464-3474. [PMID: 38804556 DOI: 10.1039/d4ay00314d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The unambiguous identification of protein species requires high sequence coverage. In this study, we successfully improved the sequence coverage of early secretory 10 kDa cell filtrate protein (CFP-10) and 6 kDa early secretory antigenic target (ESAT-6) proteins from the Mycobacterium tuberculosis complex (MTC) in broth culture media with the use of the 4-chloro-α-cyanocinnamic acid (Cl-CCA) matrix. Conventional matrices, α-cyano-hydroxy-cinnamic acid (CHCA) and 2,5-dihydroxybenzoic acid (DHB), were also used for comparison. After nanodiamond (ND) extraction, the sequence coverage of the CFP-10 protein was 87% when CHCA and DHB matrices were used, and the ESAT-6 protein was not detected. On the other hand, the sequence coverage for ND-extracted CFP-10 and ESAT-6 could reach 94% and 100%, respectively, when the Cl-CCA matrix was used and with the removal of interference from bovine serum albumin (BSA) protein and α-crystallin (ACR) protein. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) was also adopted to analyze the protein mass spectra. A total of 6 prominent ion signals were observed, including ESAT-6 protein peaks at mass-to-charge ratios (m/z) of ∼7931, ∼7974, ∼9768, and ∼9813 and CFP-10 protein peaks at m/z of ∼10 100 and ∼10 660. The ESAT-6 ion signals were always detected concurrently with CFP-10 ion signals, but CFP-10 ion signals could be detected alone without the ESAT-6 ion signals. Furthermore, the newly found ESAT-6 peaks were also confirmed using a Mag-Beads-Protein G kit with an ESAT-6 antibody to capture the ESAT-6 protein, which was also consistent with the sequence coverage analysis.
Collapse
Affiliation(s)
- Po-Chi Soo
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Ching-Chieh Lee
- Department of Physics, National Dong Hwa University, Shoufeng, Hualien, Taiwan.
| | - Meng-Fu Shie
- Department of Physics, National Dong Hwa University, Shoufeng, Hualien, Taiwan.
| | - Avinash A Patil
- Department of Physics, National Dong Hwa University, Shoufeng, Hualien, Taiwan.
| | | | - Ya-Ching Chin
- Department of Physics, National Dong Hwa University, Shoufeng, Hualien, Taiwan.
| | - Hsi-An Chen
- Department of Physics, National Dong Hwa University, Shoufeng, Hualien, Taiwan.
| | - Yu-Tze Horng
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Chih-Bin Lin
- Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| | - Jen-Jyh Lee
- Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| | - Cheng-Kang Chiang
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien, Taiwan
| | - Wen-Ping Peng
- Department of Physics, National Dong Hwa University, Shoufeng, Hualien, Taiwan.
| |
Collapse
|
4
|
Berthias F, Bilgin N, Mecinović J, Jensen ON. Top-down ion mobility/mass spectrometry reveals enzyme specificity: Separation and sequencing of isomeric proteoforms. Proteomics 2024; 24:e2200471. [PMID: 38282202 DOI: 10.1002/pmic.202200471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/15/2023] [Accepted: 12/12/2023] [Indexed: 01/30/2024]
Abstract
Enzymatic catalysis is one of the fundamental processes that drives the dynamic landscape of post-translational modifications (PTMs), expanding the structural and functional diversity of proteins. Here, we assessed enzyme specificity using a top-down ion mobility spectrometry (IMS) and tandem mass spectrometry (MS/MS) workflow. We successfully applied trapped IMS (TIMS) to investigate site-specific N-ε-acetylation of lysine residues of full-length histone H4 catalyzed by histone lysine acetyltransferase KAT8. We demonstrate that KAT8 exhibits a preference for N-ε-acetylation of residue K16, while also adding acetyl groups on residues K5 and K8 as the first degree of acetylation. Achieving TIMS resolving power values of up to 300, we fully separated mono-acetylated regioisomers (H4K5ac, H4K8ac, and H4K16ac). Each of these separated regioisomers produce unique MS/MS fragment ions, enabling estimation of their individual mobility distributions and the exact localization of the N-ε-acetylation sites. This study highlights the potential of top-down TIMS-MS/MS for conducting enzymatic assays at the intact protein level and, more generally, for separation and identification of intact isomeric proteoforms and precise PTM localization.
Collapse
Affiliation(s)
- Francis Berthias
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Nurgül Bilgin
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej, Denmark
| | - Jasmin Mecinović
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej, Denmark
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
5
|
Po A, Eyers CE. Top-Down Proteomics and the Challenges of True Proteoform Characterization. J Proteome Res 2023; 22:3663-3675. [PMID: 37937372 PMCID: PMC10696603 DOI: 10.1021/acs.jproteome.3c00416] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023]
Abstract
Top-down proteomics (TDP) aims to identify and profile intact protein forms (proteoforms) extracted from biological samples. True proteoform characterization requires that both the base protein sequence be defined and any mass shifts identified, ideally localizing their positions within the protein sequence. Being able to fully elucidate proteoform profiles lends insight into characterizing proteoform-unique roles, and is a crucial aspect of defining protein structure-function relationships and the specific roles of different (combinations of) protein modifications. However, defining and pinpointing protein post-translational modifications (PTMs) on intact proteins remains a challenge. Characterization of (heavily) modified proteins (>∼30 kDa) remains problematic, especially when they exist in a population of similarly modified, or kindred, proteoforms. This issue is compounded as the number of modifications increases, and thus the number of theoretical combinations. Here, we present our perspective on the challenges of analyzing kindred proteoform populations, focusing on annotation of protein modifications on an "average" protein. Furthermore, we discuss the technical requirements to obtain high quality fragmentation spectral data to robustly define site-specific PTMs, and the fact that this is tempered by the time requirements necessary to separate proteoforms in advance of mass spectrometry analysis.
Collapse
Affiliation(s)
- Allen Po
- Centre
for Proteome Research, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K.
- Department
of Biochemistry, Cell & Systems Biology, Institute of Systems,
Molecular & Integrative Biology, Faculty of Health & Life
Sciences, University of Liverpool, Liverpool L69 7ZB, U.K.
| | - Claire E. Eyers
- Centre
for Proteome Research, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K.
- Department
of Biochemistry, Cell & Systems Biology, Institute of Systems,
Molecular & Integrative Biology, Faculty of Health & Life
Sciences, University of Liverpool, Liverpool L69 7ZB, U.K.
| |
Collapse
|
6
|
Daly LA, Clarke CJ, Po A, Oswald SO, Eyers CE. Considerations for defining +80 Da mass shifts in mass spectrometry-based proteomics: phosphorylation and beyond. Chem Commun (Camb) 2023; 59:11484-11499. [PMID: 37681662 PMCID: PMC10521633 DOI: 10.1039/d3cc02909c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023]
Abstract
Post-translational modifications (PTMs) are ubiquitous and key to regulating protein function. Understanding the dynamics of individual PTMs and their biological roles requires robust characterisation. Mass spectrometry (MS) is the method of choice for the identification and quantification of protein modifications. This article focusses on the MS-based analysis of those covalent modifications that induce a mass shift of +80 Da, notably phosphorylation and sulfation, given the challenges associated with their discrimination and pinpointing the sites of modification on a polypeptide chain. Phosphorylation in particular is highly abundant, dynamic and can occur on numerous residues to invoke specific functions, hence robust characterisation is crucial to understanding biological relevance. Showcasing our work in the context of other developments in the field, we highlight approaches for enrichment and site localisation of phosphorylated (canonical and non-canonical) and sulfated peptides, as well as modification analysis in the context of intact proteins (top down proteomics) to explore combinatorial roles. Finally, we discuss the application of native ion-mobility MS to explore the effect of these PTMs on protein structure and ligand binding.
Collapse
Affiliation(s)
- Leonard A Daly
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Christopher J Clarke
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Allen Po
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Sally O Oswald
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Claire E Eyers
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| |
Collapse
|
7
|
Dhenin J, Dupré M, Druart K, Krick A, Mauriac C, Chamot-Rooke J. A multiparameter optimization in middle-down analysis of monoclonal antibodies by LC-MS/MS. JOURNAL OF MASS SPECTROMETRY : JMS 2023; 58:e4909. [PMID: 36822210 DOI: 10.1002/jms.4909] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
In antibody-based drug research, a complete characterization of antibody proteoforms covering both the amino acid sequence and all posttranslational modifications remains a major concern. The usual mass spectrometry-based approach to achieve this goal is bottom-up proteomics, which relies on the digestion of antibodies but does not allow the diversity of proteoforms to be assessed. Middle-down and top-down approaches have recently emerged as attractive alternatives but are not yet mastered and thus used in routine by many analytical chemistry laboratories. The work described here aims at providing guidelines to achieve the best sequence coverage for the fragmentation of intact light and heavy chains generated from a simple reduction of intact antibodies using Orbitrap mass spectrometry. Three parameters were found crucial to this aim: the use of an electron-based activation technique, the multiplex selection of precursor ions of different charge states, and the combination of replicates.
Collapse
Affiliation(s)
- Jonathan Dhenin
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Mass Spectrometry for Biology, Paris, 75015, France
- Université Paris Cité, Sorbonne Paris Cité, Paris, France
- DMPK, Sanofi, Chilly-Mazarin, 91385, France
| | - Mathieu Dupré
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Mass Spectrometry for Biology, Paris, 75015, France
| | - Karen Druart
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Mass Spectrometry for Biology, Paris, 75015, France
| | | | | | - Julia Chamot-Rooke
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Mass Spectrometry for Biology, Paris, 75015, France
| |
Collapse
|
8
|
Cassidy L, Kaulich PT, Tholey A. Proteoforms expand the world of microproteins and short open reading frame-encoded peptides. iScience 2023; 26:106069. [PMID: 36818287 PMCID: PMC9929600 DOI: 10.1016/j.isci.2023.106069] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Microproteins and short open reading frame-encoded peptides (SEPs) can, like all proteins, carry numerous posttranslational modifications. Together with posttranscriptional processes, this leads to a high number of possible distinct protein molecules, the proteoforms, out of a limited number of genes. The identification, quantification, and molecular characterization of proteoforms possess special challenges to established, mainly bottom-up proteomics (BUP) based analytical approaches. While BUP methods are powerful, proteins have to be inferred rather than directly identified, which hampers the detection of proteoforms. An alternative approach is top-down proteomics (TDP) which allows to identify intact proteoforms. This perspective article provides a brief overview of modified microproteins and SEPs, introduces the proteoform terminology, and compares present BUP and TDP workflows highlighting their major advantages and caveats. Necessary future developments in TDP to fully accentuate its potential for proteoform-centric analytics of microproteins and SEPs will be discussed.
Collapse
Affiliation(s)
- Liam Cassidy
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Philipp T. Kaulich
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany,Corresponding author
| |
Collapse
|
9
|
Gabant G, Stekovic M, Nemcic M, Pinêtre J, Cadene M. A sDOE (Simple Design-of-Experiment) Approach for Parameter Optimization in Mass Spectrometry. Part 1. Parameter Selection and Interference Effects in Top-Down ETD Fragmentation of Proteins in a UHR-QTOF Instrument. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:27-35. [PMID: 36479974 DOI: 10.1021/jasms.2c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Design-of-experiment (DOE) approaches, originally conceived by Fischer, are widely applied in industry, particularly in the context of production for which they have been greatly expended. In a research and development context, DOE can be of great use for method development. Specifically, DOE can greatly speed up instrument parameter optimization by first identifying parameters that are critical to a given outcome, showing parameter interdependency where it occurs and accelerating optimization of said parameters using matrices of experimental conditions. While DOE approaches have been applied in mass spectrometry experiments, they have so far failed to gain widespread adoption. This could be attributed to the fact that DOE can get quite complex and daunting to the everyday user. Here we make the case that a subset of DOE tools, hereafter called SimpleDOE (sDOE), can make DOE accessible and useful to the Mass Spectrometry community at large. We illustrate the progressive gains from a purely manual approach to sDOE through a stepwise optimization of parameters affecting the efficiency of top-down ETD fragmentation of proteins on a high-resolution Q-TOF mass spectrometer, where the aim is to maximize sequence coverage of fragmentation events.
Collapse
Affiliation(s)
- Guillaume Gabant
- Centre de Biophysique Moléculaire, UPR4301, CNRS, affiliated to Université d'Orléans, Rue Charles Sadron, Orléans45071 Cedex 2, France
| | - Martin Stekovic
- Centre de Biophysique Moléculaire, UPR4301, CNRS, affiliated to Université d'Orléans, Rue Charles Sadron, Orléans45071 Cedex 2, France
| | - Matej Nemcic
- Centre de Biophysique Moléculaire, UPR4301, CNRS, affiliated to Université d'Orléans, Rue Charles Sadron, Orléans45071 Cedex 2, France
| | - Justine Pinêtre
- Centre de Biophysique Moléculaire, UPR4301, CNRS, affiliated to Université d'Orléans, Rue Charles Sadron, Orléans45071 Cedex 2, France
| | - Martine Cadene
- Centre de Biophysique Moléculaire, UPR4301, CNRS, affiliated to Université d'Orléans, Rue Charles Sadron, Orléans45071 Cedex 2, France
| |
Collapse
|
10
|
Babović M, Shliaha PV, Gibb S, Jensen ON. Effective Amino Acid Sequencing of Intact Filgrastim by Multimodal Mass Spectrometry with Topdownr. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2087-2093. [PMID: 36263452 DOI: 10.1021/jasms.2c00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Therapeutic proteins, known as biologicals, are an important and growing class of drugs for treatment of a series of human ailments. Amino acid sequence variants of therapeutic proteins can affect their safety and efficacy. Top-down mass spectrometry is well suited for the sequence analysis of intact therapeutic proteins. Fine-tuning of tandem mass spectrometry (MS/MS) fragmentation conditions is essential for maximizing the amino acid sequence coverage but is often time-consuming. We used topdownr, an automated and integrated multimodal approach to systematically assess high mass accuracy MS/MS fragmentation parameters to characterize filgrastim, a 19 kDa recombinant human granulocyte colony-stimulating factor used in treating neutropenia. A total of 276 different MS/MS conditions were systematically tested, including the following parameters: protein charge state, HCD and CID collision energy, ETD reaction time, ETD supplemental activation, and UVPD activation time. Stringent and accurate evaluation and annotation of the MS/MS data was achieved by requiring a fragment ion mass error of 5 ppm, considering reproducible N- and C-terminal fragment ions only, and excluding internal fragment ion assignments. We report the first EThcD and UVPD MS/MS analysis of intact filgrastim, and these two techniques combined resulted in 98% amino acid sequence coverage. By combining all tested fragmentation modes, we obtained near-complete amino acid sequence coverage (99.4%) of intact filgrastim.
Collapse
Affiliation(s)
- Maša Babović
- Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Pavel V Shliaha
- Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Sebastian Gibb
- Department of Anesthesiology and Intensive Care, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| |
Collapse
|
11
|
Brodbelt JS. Deciphering combinatorial post-translational modifications by top-down mass spectrometry. Curr Opin Chem Biol 2022; 70:102180. [PMID: 35779351 PMCID: PMC9489649 DOI: 10.1016/j.cbpa.2022.102180] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 12/15/2022]
Abstract
Post-translational modifications (PTMs) create vast structural and functional diversity of proteins, ultimately modulating protein function and degradation, influencing cellular signaling, and regulating transcription. The combinatorial patterns of PTMs increase the heterogeneity of proteins and further mediates their interactions. Advances in mass spectrometry-based proteomics have resulted in identification of thousands of proteins and allowed characterization of numerous types and sites of PTMs. Examination of intact proteins, termed the top-down approach, offers the potential to map protein sequences and localize multiple PTMs on each protein, providing the most comprehensive cataloging of proteoforms. This review describes some of the dividends of using mass spectrometry to analyze intact proteins and showcases innovative strategies that have enhanced the promise of top-down proteomics for exploring the impact of combinatorial PTMs in unsurpassed detail.
Collapse
Affiliation(s)
- Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
12
|
Caira S, Picariello G, Renzone G, Arena S, Troise AD, De Pascale S, Ciaravolo V, Pinto G, Addeo F, Scaloni A. Recent developments in peptidomics for the quali-quantitative analysis of food-derived peptides in human body fluids and tissues. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
13
|
Jeong K, Babović M, Gorshkov V, Kim J, Jensen ON, Kohlbacher O. FLASHIda enables intelligent data acquisition for top-down proteomics to boost proteoform identification counts. Nat Commun 2022; 13:4407. [PMID: 35906205 PMCID: PMC9338294 DOI: 10.1038/s41467-022-31922-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
The detailed analysis and structural characterization of proteoforms by top-down proteomics (TDP) has gained a lot of interest in biomedical research. Data-dependent acquisition (DDA) of intact proteins is non-trivial due to the diversity and complexity of proteoforms. Dedicated acquisition methods thus have the potential to greatly improve TDP. Here, we present FLASHIda, an intelligent online data acquisition algorithm for TDP that ensures the real-time selection of high-quality precursors of diverse proteoforms. FLASHIda combines fast charge deconvolution algorithms and machine learning-based quality assessment for optimal precursor selection. In an analysis of E. coli lysate, FLASHIda increases the number of unique proteoform level identifications from 800 to 1500 or generates a near-identical number of identifications in one third of the instrument time when compared to standard DDA mode. Furthermore, FLASHIda enables sensitive mapping of post-translational modifications and detection of chemical adducts. As a software extension module to the instrument, FLASHIda can be readily adopted for TDP studies of complex samples to enhance proteoform identification rates.
Collapse
Affiliation(s)
- Kyowon Jeong
- Applied Bioinformatics, Computer Science Department, University of Tübingen, Sand 14, 72076, Tübingen, Germany.
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076, Tübingen, Germany.
| | - Maša Babović
- Department of Biochemistry & Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Odense, Denmark
| | - Vladimir Gorshkov
- Department of Biochemistry & Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Odense, Denmark
| | - Jihyung Kim
- Applied Bioinformatics, Computer Science Department, University of Tübingen, Sand 14, 72076, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076, Tübingen, Germany
| | - Ole N Jensen
- Department of Biochemistry & Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Odense, Denmark
| | - Oliver Kohlbacher
- Applied Bioinformatics, Computer Science Department, University of Tübingen, Sand 14, 72076, Tübingen, Germany.
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076, Tübingen, Germany.
- Translational Bioinformatics, University Hospital Tübingen, Hoppe-Seyler-Str. 9, 72076, Tübingen, Germany.
| |
Collapse
|
14
|
Winkels K, Koudelka T, Tholey A. Quantitative Top-Down Proteomics by Isobaric Labeling with Thiol-Directed Tandem Mass Tags. J Proteome Res 2021; 20:4495-4506. [PMID: 34338531 DOI: 10.1021/acs.jproteome.1c00460] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While identification-centric (qualitative) top-down proteomics (TDP) has seen rapid progress in the recent past, the quantification of intact proteoforms within complex proteomes is still challenging. The by far mostly applied approach is label-free quantification, which, however, provides limited multiplexing capacity, and its use in combination with multidimensional separation is encountered with a number of problems. Isobaric labeling, which is a standard quantification approach in bottom-up proteomics, circumvents these limitations. Here, we introduce the application of thiol-directed isobaric labeling for quantitative TDP. For this purpose, we analyzed the labeling efficiency and optimized tandem mass spectrometry parameters for optimal backbone fragmentation for identification and reporter ion formation for quantification. Two different separation schemes, gel-eluted liquid fraction entrapment electrophoresis × liquid chromatography-mass spectrometry (LC-MS) and high/low-pH LC-MS, were employed for the analyses of either Escherichia coli (E. coli) proteomes or combined E. coli/yeast samples (two-proteome interference model) to study potential ratio compression. While the thiol-directed labeling introduces a bias in the quantifiable proteoforms, being restricted to Cys-containing proteoforms, our approach showed excellent accuracy in quantification, which is similar to that achievable in bottom-up proteomics. For example, 876 proteoforms could be quantified with high accuracy in an E. coli lysate. The LC-MS data were deposited to the ProteomeXchange with the dataset identifier PXD026310.
Collapse
Affiliation(s)
- Konrad Winkels
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel 24105, Germany
| | - Tomas Koudelka
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel 24105, Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel 24105, Germany
| |
Collapse
|
15
|
Fulcher JM, Makaju A, Moore RJ, Zhou M, Bennett DA, De Jager PL, Qian WJ, Paša-Tolić L, Petyuk VA. Enhancing Top-Down Proteomics of Brain Tissue with FAIMS. J Proteome Res 2021; 20:2780-2795. [PMID: 33856812 PMCID: PMC8672206 DOI: 10.1021/acs.jproteome.1c00049] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Proteomic investigations of Alzheimer's and Parkinson's disease have provided valuable insights into neurodegenerative disorders. Thus far, these investigations have largely been restricted to bottom-up approaches, hindering the degree to which one can characterize a protein's "intact" state. Top-down proteomics (TDP) overcomes this limitation; however, it is typically limited to observing only the most abundant proteoforms and of a relatively small size. Therefore, fractionation techniques are commonly used to reduce sample complexity. Here, we investigate gas-phase fractionation through high-field asymmetric waveform ion mobility spectrometry (FAIMS) within TDP. Utilizing a high complexity sample derived from Alzheimer's disease (AD) brain tissue, we describe how the addition of FAIMS to TDP can robustly improve the depth of proteome coverage. For example, implementation of FAIMS with external compensation voltage (CV) stepping at -50, -40, and -30 CV could more than double the mean number of non-redundant proteoforms, genes, and proteome sequence coverage compared to without FAIMS. We also found that FAIMS can influence the transmission of proteoforms and their charge envelopes based on their size. Importantly, FAIMS enabled the identification of intact amyloid beta (Aβ) proteoforms, including the aggregation-prone Aβ1-42 variant which is strongly linked to AD. Raw data and associated files have been deposited to the ProteomeXchange Consortium via the MassIVE data repository with data set identifier PXD023607.
Collapse
Affiliation(s)
- James M Fulcher
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Aman Makaju
- Life Sciences Mass Spectrometry Unit, Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Philip L De Jager
- Department of Neurology, Center for Translational & Computational Neuroimmunology, Columbia University Medical Center, New York, New York 10032, United States
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
16
|
Rusconi F. Free Open Source Software for Protein and Peptide Mass Spectrometry- based Science. Curr Protein Pept Sci 2021; 22:134-147. [PMID: 33461461 DOI: 10.2174/1389203722666210118160946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/12/2020] [Accepted: 01/04/2021] [Indexed: 12/28/2022]
Abstract
In the field of biology, and specifically in protein and peptide science, the power of mass spectrometry is that it is applicable to a vast spectrum of applications. Mass spectrometry can be applied to identify proteins and peptides in complex mixtures, to identify and locate post-translational modifications, to characterize the structure of proteins and peptides to the most detailed level or to detect protein-ligand non-covalent interactions. Thanks to the Free and Open Source Software (FOSS) movement, scientists have limitless opportunities to deepen their skills in software development to code software that solves mass spectrometric data analysis problems. After the conversion of raw data files into open standard format files, the entire spectrum of data analysis tasks can now be performed integrally on FOSS platforms, like GNU/Linux, and only with FOSS solutions. This review presents a brief history of mass spectrometry open file formats and goes on with the description of FOSS projects that are commonly used in protein and peptide mass spectrometry fields of endeavor: identification projects that involve mostly automated pipelines, like proteomics and peptidomics, and bio-structural characterization projects that most often involve manual scrutiny of the mass data. Projects of the last kind usually involve software that allows the user to delve into the mass data in an interactive graphics-oriented manner. Software projects are thus categorized on the basis of these criteria: software libraries for software developers vs desktop-based graphical user interface, software for the end-user and automated pipeline-based data processing vs interactive graphics-based mass data scrutiny.
Collapse
Affiliation(s)
- Filippo Rusconi
- PAPPSO, Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, 91190, Gif-sur-Yvette, France
| |
Collapse
|
17
|
|
18
|
Dupré M, Duchateau M, Malosse C, Borges-Lima D, Calvaresi V, Podglajen I, Clermont D, Rey M, Chamot-Rooke J. Optimization of a Top-Down Proteomics Platform for Closely Related Pathogenic Bacterial Discrimination. J Proteome Res 2020; 20:202-211. [PMID: 32929970 DOI: 10.1021/acs.jproteome.0c00351] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The current technique used for microbial identification in hospitals is matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). However, it suffers from important limitations, in particular, for closely related species or when the database used for the identification lacks the appropriate reference. In this work, we set up a liquid chromatography (LC)-MS/MS top-down proteomics platform, which aims at discriminating closely related pathogenic bacteria through the identification of specific proteoforms. Using Escherichia coli as a model, all steps of the workflow were optimized: protein extraction, on-line LC separation, MS method, and data analysis. Using optimized parameters, about 220 proteins, corresponding to more than 500 proteoforms, could be identified in a single run. We then used this platform for the discrimination of enterobacterial pathogens undistinguishable by MALDI-TOF, although leading to very different clinical outcomes. For each pathogen, we identified specific proteoforms that could potentially be used as biomarkers. We also improved the characterization of poorly described bacterial strains. Our results highlight the advantage of addressing proteoforms rather than peptides for accurate bacterial characterization and qualify top-down proteomics as a promising tool in clinical microbiology. Data are available via ProteomeXchange with the identifier PXD019247.
Collapse
Affiliation(s)
- Mathieu Dupré
- Mass Spectrometry for Biology Unit, CNRS USR2000, Institut Pasteur, Paris 75015, France
| | - Magalie Duchateau
- Mass Spectrometry for Biology Unit, CNRS USR2000, Institut Pasteur, Paris 75015, France
| | - Christian Malosse
- Mass Spectrometry for Biology Unit, CNRS USR2000, Institut Pasteur, Paris 75015, France
| | - Diogo Borges-Lima
- Mass Spectrometry for Biology Unit, CNRS USR2000, Institut Pasteur, Paris 75015, France
| | - Valeria Calvaresi
- Mass Spectrometry for Biology Unit, CNRS USR2000, Institut Pasteur, Paris 75015, France
| | - Isabelle Podglajen
- Microbiology Department, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Dominique Clermont
- Collection of the Institut Pasteur (CIP), Institut Pasteur, Paris 75015, France
| | - Martial Rey
- Mass Spectrometry for Biology Unit, CNRS USR2000, Institut Pasteur, Paris 75015, France
| | - Julia Chamot-Rooke
- Mass Spectrometry for Biology Unit, CNRS USR2000, Institut Pasteur, Paris 75015, France
| |
Collapse
|
19
|
Cassidy L, Helbig AO, Kaulich PT, Weidenbach K, Schmitz RA, Tholey A. Multidimensional separation schemes enhance the identification and molecular characterization of low molecular weight proteomes and short open reading frame-encoded peptides in top-down proteomics. J Proteomics 2020; 230:103988. [PMID: 32949814 DOI: 10.1016/j.jprot.2020.103988] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/17/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022]
Abstract
Short open reading frame-encoded peptides (SEP) represent a widely undiscovered part of the proteome. The detailed analysis of SEP has, despite inherent limitations such as incomplete sequence coverage, challenges encountered with protein inference, the identification of posttranslational modifications and the assignment of potential N- and C-terminal truncations, predominantly been assessed using bottom-up proteomic workflows. The use of top-down based proteomic workflows is capable of providing an unparalleled level of characterization information, which is of increased importance in the case of alternatively encoded protein products. However, top-down based analysis is not without its own limitations, for which efficient separation prior to MS analysis is a major issue. We established a sample preparation approach for the combined bottom-up and top-down proteomic analysis of SEP. Key improvements were made by the application of solid phase extraction (SPE), which supported enrichment of proteins below ca. 20 kDa, followed by 2D-LC-MS top-down analysis encompassing both HCD and EThcD ion activation. Bottom-up experiments were used to support and confirm top-down data interpretation. This strategy allowed for the top-down characterization of 36 proteoforms mapping to 12 SEP from the archaeon Methanosarcina mazei strain Gö1, with the concurrent detection and identification of several posttranslational modifications in SEP. BIOLOGICAL SIGNIFICANCE: Small or short open reading frames (sORF) have been widely neglected in genome research in the past. With their increasing discovery, the question about the presence and molecular function of their translation products, the short open reading frame-encoded peptides (SEP), arises. As these small proteins are usually below the 10 kDa range, the number of peptides identifiable by bottom-up proteomics is limited which hampers both the identification and the recognition of potential posttranslational modifications. The presented top-down approach allowed for the detection of full length SEP, as well as of terminally truncated proteoforms, and further enabled the identification of disulfide bonds in these small proteins. This demonstrates, that this yet widely undiscovered part of the proteome undergoes the same modifications as classical proteins which is an essential step for future understanding of the biological functions of these molecules.
Collapse
Affiliation(s)
- Liam Cassidy
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Andreas O Helbig
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Philipp T Kaulich
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Kathrin Weidenbach
- Institute for General Microbiology, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| | - Ruth A Schmitz
- Institute for General Microbiology, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany.
| |
Collapse
|
20
|
Brodbelt JS, Morrison LJ, Santos I. Ultraviolet Photodissociation Mass Spectrometry for Analysis of Biological Molecules. Chem Rev 2020; 120:3328-3380. [PMID: 31851501 PMCID: PMC7145764 DOI: 10.1021/acs.chemrev.9b00440] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development of new ion-activation/dissociation methods continues to be one of the most active areas of mass spectrometry owing to the broad applications of tandem mass spectrometry in the identification and structural characterization of molecules. This Review will showcase the impact of ultraviolet photodissociation (UVPD) as a frontier strategy for generating informative fragmentation patterns of ions, especially for biological molecules whose complicated structures, subtle modifications, and large sizes often impede molecular characterization. UVPD energizes ions via absorption of high-energy photons, which allows access to new dissociation pathways relative to more conventional ion-activation methods. Applications of UVPD for the analysis of peptides, proteins, lipids, and other classes of biologically relevant molecules are emphasized in this Review.
Collapse
Affiliation(s)
- Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Lindsay J. Morrison
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Inês Santos
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
21
|
Hinterholzer A, Stanojlovic V, Cabrele C, Schubert M. Unambiguous Identification of Pyroglutamate in Full-Length Biopharmaceutical Monoclonal Antibodies by NMR Spectroscopy. Anal Chem 2019; 91:14299-14305. [PMID: 31589410 DOI: 10.1021/acs.analchem.9b02513] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Biotherapeutic proteins are an indispensable class of pharmaceuticals that present a high degree of structural complexity and are prone to chemical modifications during production, processing, and storage, which have to be tightly controlled. Pyroglutamate (pGlu), a cyclization product of N-terminal Gln or Glu residues, is a widespread post-translational modification in proteins, including monoclonal antibodies (mAbs). The unambiguous identification and quantification of this modification in proteins is challenging, since the mass difference of -17 Da or -18 Da, when formed from Gln or Glu, respectively, is not unique. Moreover, deamidation and dehydration occur not only during cyclization to pGlu, but also during other reactions leading to different types of modifications, like succinimide or isopeptide bond moieties due to cross-linking between Asn or Gln and Lys side chains. Here we report the unambiguous identification and quantification of pGlu in intact mAbs with natural isotope distribution by NMR spectroscopy. The assignment of all 1H, 13C and 15N random coil chemical shifts of pGlu in short reference peptides led to the identification of unique chemical shift pairs that are distinct from the random coil chemical shifts of the natural amino-acid residues. These characteristic correlations are suited for the detection of pGlu in denatured proteins. We achieved complete denaturation of mAbs using a straightforward protocol, and could detect and quantify pGlu, in agreement with available mass spectrometric data. The application to the mAbs rituximab and adalimumab illustrates the potential of our approach for the characterization of biotherapeutics containing isotopes at natural abundance.
Collapse
Affiliation(s)
- Arthur Hinterholzer
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization , University of Salzburg , Hellbrunnerstrasse 34 , 5020 Salzburg , Austria.,Department of Biosciences , University of Salzburg , Billrothstrasse 11 , 5020 Salzburg , Austria
| | - Vesna Stanojlovic
- Department of Biosciences , University of Salzburg , Billrothstrasse 11 , 5020 Salzburg , Austria
| | - Chiara Cabrele
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization , University of Salzburg , Hellbrunnerstrasse 34 , 5020 Salzburg , Austria.,Department of Biosciences , University of Salzburg , Billrothstrasse 11 , 5020 Salzburg , Austria
| | - Mario Schubert
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization , University of Salzburg , Hellbrunnerstrasse 34 , 5020 Salzburg , Austria.,Department of Biosciences , University of Salzburg , Billrothstrasse 11 , 5020 Salzburg , Austria
| |
Collapse
|
22
|
Vincent D, Binos S, Rochfort S, Spangenberg G. Top-Down Proteomics of Medicinal Cannabis. Proteomes 2019; 7:proteomes7040033. [PMID: 31554318 PMCID: PMC6958505 DOI: 10.3390/proteomes7040033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/06/2019] [Accepted: 09/20/2019] [Indexed: 02/02/2023] Open
Abstract
The revised legislation on medicinal cannabis has triggered a surge of research studies in this space. Yet, cannabis proteomics is lagging. In a previous study, we optimised the protein extraction of mature buds for bottom-up proteomics. In this follow-up study, we developed a top-down mass spectrometry (MS) proteomics strategy to identify intact denatured protein from cannabis apical buds. After testing different source-induced dissociation (SID), collision-induced dissociation (CID), higher-energy collisional dissociation (HCD), and electron transfer dissociation (ETD) parameters on infused known protein standards, we devised three LC-MS/MS methods for top-down sequencing of cannabis proteins. Different MS/MS modes produced distinct spectra, albeit greatly overlapping between SID, CID, and HCD. The number of fragments increased with the energy applied; however, this did not necessarily translate into greater sequence coverage. Some precursors were more amenable to fragmentation than others. Sequence coverage decreased as the mass of the protein increased. Combining all MS/MS data maximised amino acid (AA) sequence coverage, achieving 73% for myoglobin. In this experiment, most cannabis proteins were smaller than 30 kD. A total of 46 cannabis proteins were identified with 136 proteoforms bearing different post-translational modifications (PTMs), including the excision of N-terminal M, the N-terminal acetylation, methylation, and acetylation of K resides, and phosphorylation. Most identified proteins are involved in photosynthesis, translation, and ATP production. Only one protein belongs to the phytocannabinoid biosynthesis, olivetolic acid cyclase.
Collapse
Affiliation(s)
- Delphine Vincent
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia.
| | - Steve Binos
- Thermo Fisher Scientific, Bio21 Institute, The University of Melbourne, 30 Flemington Rd, Parkville, Victoria 3052, Australia.
| | - Simone Rochfort
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia.
| | - German Spangenberg
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia.
| |
Collapse
|
23
|
Abstract
The small protein ubiquitin and its multiple polymers are encountered free in cells and as post-translational modifications on all proteins. Different polyubiquitin three dimensional structures are shown to correlate uniquely with different cellular functions as part of the diverse ubiquitin signaling. At the same time, this multiplicity of structures provides serious challenges to the analytical biochemist. Globally applicable strategies are presented here for the analyses of polyubiquitins and of ubiquitinated proteins, which take advantage of the speed, specificity and sensitivity of top-down tandem mass spectrometry. Particular attention is given to the supervised interpretation of fragmentation as revealed in the MS/MS spectra of these branched proteins. The strategy is compatible with any MS activation technology, is applicable to all polyubiquitin linkage and chain types, can be extended to ubiquitin-like proteins, and will be compatible with and enhanced by continuing advances in LC-MS/MS instrumentation and interpretation software.
Collapse
Affiliation(s)
- Lucia Geis-Asteggiante
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, United States
| | - Amanda E Lee
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, United States
| | - Catherine Fenselau
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, United States.
| |
Collapse
|