1
|
Radovanovic M, Schneider JJ, Martin JH, Norris RL, Galettis P. Comparison between a single- and a multi-point calibration method using LC-MS/MS for measurement of 5-fluorouracil in human plasma. J Mass Spectrom Adv Clin Lab 2024; 33:31-37. [PMID: 39206041 PMCID: PMC11350269 DOI: 10.1016/j.jmsacl.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/10/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
When quantifying therapeutic drugs using LC-MS/MS instrumentation in clinical laboratories, batch-mode analysis with a calibration curve consisting of 6-10 concentrations for each analyte is the most widely used approach. However, this is an inefficient use of this technology since it increases cost, delays result availability and precludes random instrument access. Various alternative methods to reduce the calibrator use and improve efficiency without compromising analytical quality have been investigated, and a single-point calibration has been reported to be the simplest, least expensive and the quickest approach. This study compares a single and a multi-point calibration method using LC-MS/MS with 5-fluorouracil (5-FU) as a model drug. The method was validated for quantitative analysis of 5-FU over a concentration range of 0.05-50 mg/L. Patients undergoing cancer treatment with intravenous 5-FU had plasma 5-FU concentrations measured, and their dose adjusted in real time based on the calculated area under the time-concentration curve (AUC). Subsequently, a single point calibration method using a concentration at 0.5 mg/L was compared to the multi-point calibration method in terms of accuracy and precision. A Bland-Altman bias plot and a Passing-Bablok regression analysis showed a good agreement between the two methods (mean difference = -1.87 %, slope = 1.002, respectively) when comparing patient plasma 5-FU concentrations. The calibration method did not impact the AUC results nor the decision on 5-FU dose adjustments. Our study demonstrated that a single point calibration method produced analytically and clinically comparable results to those produced by a multi-point method when quantifying 5-FU and is feasible to be used clinically.
Collapse
Affiliation(s)
- Mirjana Radovanovic
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Callaghan, NSW, Australia
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- St Vincent’s Clinical School, University of New South Wales, Darlinghurst, NSW, Australia
| | - Jennifer J. Schneider
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Callaghan, NSW, Australia
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jennifer H. Martin
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Callaghan, NSW, Australia
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Ross L.G. Norris
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Callaghan, NSW, Australia
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- St Vincent’s Clinical School, University of New South Wales, Darlinghurst, NSW, Australia
| | - Peter Galettis
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, Callaghan, NSW, Australia
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
2
|
Torkamannejad S, Chang G, Aroge FA, Sun B. Single Isotopologue for In-Sample Calibration and Absolute Quantitation by LC-MS/MS. J Proteome Res 2024; 23:1351-1359. [PMID: 38445850 DOI: 10.1021/acs.jproteome.3c00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Targeted mass spectrometry (MS)-based absolute quantitative analysis has been increasingly used in biomarker discovery. The ability to accurately measure the masses by MS enabled the use of isotope-incorporated surrogates having virtually identical physiochemical properties with the target analytes as calibrators. Such a unique capacity allowed for accurate in-sample calibration. Current in-sample calibration uses multiple isotopologues or structural analogues for both the surrogate and the internal standard. Here, we simplified this common practice by using endogenous light peptides as the internal standards and used a mathematical deduction of "heavy matching light, HML" to directly quantify an endogenous analyte. This method provides all necessary assay performance parameters in the authentic matrix, including the lower limit of quantitation (LLOQ) and intercept of the calibration curve, by using only a single isotopologue of the analyte. This method can be applied to the quantitation of proteins, peptides, and small molecules. Using this method, we quantified the efficiency of heart tissue digestion and recovery using sodium deoxycholate as a detergent and two spiked exogenous proteins as mimics of heart proteins. The results demonstrated the robustness of the assay.
Collapse
Affiliation(s)
- Soroush Torkamannejad
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
| | - Ge Chang
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
| | - Fabusuyi A Aroge
- School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia V3T0A3, Canada
| | - Bingyun Sun
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
| |
Collapse
|
3
|
Yang S, Lin H, Yang P, Meng J, Abdallah MF, Shencheng Y, Li R, Li J, Liu S, Li Q, Lu P, Zhang R, Li Y. Advancing High-Throughput MS-Based Protein Quantification: A Case Study on Quantifying 10 Major Food Allergens by LC-MS/MS Using a One-Sample Multipoint External Calibration Curve. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6625-6637. [PMID: 38494953 DOI: 10.1021/acs.jafc.3c08362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The LC-MS-based method has emerged as the preferred approach for quantifying food allergens. However, the preparation of a traditional calibration curve (MSCC) is labor-intensive and error-prone. Here, a sensitive and robust LC-MS/MS method for quantifying 10 major food allergens was developed and validated, where the one-sample multipoint external calibration curve (OSCC) was employed instead of MSCC. By employing the multiple isotopologue reaction monitoring (MIRM) technique with only one spiked level in the blank, OSCC can be effectively established. Results demonstrate that the proposed method exhibits excellent performance in selectivity, sensitivity, accuracy, and precision, comparable to that of the traditional MSCC. Additionally, this strategy allows for isotope sample dilution by monitoring the less abundant MIRM channel. Moreover, the developed method was successfully applied to investigate the contamination of 10 food allergens in commercial food products. With its high throughput and robustness, the MIRM-OSCC-LC-MS/MS methodology has many potential applications, especially in the MS-based protein quantification analysis.
Collapse
Affiliation(s)
- Shupeng Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Haopeng Lin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Peijie Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Junhong Meng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Mohamed F Abdallah
- Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, Ghent 9000, Belgium
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Yingnan Shencheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Ruohan Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Jianxun Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Shuyan Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Qianqian Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Peng Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Rong Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Yi Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| |
Collapse
|
4
|
Sun F, Li Y, Tan H, Wu P, Shencheng Y, Lin H, Lu P, Zhang R, Liu S, Li Y, Yang S. Integrating a Multiple Isotopologue Reaction-Monitoring Technique and LC-MS/MS for Quantitation of Small Molecules: Ten Mycotoxins in Cereals as an Example. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6638-6650. [PMID: 38482854 DOI: 10.1021/acs.jafc.3c08828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Accurate quantification of mycotoxin in cereals is crucial for ensuring food safety and human health. However, the preparation of traditional multisample external calibration curves (MSCCs) is labor-intensive and error-prone. Here, a multiple isotopologue reaction-monitoring (MIRM)-LC-MS/MS method for accurate quantitation of ten major mycotoxins in cereals was successfully developed and validated, where a novel one-sample multipoint calibration curve (OSCC) strategy is used instead of MSCCs. The OSCC can be established by examining the correlation between the calculated theoretical isotopic abundances and the measured abundance across various MIRM channels. In comparison to the MSCC, the OSCC strategy exhibits outstanding performance including superior selectivity, accuracy (78.4-108.6%), and precision (<12.5%). Furthermore, the proposed OSCC-MIRM-LC-MS/MS method was successfully applied to investigate mycotoxin contamination in cereal samples in China. Considering the advantages of simplified workflows and improved throughput, the OSCC-MIRM-LC-MS/MS methodology holds great promise for accurately quantifying chemical contaminants in foods.
Collapse
Affiliation(s)
- Feifei Sun
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, People's Republic of China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Yanshen Li
- College of Life Science, Yantai University, Yantai 264005, Shandong, People's Republic of China
| | - Haiguang Tan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Peixu Wu
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, People's Republic of China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Yingnan Shencheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Haopeng Lin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Peng Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Rong Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Shuyan Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Yi Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Shupeng Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| |
Collapse
|
5
|
G Jagadeeshaprasad M, Zeng J, Zheng N. LC-MS bioanalysis of protein biomarkers and protein therapeutics in formalin-fixed paraffin-embedded tissue specimens. Bioanalysis 2024; 16:245-258. [PMID: 38226835 DOI: 10.4155/bio-2023-0210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Formalin-fixed paraffin-embedded (FFPE) is a form of preservation and preparation for biopsy specimens. FFPE tissue specimens are readily available as part of oncology studies because they are often collected for disease diagnosis or confirmation. FFPE tissue specimens could be extremely useful for retrospective studies on protein biomarkers because the samples preserved in FFPE blocks could be stable for decades. However, LC-MS bioanalysis of FFPE tissues poses significant challenges. In this Perspective, we review the benefits and recent developments in LC-MS approach for targeted protein biomarker and protein therapeutic analysis using FFPE tissues and their clinical and translational applications. We believe that LC-MS bioanalysis of protein biomarkers in FFPE tissue specimens represents a great potential for its clinical applications.
Collapse
Affiliation(s)
| | - Jianing Zeng
- Department of Protein Sciences & Mass Spectrometry, Translational Medicine, Bristol Myers Squibb, Princeton, NJ 08543, USA
| | - Naiyu Zheng
- Department of Protein Sciences & Mass Spectrometry, Translational Medicine, Bristol Myers Squibb, Princeton, NJ 08543, USA
| |
Collapse
|
6
|
Fecke A, Saw NMMT, Kale D, Kasarla SS, Sickmann A, Phapale P. Quantitative Analytical and Computational Workflow for Large-Scale Targeted Plasma Metabolomics. Metabolites 2023; 13:844. [PMID: 37512551 PMCID: PMC10383057 DOI: 10.3390/metabo13070844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Quantifying metabolites from various biological samples is necessary for the clinical and biomedical translation of metabolomics research. One of the ongoing challenges in biomedical metabolomics studies is the large-scale quantification of targeted metabolites, mainly due to the complexity of biological sample matrices. Furthermore, in LC-MS analysis, the response of compounds is influenced by their physicochemical properties, chromatographic conditions, eluent composition, sample preparation, type of MS ionization source, and analyzer used. To facilitate large-scale metabolite quantification, we evaluated the relative response factor (RRF) approach combined with an integrated analytical and computational workflow. This approach considers a compound's individual response in LC-MS analysis relative to that of a non-endogenous reference compound to correct matrix effects. We created a quantitative LC-MS library using the Skyline/Panorama web platform for data processing and public sharing of data. In this study, we developed and validated a metabolomics method for over 280 standard metabolites and quantified over 90 metabolites. The RRF quantification was validated and compared with conventional external calibration approaches as well as literature reports. The Skyline software environment was adapted for processing such metabolomics data, and the results are shared as a "quantitative chromatogram library" with the Panorama web application. This new workflow was found to be suitable for large-scale quantification of metabolites in human plasma samples. In conclusion, we report a novel quantitative chromatogram library with a targeted data analysis workflow for biomedical metabolomic applications.
Collapse
Affiliation(s)
- Antonia Fecke
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
- Department Hamm 2, Hochschule Hamm-Lippstadt, Marker-Allee 76-78, 59063 Hamm, Germany
| | - Nay Min Min Thaw Saw
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| | - Dipali Kale
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| | - Siva Swapna Kasarla
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| | - Prasad Phapale
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| |
Collapse
|
7
|
Visconti G, de Figueiredo M, Salamin O, Boccard J, Vuilleumier N, Nicoli R, Kuuranne T, Rudaz S. Straightforward quantification of endogenous steroids with liquid chromatography-tandem mass spectrometry: Comparing calibration approaches. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1226:123778. [PMID: 37393882 DOI: 10.1016/j.jchromb.2023.123778] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023]
Abstract
Different calibration strategies are used in liquid chromatography hyphenated to mass spectrometry (LC-MS) bioanalysis. Currently, the surrogate matrix and surrogate analyte represent the most widely used approaches to compensate for the lack of analyte-free matrices in endogenous compounds quantification. In this context, there is a growing interest in rationalizing and simplifying quantitative analysis using a one-point concentration level of stable isotope-labeled (SIL) standards as surrogate calibrants. Accordingly, an internal calibration (IC) can be applied when the instrument response is translated into analyte concentration via the analyte-to-SIL ratio performed directly in the study sample. Since SILs are generally used as internal standards to normalize variability between authentic study sample matrix and surrogate matrix used for the calibration, IC can be calculated even if the calibration protocol was achieved for an external calibration (EC). In this study, a complete dataset of a published and fully validated method to quantify an extended steroid profile in serum was recomputed by adapting the role of SIL internal standards as surrogate calibrants. Using the validation samples, the quantitative performances for IC were comparable with the original method, showing acceptable trueness (79%-115%) and precision (0.8%-11.8%) for the 21 detected steroids. The IC methodology was then applied to human serum samples (n = 51) from healthy women and women diagnosed with mild hyperandrogenism, showing high agreement (R2 > 0.98) with the concentrations obtained using the conventional quantification based on EC. For IC, Passing-Bablok regression showed proportional biases between -15.0% and 11.3% for all quantified steroids, with an average difference of -5.8% compared to EC. These results highlight the reliability and the advantages of implementing IC in clinical laboratories routine to simplify quantification in LC-MS bioanalysis, especially when a large panel of analytes is monitored.
Collapse
Affiliation(s)
- Gioele Visconti
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel-Servet 1, Geneva, Switzerland
| | - Miguel de Figueiredo
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel-Servet 1, Geneva, Switzerland
| | - Olivier Salamin
- Center of Research and Expertise in Anti-Doping Sciences - REDs, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland; Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Julien Boccard
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel-Servet 1, Geneva, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - Nicolas Vuilleumier
- Department of Genetic and Laboratory Medicine, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Raul Nicoli
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Serge Rudaz
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel-Servet 1, Geneva, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland.
| |
Collapse
|
8
|
Zhang H, Li Y, Abdallah MF, Tan H, Li J, Liu S, Zhang R, Sun F, Li Y, Yang S. Novel one-point calibration strategy for high-throughput quantitation of microcystins in freshwater using LC-MS/MS. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159345. [PMID: 36270352 DOI: 10.1016/j.scitotenv.2022.159345] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Precise quantification of microcystins (MCs) in freshwater is crucial for environmental monitoring and human health. However, the preparation of traditional multi-sample external calibration curve (MSCC) is time consuming and prone to error. Here, a novel one-point calibration strategy including one sample multi-point calibration curve (OSCC) and in sample calibration curve (ISCC) is proposed for the quantitation of eight MCs in freshwater lakes using liquid chromatography tandem mass spectrometry (LC-MS/MS). The multiple isotopologue reaction monitoring (MIRM) of MCs and its 15N-labelled internal standards were used for OSCC and ISCC, respectively. The isotopic abundance of each MIRM channel could be calculated and measured accurately. Additionally, this strategy was comprehensively validated and showed good performance in selectivity, sensitivity, accuracy and precision as the traditional MSCC. Interestingly, OSCC could realize sample dilution by monitoring the less abundant MIRM transitions, while ISCC remove blank matrixes and generate calibration curve in each study samples. Furthermore, the proposed methodology was successfully applied to analyze several freshwater lake samples contaminated by MCs. Considering the advantages of excluding the MSCC preparation, simplified workflows and improved throughput, OSCC and ISCC will be favored for MCs monitoring and as an emerging approach in environmental pollutant control and prevention.
Collapse
Affiliation(s)
- Huiyan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Yanshen Li
- College of Life Science, Yantai University, Yantai, Shandong 264005, PR China
| | - Mohamed F Abdallah
- Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Haiguang Tan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Jianxun Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Shuyan Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Rong Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Feifei Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Yi Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Shupeng Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|
9
|
Visconti G, Boccard J, Feinberg M, Rudaz S. From fundamentals in calibration to modern methodologies: A tutorial for small molecules quantification in liquid chromatography-mass spectrometry bioanalysis. Anal Chim Acta 2023; 1240:340711. [PMID: 36641149 DOI: 10.1016/j.aca.2022.340711] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Over the last two decades, liquid chromatography coupled to mass-spectrometry (LC‒MS) has become the gold standard to perform qualitative and quantitative analyses of small molecules. When quantitative analysis is developed, an analyst usually refers to international guidelines for analytical method validation. In this context, the design of calibration curves plays a key role in providing accurate results. During recent years and along with instrumental advances, strategies to build calibration curves have dramatically evolved, introducing innovative approaches to improve quantitative precision and throughput. For example, when a labeled standard is available to be spiked directly into the study sample, the concentration of the unlabeled analog can be easily determined using the isotopic pattern deconvolution or the internal calibration approach, eliminating the need for multipoint calibration curves. This tutorial aims to synthetize the advances in LC‒MS quantitative analysis for small molecules in complex matrices, going from fundamental aspects in calibration to modern methodologies and applications. Different work schemes for calibration depending on the sample characteristics (analyte and matrix nature) are distinguished and discussed. Finally, this tutorial outlines the importance of having international guidelines for analytical method validation that agree with the advances in calibration strategies and analytical instrumentation.
Collapse
Affiliation(s)
- Gioele Visconti
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, 1211, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Julien Boccard
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, 1211, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | | | - Serge Rudaz
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, 1211, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel-Servet 1, 1211, Geneva, Switzerland.
| |
Collapse
|
10
|
One sample multi-point calibration curve as a novel approach for quantitative LC-MS analysis: the quantitation of six aflatoxins in milk and oat-based milk as an example. Food Chem 2023; 420:135593. [PMID: 37080113 DOI: 10.1016/j.foodchem.2023.135593] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 01/11/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
Preparing of calibration curves are critical steps for accurate quantitative LC-MS bioanalysis. Traditional multi-sample external calibration curve (MSCC) is labor-intensive and prone to error. In this study, a novel strategy of one sample multi-point calibration curve (OSCC) using multiple isotopologue reaction monitoring (MIRM) was proposed and validated using LC-MS for the quantitation of six aflatoxins in milk and oat-based milk samples. The developed MIRM-OSCC methodology is comprehensively validated and the results indicated that the established method exhibits good performance in selectivity, sensitivity, accuracy and precision. Furthermore, the OSCC could realize sample dilution by monitoring the MIRM channel with less intensity for samples beyond the upper limit of quantification, without the need of sample dilution, which improves the assay throughput. Considering the advantages of excluding the MSCC preparation and sample dilution in OSCC, this strategy can be widely applied in various fields such as drugs, food safety and environmental analysis.
Collapse
|
11
|
Kandi S, Savaryn JP, Ji QC, Jenkins GJ. Use of in-sample calibration curve approach for quantification of peptides with high-resolution mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9377. [PMID: 35940586 DOI: 10.1002/rcm.9377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
RATIONALE The in-sample calibration curve (ISCC) approach of quantification utilizes the response of isotopologue ions from spiked-in stable isotope labeled internal standard (SIL-IS) to build a standard curve. The quantitative analysis of the study sample is achieved based on the response of selected monoisotopic analyte ion against the calibration curve. Although this methodology has been demonstrated to be feasible by unit and high-resolution mass spectrometers, quantitation on high-resolution mass spectrometer with product ions has not been tested. We tested the feasibility of this approach using product ions on an high-resolution mass spectrometer equipped with an Orbitrap detector. METHODS Using a proteomics workflow for sample preparation, two surrogate peptides were quantified from a complex matrix of protein digest from human peripheral blood mononuclear cells (hPBMCs). SIL-IS was spiked in at different levels to construct calibration curves in a traditional manner. ISCCs were prepared using extracted ion chromatograms from isotopically resolved mass spectra and compared with traditional calibration curves. RESULTS A linear response was observed with ISCC approach for at least two to three orders of magnitude in MS1 as well as targeted MS2 (tMS2). From protein digests, isobaric interferences were observed for endogenous peptides on the MS1 level; this was circumvented with product-ion-based quantitation where for one peptide, %CV for endogenous levels was more than 20% with ISCC but higher with the traditional calibration curve approach. For the second peptide, endogenous levels could not be determined in the traditional approach as calibrant levels did not bracket the lower end, and with the ISCC approach, isotopologues at abundances lower than the endogenous level allowed for quantitative assessments. CONCLUSIONS ISCC demonstrated improved precision across surrogate peptides from endogenous protein digests. In samples where endogenous analyte concentrations were low in abundance, ISCC rescued what would have been a non-reportable result in a traditional bioanalytical assay as calibrant levels were not prepared at adequately low levels to bracket unknowns. ISCC using high-resolution mass spectrometer is feasible and ideal compared to unit resolution mass spectrometers. High-resolution mass spectrometer allows for isotopic resolution for analytes with > + 2 charge state and provides flexibility in quantification using multiple product ions. ISCC using high-resolution mass spectrometer allows for simultaneous assaying of low abundance isotopologues, the signal acquisition of which is not constrained by limits in data acquisition or calibrant preparation as with other approaches but rather limited by platform sensitivity. In contrast to unit resolution mass spectrometers, these features offered by high-resolution mass spectrometer could be especially useful for the drug discovery assay support where there is less lead time for assay development than for the assays to support the drug development studies.
Collapse
Affiliation(s)
- Soumya Kandi
- DMPK-BA, AbbVie Inc, North Chicago, Illinois, USA
| | | | - Qin C Ji
- DMPK-BA, AbbVie Inc, North Chicago, Illinois, USA
| | | |
Collapse
|
12
|
Sun F, Tan H, Abdallah MF, Li Y, Zhou J, Li Y, Yang S. A novel calibration strategy based on isotopic distribution for high-throughput quantitative analysis of pesticides and veterinary drugs using LC-HRMS. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128413. [PMID: 35183054 DOI: 10.1016/j.jhazmat.2022.128413] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/18/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Preparation of calibration curves is a critical step for large-scale quantification. However, this procedure is time-consuming, labor intensive. Herein, a novel isotopologue multipoint calibration (IMC) strategy, was proposed and demonstrated for the simultaneous quantitation of 120 pesticides and 83 veterinary drugs in surface water samples using Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS). In this strategy, the natural isotopic distribution was used to generate external calibration curves, eliminating the need of analyst's adjustment and many sets of chemical standard solutions required in external calibration curves. Additionally, this strategy was comprehensively validated, and the results indicated this strategy had better performance in both accuracy and precision, fully meeting the requirements for the quantitative analysis. Interestingly, for the samples with high concentration beyond the upper limit of quantitation, the IMC strategy could avoid samples dilution by monitoring the less abundant isotopic channels. Furthermore, the IMC method was successfully applied in the surface water samples collected from Anhui province, China. Among which, sulfamethoxazole and imidacoprid were the main contributors. In conclusion, we present a promising LC-HRMS strategy for the accurate quantitation of small molecules, which has a potential application in food and environmental analysis.
Collapse
Affiliation(s)
- Feifei Sun
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China; Animal-derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Haiguang Tan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Mohamed F Abdallah
- Department of Food Technology, Food Safety and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Yanshen Li
- College of Life Science, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Jinhui Zhou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Yi Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| | - Shupeng Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| |
Collapse
|
13
|
Visconti G, Olesti E, González-Ruiz V, Glauser G, Tonoli D, Lescuyer P, Vuilleumier N, Rudaz S. Internal calibration as an emerging approach for endogenous analyte quantification: Application to steroids. Talanta 2021; 240:123149. [PMID: 34954616 DOI: 10.1016/j.talanta.2021.123149] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022]
Abstract
The use of mass spectrometry methods with triple quadrupole instruments is well established for quantification. However, the preparation of calibration curves can be time-consuming and prone to analytical errors. In this study, an innovative internal calibration (IC) approach using a one-standard calibration with a stable isotope-labeled (SIL) standard version of the endogenous compound was developed. To ensure optimal quantitative performance, the following parameters were evaluated: the stability of the analyte-to-SIL response factor (RF), the chemical and isotopic purities of the SIL, and the instrumental reproducibility. Using six clinically important endogenous steroids and their respective SIL standards, we demonstrated that RFs obtained on different LC-MS platforms were consistent. The quantitative performance of the proposed approach was determined using quality control samples prepared in depleted serum, and showed both satisfactory precision (1.3%-12.4%) and trueness (77.5%-107.0%, with only 3 values outside ±30%). The developed method was then applied to human serum samples, and the results were similar to those obtained with the conventional quantification approach based on external calibration: the Passing-Bablok regression showed a proportional bias of 6.8% and a mean difference of -5.9% between the two methodologies. Finally, we showed that the naturally occurring isotopes of the SIL can be used to provide additional calibration points and increase the accuracy for analytes with low concentrations.
Collapse
Affiliation(s)
- Gioele Visconti
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, 1211, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel-Servet 1, 1211, Geneva, Switzerland
| | - Eulalia Olesti
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, 1211, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel-Servet 1, 1211, Geneva, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland
| | - Víctor González-Ruiz
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, 1211, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel-Servet 1, 1211, Geneva, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland
| | - Gaëtan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Avenue de Bellevaux 51, 2000 Neuchâtel, Switzerland
| | - David Tonoli
- Division of Laboratory Medicine, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Pierre Lescuyer
- Division of Laboratory Medicine, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Serge Rudaz
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, 1211, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel-Servet 1, 1211, Geneva, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland.
| |
Collapse
|
14
|
Design of a Quantitative LC-MS Method for Residual Toxins Adenylate Cyclase Toxin (ACT), Dermonecrotic Toxin (DNT) and Tracheal Cytotoxin (TCT) in Bordetella pertussis Vaccines. Toxins (Basel) 2021; 13:toxins13110763. [PMID: 34822547 PMCID: PMC8624556 DOI: 10.3390/toxins13110763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
The antigens for acellular pertussis vaccines are made up of protein components that are purified directly from Bordetella pertussis (B. pertussis) bacterial fermentation. As such, there are additional B. pertussis toxins that must be monitored as residuals during process optimization. This paper describes a liquid chromatography mass spectrometry (LC-MS) method for simultaneous analysis of residual protein toxins adenylate cyclase toxin (ACT) and dermonecrotic toxin (DNT), as well as a small molecule glycopeptide, tracheal cytotoxin (TCT) in a Pertussis toxin vaccine antigen. A targeted LC-MS technique called multiple reaction monitoring (MRM) is used for quantitation of ACT and TCT, which have established limits in drug product formulations. However, DNT is currently monitored in an animal test, which does not have an established quantitative threshold. New approaches for DNT testing are discussed, including a novel standard based on concatenated quantitation sequences for ACT and DNT. Collectively, the method represents a “3-in-1” analytical simplification for monitoring process-related residuals during development of B. pertussis vaccines.
Collapse
|
15
|
Maus AD, Kemp JV, Hoffmann TJ, Ramsay SL, Grebe SKG. Isotopic Distribution Calibration for Mass Spectrometry. Anal Chem 2021; 93:12532-12540. [PMID: 34490782 DOI: 10.1021/acs.analchem.1c01672] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mass spectrometry (MS) is widely used in science and industry. It allows accurate, specific, sensitive, and reproducible detection and quantification of a huge range of analytes. Across MS applications, quantification by MS has grown most dramatically, with >50 million experiments/year in the USA alone. However, quantification performance varies between instruments, compounds, different samples, and within- and across runs, necessitating normalization with analyte-similar internal standards (IS) and use of IS-corrected multipoint external calibration curves for each analyte, a complicated and resource-intensive approach, which is particularly ill-suited for multi-analyte measurements. We have developed an internal calibration method that utilizes the natural isotope distribution of an IS for a given analyte to provide internal multipoint calibration. Multiple isotope distribution calibrators for different targets in the same sample facilitate multiplex quantification, while the emerging random-access automated MS platforms should also greatly benefit from this approach. Finally, isotope distribution calibration allows mathematical correction for suboptimal experimental conditions. This might also enable quantification of hitherto difficult, or impossible to quantify, targets, if the distribution is adjusted in silico to mimic the analyte. The approach works well for high resolution, accurate mass MS for analytes with at least a modest-sized isotopic envelope. As shown herein, the approach can also be applied to lower molecular weight analytes, but the reduction in calibration points does reduce quantification performance.
Collapse
Affiliation(s)
- Anthony D Maus
- Department of Laboratory Medicine and Pathology, Divisions of Clinical Biochemistry and Immunology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Jennifer V Kemp
- Department of Laboratory Medicine and Pathology, Divisions of Clinical Biochemistry and Immunology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Todd J Hoffmann
- Department of Laboratory Medicine and Pathology, Divisions of Clinical Biochemistry and Immunology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Steven L Ramsay
- Laboratory Services, The Royal Children's Hospital Melbourne, Victoria 3052, Australia
| | - Stefan K G Grebe
- Department of Laboratory Medicine and Pathology, Divisions of Clinical Biochemistry and Immunology, Mayo Clinic, Rochester, Minnesota 55905, United States.,Department of Laboratory Medicine and Pathology, Laboratory Genetics and Genomics, Mayo Clinic, Rochester, Minnesota 55905, United States.,Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, Minnesota 55905, United States
| |
Collapse
|
16
|
Zheng N, Taylor K, Gu H, Santockyte R, Wang XT, McCarty J, Adelakun O, Zhang YJ, Pillutla R, Zeng J. Antipeptide Immunocapture with In-Sample Calibration Curve Strategy for Sensitive and Robust LC-MS/MS Bioanalysis of Clinical Protein Biomarkers in Formalin-Fixed Paraffin-Embedded Tumor Tissues. Anal Chem 2020; 92:14713-14722. [PMID: 33047598 DOI: 10.1021/acs.analchem.0c03271] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite huge promises, bioanalysis of protein biomarkers in formalin-fixed paraffin-embedded (FFPE) tissues by liquid chromatography-tandem mass spectrometry (LC-MS/MS) for clinical applications is still very challenging. Here, we describe a sensitive and robust LC-MS/MS assay to quantify clinical protein biomarkers in FFPE tumor sections using automated antipeptide antibody immunocapture followed by in-sample calibration curve (ISCC) strategy with multiple isotopologue reaction monitoring (MIRM) technique. ISCC approach with MIRM of stable isotopically labeled (SIL) peptides eliminated the need for authentic matrices for external calibration curves, overcame the matrix effects, and validated the quantification range in each individual sample. Specifically, after deparaffinization, rehydration, antigen retrieval, and homogenization, the protein analytes in FFPE tumor tissues were spiked with a known concentration of one SIL peptide for each analyte, followed by trypsin digestion and antipeptide immunocapture enrichment prior to MIRM-ISCC-based LC-MS/MS analysis. This approach has been successfully used for sensitive quantification of programmed cell death-1 (PD-1) and programmed cell death-ligand 1 (PD-L1) in 15 representative FFPE tumor samples from lung, colorectal, and head and neck cancer patients. Except for one sample, PD-L1 and PD-1 in all samples were quantifiable using this assay with concentrations of 27.85-798.43 (amol/μg protein) for PD-L1 and 16.96-129.89 (amol/μg protein) for PD-1. These results were generally in agreement with the immunohistochemistry (IHC) data but with some exceptions. This approach demonstrated the feasibility to quantify low abundant protein biomarkers in FFPE tissues with improved sensitivity, specificity, and robustness and showed great potential as an orthogonal analytical approach to IHC for clinical applications.
Collapse
Affiliation(s)
- Naiyu Zheng
- Department of Translational Medicine, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Kristin Taylor
- Department of Translational Medicine, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Huidong Gu
- Department of Translational Medicine, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Rasa Santockyte
- Department of Translational Medicine, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Xi-Tao Wang
- Department of Translational Medicine, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Jean McCarty
- Department of Translational Medicine, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Olufemi Adelakun
- Department of Translational Medicine, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Yan J Zhang
- Department of Translational Medicine, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Renuka Pillutla
- Department of Translational Medicine, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| | - Jianing Zeng
- Department of Translational Medicine, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey 08543, United States
| |
Collapse
|
17
|
Accelerating protein biomarker discovery and translation from proteomics research for clinical utility. Bioanalysis 2020; 12:1469-1481. [DOI: 10.4155/bio-2020-0198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Discovery proteomics research has made significant progress in the past several years; however, the number of protein biomarkers deployed in clinical practice remains rather limited. There are several scientific and procedural gaps between discovery proteomics research and clinical implementation, which have contributed to poor biomarker validity and few clinical applications. The complexity and low throughput of proteomics approaches have added additional barriers for biomarker assay translation to clinical applications. Recently, targeted proteomics have become a powerful tool to bridge the biomarker discovery to clinical validation. In this perspective, we discuss the challenges and strategies in proteomics research from a clinical perspective, and propose several recommendations for discovery proteomics research to accelerate protein biomarker discovery and translation for future clinical applications.
Collapse
|
18
|
A peptide immunoaffinity LC-MS/MS strategy for quantifying the GPCR protein, S1PR1 in human colon biopsies. Bioanalysis 2020; 12:1311-1324. [PMID: 32945691 DOI: 10.4155/bio-2020-0115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background: S1PR1, a G protein-coupled receptor (GPCR) protein, is a therapeutic target for treatment of autoimmune diseases. As a potential biomarker for drug effect and patient stratification, it is of great significance to measure it in biological samples. However, due to the hydrophobic nature of S1PR1 and the difficulties in extraction and solubilization, as well as low expression levels, quantitative determination of S1PR1 remains challenging. Results: In this work, a peptide immunoaffinity LC-MS/MS method was developed to quantify S1PR1 in biopsy-sized colon samples with an LLOQ of 7.81 pM. Conclusion: Peptide immunoaffinity LC-MS/MS based strategy has achieved the desired sensitivity for low abundance S1PR1, and the same strategy could be applied to quantify S1PR1 in multiple species and other GPCR proteins.
Collapse
|
19
|
|
20
|
Yuan L, Gu H, Zeng J, Pillutla RC, Ji QC. Application of in-sample calibration curve methodology for regulated bioanalysis: Critical considerations in method development, validation and sample analysis. J Pharm Biomed Anal 2019; 177:112844. [PMID: 31491659 DOI: 10.1016/j.jpba.2019.112844] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/07/2019] [Accepted: 08/28/2019] [Indexed: 10/26/2022]
Abstract
Traditionally, for a liquid chromatography tandem mass spectrometry (LC-MS/MS) bioanalytical assay, an external calibration curve is required to achieve accurate quantitation of an analyte. Recently, a novel in-sample calibration curves (ISCC) methodology that can achieve quick and accurate LC-MS/MS bioanalysis without the use of an external calibration curve was reported. The ISCC methodology utilizes the presence of multiple naturally occurring isotopologues of a stable isotopically labeled analyte to construct an in-sample calibration curve for the quantification. This methodology has great potential in many applications, for example biomarker measurement, quantitative proteomics and clinical diagnosis. Here, we assessed the feasibility of applying this ISCC-LC-MS/MS methodology in regulated bioanalysis using BMS-984478, a drug candidate, as the model compound. We also proposed method validation procedures/processes for this new approach for industry peers' consideration and feedback. A LC-MS/MS method using the ISCC strategy was successfully developed and validated for the quantitative analysis of BMS-984478 in human plasma over the range of 1.33-993.42 ng/mL. The validated ISCC-LC-MS/MS method was compared with a previously validated method using the conventional external calibration curve approach, and the two methods showed equivalent performance. Critical considerations and practical approaches in method development, validation and sample analysis were also discussed. Our work demonstrated that the ISCC-LC-MS/MS methodology is a promising approach for regulated LC-MS/MS bioanalysis. ISCC-LC-MS/MS methodology has its unique advantages and has great potential to be widely applied for various quantitative applications, and may even change the landscape of quantitative analysis.
Collapse
Affiliation(s)
- Long Yuan
- Bioanalytical Sciences, Research & Development, Bristol-Myers Squibb Co., Princeton, NJ 08543, USA.
| | - Huidong Gu
- Bioanalytical Sciences, Research & Development, Bristol-Myers Squibb Co., Princeton, NJ 08543, USA
| | - Jianing Zeng
- Bioanalytical Sciences, Research & Development, Bristol-Myers Squibb Co., Princeton, NJ 08543, USA
| | - Renuka C Pillutla
- Bioanalytical Sciences, Research & Development, Bristol-Myers Squibb Co., Princeton, NJ 08543, USA
| | - Qin C Ji
- Bioanalytical Sciences, Research & Development, Bristol-Myers Squibb Co., Princeton, NJ 08543, USA.
| |
Collapse
|
21
|
Gu H, Zhao Y, DeMichele M, Zheng N, Zhang YJ, Pillutla R, Zeng J. Eliminating Preparation of Multisample External Calibration Curves and Dilution of Study Samples Using the Multiple Isotopologue Reaction Monitoring (MIRM) Technique in Quantitative LC-MS/MS Bioanalysis. Anal Chem 2019; 91:8652-8659. [DOI: 10.1021/acs.analchem.9b02136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Huidong Gu
- Bioanalytical Sciences, Research & Development, Bristol-Myers Squibb, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Yue Zhao
- Bioanalytical Sciences, Research & Development, Bristol-Myers Squibb, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Marissa DeMichele
- Bioanalytical Sciences, Research & Development, Bristol-Myers Squibb, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Naiyu Zheng
- Bioanalytical Sciences, Research & Development, Bristol-Myers Squibb, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Yan J. Zhang
- Bioanalytical Sciences, Research & Development, Bristol-Myers Squibb, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Renuka Pillutla
- Bioanalytical Sciences, Research & Development, Bristol-Myers Squibb, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Jianing Zeng
- Bioanalytical Sciences, Research & Development, Bristol-Myers Squibb, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| |
Collapse
|