1
|
Lan Z, Chen R, Zou D, Zhao C. Microfluidic Nanoparticle Separation for Precision Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411278. [PMID: 39632600 PMCID: PMC11775552 DOI: 10.1002/advs.202411278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/11/2024] [Indexed: 12/07/2024]
Abstract
A deeper understanding of disease heterogeneity highlights the urgent need for precision medicine. Microfluidics, with its unique advantages, such as high adjustability, diverse material selection, low cost, high processing efficiency, and minimal sample requirements, presents an ideal platform for precision medicine applications. As nanoparticles, both of biological origin and for therapeutic purposes, become increasingly important in precision medicine, microfluidic nanoparticle separation proves particularly advantageous for handling valuable samples in personalized medicine. This technology not only enhances detection, diagnosis, monitoring, and treatment accuracy, but also reduces invasiveness in medical procedures. This review summarizes the fundamentals of microfluidic nanoparticle separation techniques for precision medicine, starting with an examination of nanoparticle properties essential for separation and the core principles that guide various microfluidic methods. It then explores passive, active, and hybrid separation techniques, detailing their principles, structures, and applications. Furthermore, the review highlights their contributions to advancements in liquid biopsy and nanomedicine. Finally, it addresses existing challenges and envisions future development spurred by emerging technologies such as advanced materials science, 3D printing, and artificial intelligence. These interdisciplinary collaborations are anticipated to propel the platformization of microfluidic separation techniques, significantly expanding their potential in precision medicine.
Collapse
Affiliation(s)
- Zhenwei Lan
- School of Chemical Engineering, Faculty of Sciences, Engineering and TechnologyThe University of AdelaideAdelaideSA5005Australia
| | - Rui Chen
- School of Chemical Engineering, Faculty of Sciences, Engineering and TechnologyThe University of AdelaideAdelaideSA5005Australia
| | - Da Zou
- School of Chemical Engineering, Faculty of Sciences, Engineering and TechnologyThe University of AdelaideAdelaideSA5005Australia
| | - Chun‐Xia Zhao
- School of Chemical Engineering, Faculty of Sciences, Engineering and TechnologyThe University of AdelaideAdelaideSA5005Australia
| |
Collapse
|
2
|
Shin HS, Park J, Lee SY, Yun HG, Kim B, Kim J, Han S, Cho D, Doh J, Choi S. Integrative Magneto-Microfluidic Separation of Immune Cells Facilitates Clinical Functional Assays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302809. [PMID: 37365959 DOI: 10.1002/smll.202302809] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/05/2023] [Indexed: 06/28/2023]
Abstract
Accurately analyzing the functional activities of natural killer (NK) cells in clinical diagnosis remains challenging due to their coupling with other immune effectors. To address this, an integrated immune cell separator is required, which necessitates a streamlined sample preparation workflow including immunological cell isolation, removal of excess red blood cells (RBCs), and buffer exchange for downstream analysis. Here, a self-powered integrated magneto-microfluidic cell separation (SMS) chip is presented, which outputs high-purity target immune cells by simply inputting whole blood. The SMS chip intensifies the magnetic field gradient using an iron sphere-filled inlet reservoir for high-performance immuno-magnetic cell selection and separates target cells size-selectively using a microfluidic lattice for RBC removal and buffer exchange. In addition, the chip incorporates self-powered microfluidic pumping through a degassed polydimethylsiloxane chip, enabling the rapid isolation of NK cells at the place of blood collection within 40 min. This chip is used to isolate NK cells from whole blood samples of hepatocellular cancer patients and healthy volunteers and examined their functional activities to identify potential abnormalities in NK cell function. The SMS chip is simple to use, rapid to sort, and requires small blood volumes, thus facilitating the use of immune cell subtypes for cell-based diagnosis.
Collapse
Affiliation(s)
- Hee Sik Shin
- Department of Electrical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jeehun Park
- Soft Foundry Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seung Yeop Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hyo Geun Yun
- Department of Electrical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Byeongyeon Kim
- Department of Electrical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jinho Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 25-2, Seonggyungwan-ro, Jongno-gu, Seoul, 03063, Republic of Korea
| | - Sangbin Han
- Department of Anesthesiology and Pain Medicine Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-Ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Duck Cho
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 25-2, Seonggyungwan-ro, Jongno-gu, Seoul, 03063, Republic of Korea
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-Ro, Gangnam-gu, Seoul, 06351, Republic of Korea
- Cell and Gene Therapy Institute (CGTI), Samsung Medical Center, 81, Irwon-Ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Junsang Doh
- Soft Foundry Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Department of Materials Science and Engineering, Institute of Engineering Research, BioMAX, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Sungyoung Choi
- Department of Electrical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Biomedical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| |
Collapse
|
3
|
Tottori N, Nisisako T. Tunable deterministic lateral displacement of particles flowing through thermo-responsive hydrogel micropillar arrays. Sci Rep 2023; 13:4994. [PMID: 36973401 PMCID: PMC10043002 DOI: 10.1038/s41598-023-32233-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Deterministic lateral displacement (DLD) is a promising technology that allows for the continuous and the size-based separation of suspended particles at a high resolution through periodically arrayed micropillars. In conventional DLD, the critical diameter (Dc), which determines the migration mode of a particle of a particular size, is fixed by the device geometry. Here, we propose a novel DLD that uses the pillars of a thermo-responsive hydrogel, poly(N-isopropylacrylamide) (PNIPAM) to flexibly tune the Dc value. Upon heating and cooling, the PNIPAM pillars in the aqueous solution shrink and swell because of their hydrophobic-hydrophilic phase transitions as the temperature varies. Using the PNIPAM pillars confined in a poly(dimethylsiloxane) microchannel, we demonstrate continuous switching of particle (7-μm beads) trajectories (displacement or zigzag mode) by adjusting the Dc through temperature control of the device on a Peltier element. Further, we perform on/off operation of the particle separation (7-μm and 2-μm beads) by adjusting the Dc values.
Collapse
Affiliation(s)
- Naotomo Tottori
- Department of Mechanical Engineering, School of Engineering, Tokyo Institute of Technology, Tokyo, Japan
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Takasi Nisisako
- Laboratory for Future Interdisciplinary Research of Science and Technology (FIRST), Institute of Innovative Research, Tokyo Institute of Technology, R2-9, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.
| |
Collapse
|
4
|
Lu N, Tay HM, Petchakup C, He L, Gong L, Maw KK, Leong SY, Lok WW, Ong HB, Guo R, Li KHH, Hou HW. Label-free microfluidic cell sorting and detection for rapid blood analysis. LAB ON A CHIP 2023; 23:1226-1257. [PMID: 36655549 DOI: 10.1039/d2lc00904h] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Blood tests are considered as standard clinical procedures to screen for markers of diseases and health conditions. However, the complex cellular background (>99.9% RBCs) and biomolecular composition often pose significant technical challenges for accurate blood analysis. An emerging approach for point-of-care blood diagnostics is utilizing "label-free" microfluidic technologies that rely on intrinsic cell properties for blood fractionation and disease detection without any antibody binding. A growing body of clinical evidence has also reported that cellular dysfunction and their biophysical phenotypes are complementary to standard hematoanalyzer analysis (complete blood count) and can provide a more comprehensive health profiling. In this review, we will summarize recent advances in microfluidic label-free separation of different blood cell components including circulating tumor cells, leukocytes, platelets and nanoscale extracellular vesicles. Label-free single cell analysis of intrinsic cell morphology, spectrochemical properties, dielectric parameters and biophysical characteristics as novel blood-based biomarkers will also be presented. Next, we will highlight research efforts that combine label-free microfluidics with machine learning approaches to enhance detection sensitivity and specificity in clinical studies, as well as innovative microfluidic solutions which are capable of fully integrated and label-free blood cell sorting and analysis. Lastly, we will envisage the current challenges and future outlook of label-free microfluidics platforms for high throughput multi-dimensional blood cell analysis to identify non-traditional circulating biomarkers for clinical diagnostics.
Collapse
Affiliation(s)
- Nan Lu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
- HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University, 65 Nanyang Drive, Block N3, 637460, Singapore
| | - Hui Min Tay
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Chayakorn Petchakup
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Linwei He
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Lingyan Gong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Kay Khine Maw
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Sheng Yuan Leong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Wan Wei Lok
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Hong Boon Ong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Ruya Guo
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - King Ho Holden Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
- HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University, 65 Nanyang Drive, Block N3, 637460, Singapore
| | - Han Wei Hou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
- HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University, 65 Nanyang Drive, Block N3, 637460, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Clinical Sciences Building, 308232, Singapore
| |
Collapse
|
5
|
Matsuura K, Takata K. Blood Cell Separation Using Polypropylene-Based Microfluidic Devices Based on Deterministic Lateral Displacement. MICROMACHINES 2023; 14:mi14020238. [PMID: 36837938 PMCID: PMC9960998 DOI: 10.3390/mi14020238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 05/27/2023]
Abstract
Mammalian blood cell separation methods contribute to improving the diagnosis and treatment of animal and human diseases. Microfluidic deterministic lateral displacement (DLD) devices can sort cells based on their particle diameter. We developed microfluidic DLD devices with poly(propylene)-based resin and used them to separate bovine and human red blood cells (RBCs) and white blood cells (WBCs) without electric devices. To determine the critical cut-off diameter (Dc) of these devices, we used immunobeads with a diameter of 1-20 μm. The Dc values of the microfluidic DLD devices for the immunobeads in the experiments were similar to the calculated Dc values (8-10 μm). Results from bovine blood cell separation experiments suggest that lymphocytes and neutrophils can be separated from diluted, whole blood. Human RBCs were occasionally observed in the left outlet where larger particles with diameters closer to the Dc value were collected. Based on the Dc values, human neutrophils were sorted to the left outlet, whereas lymphocytes were observed in both outlets. Although microfluidic channel optimization is required for the concentration of sorted cells, the microfluidic DLD device prepared with a poly(propylene)-based resin has the potential for clinical use.
Collapse
Affiliation(s)
- Koji Matsuura
- Department of Bioscience, Faculty of Life Science, Okayama University of Science, Okayama 700-0005, Japan
| | - Koji Takata
- Life Materials Development Section, Human Life Technology Research Institute, Toyama Industrial Technology Research and Development Center, Nanto 939-1503, Japan
| |
Collapse
|
6
|
Liu L, Yang R, Cui J, Chen P, Ri HC, Sun H, Piao X, Li M, Pu Q, Quinto M, Zhou JL, Shang HB, Li D. Circular Nonuniform Electric Field Gel Electrophoresis for the Separation and Concentration of Nanoparticles. Anal Chem 2022; 94:8474-8482. [PMID: 35652329 DOI: 10.1021/acs.analchem.2c01313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A circular nonuniform electric field strategy coupled with gel electrophoresis was proposed to control the precise separation and efficient concentration of nano- and microparticles. The circular nonuniform electric field has the feature of exponential increase in the electric field intensity along the radius, working with three functional zones of migration, acceleration, and concentration. The distribution form of electric field lines is regulated in functional zones to control the migration behaviors of particles for separation and concentration by altering the relative position of the ring electrode (outside) and rodlike electrode (inner). The circular nonuniform electric field promotes the target-type and high-precision separation of nanoparticles based on the difference in charge-to-size ratio. The concentration multiple of nanoparticles is also controlled randomly with the alternation of radius, taking advantage of vertical extrusion and concentric converging of the migration path. This work provides a brand new insight into the simultaneous separation and concentration of particles and is promising for developing a versatile tool for the separation and preparation of various samples instead of conventional methods.
Collapse
Affiliation(s)
- Lu Liu
- Department of Chemistry, Yanbian University, Park Road 977, Yanji 133002, Jilin, China
| | - Ruilin Yang
- Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Park Road 977, Yanji 133002, Jilin, China
| | - Jiaxuan Cui
- Department of Chemistry, Yanbian University, Park Road 977, Yanji 133002, Jilin, China
| | - Peng Chen
- Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Park Road 977, Yanji 133002, Jilin, China
| | - Hyok Chol Ri
- College of Pharmacy, Yanbian University, Park Road 977, Yanji 133002, Jilin, China
| | - Huaze Sun
- Department of Chemistry, Yanbian University, Park Road 977, Yanji 133002, Jilin, China
| | - Xiangfan Piao
- Department of Electronics, School of Engineering, Yanbian University, Park Road 977, Yanji 133002, Jilin, China
| | - Minshu Li
- Department of Pharmacy, University of Copenhagen, Copenhagen 2100, Denmark
| | - Qiaosheng Pu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Maurizio Quinto
- DAFNE - Department of Agriculture, Food, Natural Resources and Engineering, University of Foggia, Via Napoli 25, I-71122 Foggia, Italy
| | - John L Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Hai-Bo Shang
- Department of Chemistry, Yanbian University, Park Road 977, Yanji 133002, Jilin, China.,Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Park Road 977, Yanji 133002, Jilin, China
| | - Donghao Li
- Department of Chemistry, Yanbian University, Park Road 977, Yanji 133002, Jilin, China.,Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Park Road 977, Yanji 133002, Jilin, China
| |
Collapse
|
7
|
Woo SO, Oh M, Nietfeld K, Boehler B, Choi Y. Molecular diffusion analysis of dynamic blood flow and plasma separation driven by self-powered microfluidic devices. BIOMICROFLUIDICS 2021; 15:034106. [PMID: 34084256 PMCID: PMC8140817 DOI: 10.1063/5.0051361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Integration of microfluidic devices with pressure-driven, self-powered fluid flow propulsion methods has provided a very effective solution for on-chip, droplet blood testing applications. However, precise understanding of the physical process governing fluid dynamics in polydimethylsiloxane (PDMS)-based microfluidic devices remains unclear. Here, we propose a pressure-driven diffusion model using Fick's law and the ideal gas law, the results of which agree well with the experimental fluid dynamics observed in our vacuum pocket-assisted, self-powered microfluidic devices. Notably, this model enables us to precisely tune the flow rate by adjusting two geometrical parameters of the vacuum pocket. By linking the self-powered fluid flow propulsion method to the sedimentation, we also show that direct plasma separation from a drop of whole blood can be achieved using only a simple construction without the need for external power sources, connectors, or a complex operational procedure. Finally, the potential of the vacuum pocket, along with a removable vacuum battery to be integrated with non-PDMS microfluidic devices to drive and control the fluid flow, is demonstrated.
Collapse
Affiliation(s)
- Sung Oh Woo
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108, USA
| | - Myungkeun Oh
- Materials and Nanotechnology Program, North Dakota State University, Fargo, North Dakota 58108, USA
| | - Kyle Nietfeld
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108, USA
| | - Bailey Boehler
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108, USA
| | - Yongki Choi
- Author to whom correspondence should be addressed:
| |
Collapse
|
8
|
Hochstetter A, Vernekar R, Austin RH, Becker H, Beech JP, Fedosov DA, Gompper G, Kim SC, Smith JT, Stolovitzky G, Tegenfeldt JO, Wunsch BH, Zeming KK, Krüger T, Inglis DW. Deterministic Lateral Displacement: Challenges and Perspectives. ACS NANO 2020; 14:10784-10795. [PMID: 32844655 DOI: 10.1021/acsnano.0c05186] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The advent of microfluidics in the 1990s promised a revolution in multiple industries from healthcare to chemical processing. Deterministic lateral displacement (DLD) is a continuous-flow microfluidic particle separation method discovered in 2004 that has been applied successfully and widely to the separation of blood cells, yeast, spores, bacteria, viruses, DNA, droplets, and more. Deterministic lateral displacement is conceptually simple and can deliver consistent performance over a wide range of flow rates and particle concentrations. Despite wide use and in-depth study, DLD has not yet been fully elucidated or optimized, with different approaches to the same problem yielding varying results. We endeavor here to provide up-to-date expert opinion on the state-of-art and current fundamental, practical, and commercial challenges with DLD as well as describe experimental and modeling opportunities. Because these challenges and opportunities arise from constraints on hydrodynamics, fabrication, and operation at the micro- and nanoscale, we expect this Perspective to serve as a guide for the broader micro- and nanofluidic community to identify and to address open questions in the field.
Collapse
Affiliation(s)
- Axel Hochstetter
- Department of Physics, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Rohan Vernekar
- School of Engineering, Institute for Multiscale Thermofluids, University of Edinburgh, EH9 3DW Edinburgh, United Kingdom
| | - Robert H Austin
- Department of Physics, Princeton University, Princeton 08544, New Jersey, United States
| | | | - Jason P Beech
- Department of Physics and NanoLund, Lund University, SE 22100 Lund, Sweden
| | - Dmitry A Fedosov
- Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Juelich, Germany
| | - Gerhard Gompper
- Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Juelich, Germany
| | - Sung-Cheol Kim
- IBM T.J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Joshua T Smith
- IBM T.J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Gustavo Stolovitzky
- IBM T.J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Jonas O Tegenfeldt
- Department of Physics and NanoLund, Lund University, SE 22100 Lund, Sweden
| | - Benjamin H Wunsch
- IBM T.J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Kerwin K Zeming
- Critical Analytics for Manufacturing of Personalized Medicine, Singapore-MIT Alliance for Research and Technology, 138602 Singapore
| | - Timm Krüger
- School of Engineering, Institute for Multiscale Thermofluids, University of Edinburgh, EH9 3DW Edinburgh, United Kingdom
| | - David W Inglis
- School of Engineering, Macquarie University, Macquarie Park, New South Wales 2109, Australia
| |
Collapse
|
9
|
Tottori N, Muramoto Y, Sakai H, Nisisako T. Nanoparticle Separation through Deterministic Lateral Displacement Arrays in Poly(dimethylsiloxane). JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2020. [DOI: 10.1252/jcej.19we160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Naotomo Tottori
- Institute of Innovative Research, Tokyo Institute of Technology
| | | | | | - Takasi Nisisako
- Institute of Innovative Research, Tokyo Institute of Technology
| |
Collapse
|
10
|
Tottori N, Nisisako T. Particle/cell separation using sheath-free deterministic lateral displacement arrays with inertially focused single straight input. LAB ON A CHIP 2020; 20:1999-2008. [PMID: 32373868 DOI: 10.1039/d0lc00354a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
This paper proposes microfluidic particle separation by sheath-free deterministic lateral displacement (DLD) with inertial focusing in a single straight input channel. Unlike conventional DLD devices for size-based particle separation, in which sheath streams are used to focus the particles before the solution containing them reaches the DLD arrays, the proposed method uses inertial focusing to align the particles along the middle or the sidewalls of the straight rectangular input channel. The two-stage model of inertial focusing is applied to reduce the length of the side-focusing channel. The proposed method is demonstrated by using it to separate fluorescent polymer particles of diameters 13 and 7 μm, in the process of which the effect of the particle focusing regime on the separation performance is also investigated. Through middle focusing, the method is further used to separate MCF-7 cells (a model of circulating tumor cells (CTCs)) and blood cells, with ∼99.0% capture efficiency achieved.
Collapse
Affiliation(s)
- Naotomo Tottori
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
| | - Takasi Nisisako
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
11
|
Xu L, Wang A, Li X, Oh KW. Passive micropumping in microfluidics for point-of-care testing. BIOMICROFLUIDICS 2020; 14:031503. [PMID: 32509049 PMCID: PMC7263483 DOI: 10.1063/5.0002169] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/14/2020] [Indexed: 05/11/2023]
Abstract
Suitable micropumping methods for flow control represent a major technical hurdle in the development of microfluidic systems for point-of-care testing (POCT). Passive micropumping for point-of-care microfluidic systems provides a promising solution to such challenges, in particular, passive micropumping based on capillary force and air transfer based on the air solubility and air permeability of specific materials. There have been numerous developments and applications of micropumping techniques that are relevant to the use in POCT. Compared with active pumping methods such as syringe pumps or pressure pumps, where the flow rate can be well-tuned independent of the design of the microfluidic devices or the property of the liquids, most passive micropumping methods still suffer flow-control problems. For example, the flow rate may be set once the device has been made, and the properties of liquids may affect the flow rate. However, the advantages of passive micropumping, which include simplicity, ease of use, and low cost, make it the best choice for POCT. Here, we present a systematic review of different types of passive micropumping that are suitable for POCT, alongside existing applications based on passive micropumping. Future trends in passive micropumping are also discussed.
Collapse
Affiliation(s)
- Linfeng Xu
- Department of Bioengineering and Therapeutic
Sciences, Schools of Medicine and Pharmacy, University of California San
Francisco, 1700 4th Street, Byers Hall 304, San Francisco, California
94158, USA
| | - Anyang Wang
- SMALL (Sensors and MicroActuators Learning Lab),
Department of Electrical Engineering, University at Buffalo, The State University of New
York, Buffalo, New York 14260, USA
| | - Xiangpeng Li
- Department of Bioengineering and Therapeutic
Sciences, Schools of Medicine and Pharmacy, University of California San
Francisco, 1700 4th Street, Byers Hall 304, San Francisco, California
94158, USA
| | - Kwang W. Oh
- SMALL (Sensors and MicroActuators Learning Lab),
Department of Electrical Engineering, University at Buffalo, The State University of New
York, Buffalo, New York 14260, USA
| |
Collapse
|
12
|
Jusková P, Matthys L, Viovy JL, Malaquin L. 3D deterministic lateral displacement (3D-DLD) cartridge system for high throughput particle sorting. Chem Commun (Camb) 2020; 56:5190-5193. [DOI: 10.1039/c9cc05858c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A new 3D architecture for the deterministic lateral displacement microfluidic device based on ultra-high aspect ratio arch-shaped pillars.
Collapse
Affiliation(s)
- Petra Jusková
- Laboratoire Physico Chimie Curie
- Institut Curie
- PSL Research University
- CNRS UMR168
- Paris
| | | | - Jean-Louis Viovy
- Laboratoire Physico Chimie Curie
- Institut Curie
- PSL Research University
- CNRS UMR168
- Paris
| | | |
Collapse
|
13
|
Salafi T, Zhang Y, Zhang Y. A Review on Deterministic Lateral Displacement for Particle Separation and Detection. NANO-MICRO LETTERS 2019; 11:77. [PMID: 34138050 PMCID: PMC7770818 DOI: 10.1007/s40820-019-0308-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/25/2019] [Indexed: 05/03/2023]
Abstract
The separation and detection of particles in suspension are essential for a wide spectrum of applications including medical diagnostics. In this field, microfluidic deterministic lateral displacement (DLD) holds a promise due to the ability of continuous separation of particles by size, shape, deformability, and electrical properties with high resolution. DLD is a passive microfluidic separation technique that has been widely implemented for various bioparticle separations from blood cells to exosomes. DLD techniques have been previously reviewed in 2014. Since then, the field has matured as several physics of DLD have been updated, new phenomena have been discovered, and various designs have been presented to achieve a higher separation performance and throughput. Furthermore, some recent progress has shown new clinical applications and ability to use the DLD arrays as a platform for biomolecules detection. This review provides a thorough discussion on the recent progress in DLD with the topics based on the fundamental studies on DLD models and applications for particle separation and detection. Furthermore, current challenges and potential solutions of DLD are also discussed. We believe that a comprehensive understanding on DLD techniques could significantly contribute toward the advancements in the field for various applications. In particular, the rapid, low-cost, and high-throughput particle separation and detection with DLD have a tremendous impact for point-of-care diagnostics.
Collapse
Affiliation(s)
- Thoriq Salafi
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 119077, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Yi Zhang
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Yong Zhang
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 119077, Singapore.
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore.
| |
Collapse
|
14
|
Xiang N, Wang J, Li Q, Han Y, Huang D, Ni Z. Precise Size-Based Cell Separation via the Coupling of Inertial Microfluidics and Deterministic Lateral Displacement. Anal Chem 2019; 91:10328-10334. [DOI: 10.1021/acs.analchem.9b02863] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Jie Wang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Qiao Li
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Yu Han
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Di Huang
- School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Zhonghua Ni
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| |
Collapse
|