1
|
Milc K, Oerther T, Dijksman JA, van Duynhoven JPM, Terenzi C. Capillary Flow-MRI: Quantifying Micron-Scale Cooperativity in Complex Dispersions. Anal Chem 2023; 95:15162-15170. [PMID: 37796921 PMCID: PMC10585662 DOI: 10.1021/acs.analchem.3c01108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
Strongly confined flow of particulate fluids is encountered in applications ranging from three-dimensional (3D) printing to the spreading of foods and cosmetics into thin layers. When flowing in constrictions with gap sizes, w, within 102 times the mean size of particles or aggregates, d, structured fluids experience enhanced bulk velocities and inhomogeneous viscosities, as a result of so-called cooperative, or nonlocal, particle interactions. Correctly predicting cooperative flow for a wide range of complex fluids requires high-resolution flow imaging modalities applicable in situ to even optically opaque fluids. To this goal, we here developed a pressure-driven high-field magnetic resonance imaging (MRI) velocimetry platform, comprising a pressure controller connected to a capillary. Wall properties and diameter could be modified respectively as hydrophobic/hydrophilic, or within w ∼ 100-540 μm. By achieving a high spatial resolution of 9 μm, flow cooperativity length scales, ξ, down to 15 μm in Carbopol with d ∼ 2 μm could be quantified by means of established physical models with an accuracy of 13%. The same approach was adopted for a heterogeneous fat crystal dispersion (FCD) with d and ξ values up to an order of magnitude higher than those for Carbopol. We found that for strongly confined flow of Carbopol in the 100 μm capillary, ξ is independent of flow conditions. For the FCD, ξ increases with gap size and applied pressures over 0.25-1 bar. In both samples, nonlocal interactions span domains up to about 5-8 particles but, at the highest confinement degree explored, ∼8% for FCD, domains of only ∼2 particles contribute to cooperative flow. The developed flow-MRI platform is easily scalable to ultrahigh field MRI conditions for chemically resolved velocimetric measurements of, e.g., complex fluids with anisotropic particles undergoing alignment. Future potential applications of the platform encompass imaging extrusion under confinement during the 3D printing of complex dispersions or in in vitro vascular and perfusion studies.
Collapse
Affiliation(s)
- Klaudia
W. Milc
- Laboratory
of Biophysics, Wageningen University, 6708 WE Wageningen, The Netherlands
| | | | - Joshua A. Dijksman
- Physical
Chemistry and Soft Matter, Wageningen University, 6708 WE Wageningen, The Netherlands
- Van
der Waals-Zeeman Institute, University of
Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - John P. M. van Duynhoven
- Laboratory
of Biophysics, Wageningen University, 6708 WE Wageningen, The Netherlands
- Unilever
Foods Innovation Centre Hive, 6708 WH Wageningen, The Netherlands
| | - Camilla Terenzi
- Laboratory
of Biophysics, Wageningen University, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
2
|
Ben-Tal Y, Boaler PJ, Dale HJA, Dooley RE, Fohn NA, Gao Y, García-Domínguez A, Grant KM, Hall AMR, Hayes HLD, Kucharski MM, Wei R, Lloyd-Jones GC. Mechanistic analysis by NMR spectroscopy: A users guide. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 129:28-106. [PMID: 35292133 DOI: 10.1016/j.pnmrs.2022.01.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
A 'principles and practice' tutorial-style review of the application of solution-phase NMR in the analysis of the mechanisms of homogeneous organic and organometallic reactions and processes. This review of 345 references summarises why solution-phase NMR spectroscopy is uniquely effective in such studies, allowing non-destructive, quantitative analysis of a wide range of nuclei common to organic and organometallic reactions, providing exquisite structural detail, and using instrumentation that is routinely available in most chemistry research facilities. The review is in two parts. The first comprises an introduction to general techniques and equipment, and guidelines for their selection and application. Topics include practical aspects of the reaction itself, reaction monitoring techniques, NMR data acquisition and processing, analysis of temporal concentration data, NMR titrations, DOSY, and the use of isotopes. The second part comprises a series of 15 Case Studies, each selected to illustrate specific techniques and approaches discussed in the first part, including in situ NMR (1/2H, 10/11B, 13C, 15N, 19F, 29Si, 31P), kinetic and equilibrium isotope effects, isotope entrainment, isotope shifts, isotopes at natural abundance, scalar coupling, kinetic analysis (VTNA, RPKA, simulation, steady-state), stopped-flow NMR, flow NMR, rapid injection NMR, pure shift NMR, dynamic nuclear polarisation, 1H/19F DOSY NMR, and in situ illumination NMR.
Collapse
Affiliation(s)
- Yael Ben-Tal
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Patrick J Boaler
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Harvey J A Dale
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Ruth E Dooley
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom; Evotec (UK) Ltd, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - Nicole A Fohn
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Yuan Gao
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Andrés García-Domínguez
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Katie M Grant
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Andrew M R Hall
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Hannah L D Hayes
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Maciej M Kucharski
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Ran Wei
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Guy C Lloyd-Jones
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom.
| |
Collapse
|
3
|
Menti-Platten M, Aldrich-Wright JR, Gordon CP. A flow-based transition-metal-catalysed hydrogenolysis strategy to facilitate peptide side-chain deprotection. Org Biomol Chem 2021; 20:106-112. [PMID: 34897363 DOI: 10.1039/d1ob02179f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Orthogonal deprotection methodologies are an invaluable tool for the construction of site-specially modified peptides. Here, we report a facile 10% Pd/CaCO3-based procedure to selectively mediate Nβ-side-chain Cbz-lysis from extended peptide sequences in the presence of trityl and t-Butyl protecting groups.
Collapse
Affiliation(s)
- Maria Menti-Platten
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South DC, Australia.
| | - Janice R Aldrich-Wright
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South DC, Australia. .,Nanoscale Organisation and Dynamics Group, Locked Bag 1797, Penrith South DC, Australia
| | - Christopher P Gordon
- School of Science, Western Sydney University, Locked Bag 1797, Penrith South DC, Australia. .,Nanoscale Organisation and Dynamics Group, Locked Bag 1797, Penrith South DC, Australia.,Molecular Medicine Research Group, Western Sydney University School of Medicine, Narellan Rd & Gilchrist Dr, 2560, Campbelltown, NSW, Australia
| |
Collapse
|
4
|
Hale WG, Zhao TY, Choi D, Ferrer MJ, Song B, Zhao H, Hagelin-Weaver HE, Bowers CR. Toward Continuous-Flow Hyperpolarisation of Metabolites via Heterogenous Catalysis, Side-Arm-Hydrogenation, and Membrane Dissolution of Parahydrogen. Chemphyschem 2021; 22:822-827. [PMID: 33689210 DOI: 10.1002/cphc.202100119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/09/2021] [Indexed: 02/03/2023]
Abstract
Side-arm hydrogenation (SAH) by homogeneous catalysis has extended the reach of the parahydrogen enhanced NMR technique to key metabolites such as pyruvate. However, homogeneous hydrogenation requires rapid separation of the dissolved catalyst and purification of the hyperpolarised species with a purity sufficient for safe in-vivo use. An alternate approach is to employ heterogeneous hydrogenation in a continuous-flow reactor, where separation from the solid catalysts is straightforward. Using a TiO2 -nanorod supported Rh catalyst, we demonstrate continuous-flow parahydrogen enhanced NMR by heterogeneous hydrogenation of a model SAH precursor, propargyl acetate, at a flow rate of 1.5 mL/min. Parahydrogen gas was introduced into the flowing solution phase using a novel tube-in-tube membrane dissolution device. Without much optimization, proton NMR signal enhancements of up to 297 (relative to the thermal equilibrium signals) at 9.4 Tesla were shown to be feasible on allyl-acetate at a continuous total yield of 33 %. The results are compared to those obtained with the standard batch-mode technique of parahydrogen bubbling through a suspension of the same catalyst.
Collapse
Affiliation(s)
- William G Hale
- Department of Chemistry, University of Florida, Gainesville, Florida, 32611
| | - Tommy Y Zhao
- Department of Chemistry, University of Florida, Gainesville, Florida, 32611
| | - Diana Choi
- Department of Chemistry, University of Florida, Gainesville, Florida, 32611
| | - Maria-Jose Ferrer
- Department of Chemistry, University of Florida, Gainesville, Florida, 32611
| | - Bochuan Song
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, 32611
| | - Hanqin Zhao
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, 32611
| | | | - Clifford R Bowers
- Department of Chemistry, University of Florida, Gainesville, Florida, 32611.,National High Magnetic Field Laboratory, Gainesville, Florida, 32611
| |
Collapse
|
5
|
Nassar O, Jouda M, Rapp M, Mager D, Korvink JG, MacKinnon N. Integrated impedance sensing of liquid sample plug flow enables automated high throughput NMR spectroscopy. MICROSYSTEMS & NANOENGINEERING 2021; 7:30. [PMID: 34567744 PMCID: PMC8433180 DOI: 10.1038/s41378-021-00253-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/22/2021] [Accepted: 02/16/2021] [Indexed: 06/13/2023]
Abstract
A novel approach for automated high throughput NMR spectroscopy with improved mass-sensitivity is accomplished by integrating microfluidic technologies and micro-NMR resonators. A flow system is utilized to transport a sample of interest from outside the NMR magnet through the NMR detector, circumventing the relatively vast dead volume in the supplying tube by loading a series of individual sample plugs separated by an immiscible fluid. This dual-phase flow demands a real-time robust sensing system to track the sample position and velocities and synchronize the NMR acquisition. In this contribution, we describe an NMR probe head that possesses a microfluidic system featuring: (i) a micro saddle coil for NMR spectroscopy and (ii) a pair of interdigitated capacitive sensors flanking the NMR detector for continuous position and velocity monitoring of the plugs with respect to the NMR detector. The system was successfully tested for automating flow-based measurement in a 500 MHz NMR system, enabling high resolution spectroscopy and NMR sensitivity of 2.18 nmol s1/2 with the flow sensors in operation. The flow sensors featured sensitivity to an absolute difference of 0.2 in relative permittivity, enabling distinction between most common solvents. It was demonstrated that a fully automated NMR measurement of nine individual 120 μL samples could be done within 3.6 min or effectively 15.3 s per sample.
Collapse
Affiliation(s)
- Omar Nassar
- Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Mazin Jouda
- Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Michael Rapp
- Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Dario Mager
- Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Jan G. Korvink
- Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Neil MacKinnon
- Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
6
|
Saib A, Bara-Estaún A, Harper OJ, Berry DBG, Thomlinson IA, Broomfield-Tagg R, Lowe JP, Lyall CL, Hintermair U. Engineering aspects of FlowNMR spectroscopy setups for online analysis of solution-phase processes. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00217a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this article we review some fundamental engineering concepts and evaluate components and materials required to assemble and operate safe and effective FlowNMR setups that reliably generate meaningful results.
Collapse
Affiliation(s)
- Asad Saib
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY Bath, UK
- Dynamic Reaction Monitoring Facility, University of Bath, Claverton Down, BA2 7AY Bath, UK
| | - Alejandro Bara-Estaún
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY Bath, UK
- Dynamic Reaction Monitoring Facility, University of Bath, Claverton Down, BA2 7AY Bath, UK
| | - Owen J. Harper
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY Bath, UK
- Dynamic Reaction Monitoring Facility, University of Bath, Claverton Down, BA2 7AY Bath, UK
- Centre for Sustainable & Circular Technologies, University of Bath, Bath BA2 7AY, UK
| | - Daniel B. G. Berry
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY Bath, UK
- Dynamic Reaction Monitoring Facility, University of Bath, Claverton Down, BA2 7AY Bath, UK
| | - Isabel A. Thomlinson
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY Bath, UK
- Dynamic Reaction Monitoring Facility, University of Bath, Claverton Down, BA2 7AY Bath, UK
- Centre for Sustainable & Circular Technologies, University of Bath, Bath BA2 7AY, UK
| | - Rachael Broomfield-Tagg
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY Bath, UK
- Dynamic Reaction Monitoring Facility, University of Bath, Claverton Down, BA2 7AY Bath, UK
| | - John P. Lowe
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY Bath, UK
- Dynamic Reaction Monitoring Facility, University of Bath, Claverton Down, BA2 7AY Bath, UK
| | - Catherine L. Lyall
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY Bath, UK
- Dynamic Reaction Monitoring Facility, University of Bath, Claverton Down, BA2 7AY Bath, UK
| | - Ulrich Hintermair
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY Bath, UK
- Dynamic Reaction Monitoring Facility, University of Bath, Claverton Down, BA2 7AY Bath, UK
- Centre for Sustainable & Circular Technologies, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
7
|
Burueva DB, Eills J, Blanchard JW, Garcon A, Picazo‐Frutos R, Kovtunov KV, Koptyug IV, Budker D. Chemical Reaction Monitoring using Zero‐Field Nuclear Magnetic Resonance Enables Study of Heterogeneous Samples in Metal Containers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dudari B. Burueva
- Laboratory of Magnetic Resonance Microimaging International Tomography Center 630090 Novosibirsk Russia
- Novosibirsk State University 630090 Novosibirsk Russia
| | - James Eills
- Helmholtz Institute Mainz GSI Helmholtzzentrum für Schwerionenforschung GmbH 55128 Mainz Germany
- Johannes Gutenberg University 55090 Mainz Germany
| | - John W. Blanchard
- Helmholtz Institute Mainz GSI Helmholtzzentrum für Schwerionenforschung GmbH 55128 Mainz Germany
| | - Antoine Garcon
- Helmholtz Institute Mainz GSI Helmholtzzentrum für Schwerionenforschung GmbH 55128 Mainz Germany
- Johannes Gutenberg University 55090 Mainz Germany
| | - Román Picazo‐Frutos
- Helmholtz Institute Mainz GSI Helmholtzzentrum für Schwerionenforschung GmbH 55128 Mainz Germany
- Johannes Gutenberg University 55090 Mainz Germany
| | - Kirill V. Kovtunov
- Laboratory of Magnetic Resonance Microimaging International Tomography Center 630090 Novosibirsk Russia
- Novosibirsk State University 630090 Novosibirsk Russia
| | - Igor V. Koptyug
- Laboratory of Magnetic Resonance Microimaging International Tomography Center 630090 Novosibirsk Russia
- Novosibirsk State University 630090 Novosibirsk Russia
| | - Dmitry Budker
- Helmholtz Institute Mainz GSI Helmholtzzentrum für Schwerionenforschung GmbH 55128 Mainz Germany
- Johannes Gutenberg University 55090 Mainz Germany
- University of California Berkeley Berkeley CA 94720 USA
| |
Collapse
|
8
|
Burueva DB, Eills J, Blanchard JW, Garcon A, Picazo‐Frutos R, Kovtunov KV, Koptyug IV, Budker D. Chemical Reaction Monitoring using Zero-Field Nuclear Magnetic Resonance Enables Study of Heterogeneous Samples in Metal Containers. Angew Chem Int Ed Engl 2020; 59:17026-17032. [PMID: 32510813 PMCID: PMC7540358 DOI: 10.1002/anie.202006266] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 12/28/2022]
Abstract
We demonstrate that heterogeneous/biphasic chemical reactions can be monitored with high spectroscopic resolution using zero-field nuclear magnetic resonance spectroscopy. This is possible because magnetic susceptibility broadening is negligible at ultralow magnetic fields. We show the two-step hydrogenation of dimethyl acetylenedicarboxylate with para-enriched hydrogen gas in conventional glass NMR tubes, as well as in a titanium tube. The low frequency zero-field NMR signals ensure that there is no significant signal attenuation arising from shielding by the electrically conductive sample container. This method paves the way for in situ monitoring of reactions in complex heterogeneous multiphase systems and in reactors made of conductive materials while maintaining resolution and chemical specificity.
Collapse
Affiliation(s)
- Dudari B. Burueva
- Laboratory of Magnetic Resonance MicroimagingInternational Tomography Center630090NovosibirskRussia
- Novosibirsk State University630090NovosibirskRussia
| | - James Eills
- Helmholtz Institute MainzGSI Helmholtzzentrum für Schwerionenforschung GmbH55128MainzGermany
- Johannes Gutenberg University55090MainzGermany
| | - John W. Blanchard
- Helmholtz Institute MainzGSI Helmholtzzentrum für Schwerionenforschung GmbH55128MainzGermany
| | - Antoine Garcon
- Helmholtz Institute MainzGSI Helmholtzzentrum für Schwerionenforschung GmbH55128MainzGermany
- Johannes Gutenberg University55090MainzGermany
| | - Román Picazo‐Frutos
- Helmholtz Institute MainzGSI Helmholtzzentrum für Schwerionenforschung GmbH55128MainzGermany
- Johannes Gutenberg University55090MainzGermany
| | - Kirill V. Kovtunov
- Laboratory of Magnetic Resonance MicroimagingInternational Tomography Center630090NovosibirskRussia
- Novosibirsk State University630090NovosibirskRussia
| | - Igor V. Koptyug
- Laboratory of Magnetic Resonance MicroimagingInternational Tomography Center630090NovosibirskRussia
- Novosibirsk State University630090NovosibirskRussia
| | - Dmitry Budker
- Helmholtz Institute MainzGSI Helmholtzzentrum für Schwerionenforschung GmbH55128MainzGermany
- Johannes Gutenberg University55090MainzGermany
- University of California BerkeleyBerkeleyCA94720USA
| |
Collapse
|
9
|
Yu T, Jiao J, Song P, Nie W, Yi C, Zhang Q, Li P. Recent Progress in Continuous-Flow Hydrogenation. CHEMSUSCHEM 2020; 13:2876-2893. [PMID: 32301233 DOI: 10.1002/cssc.202000778] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Indexed: 06/11/2023]
Abstract
To achieve a safe, efficient, and sustainable (even fully automated) production for the continuous-flow hydrogenation reactions, which is among the most often used reactions in chemical synthesis, new catalyst types and immobilization methods as well as flow reactors and technologies have been developed over the last years; in addition, these approaches have been combined with new and transformational technologies in other fields such as artificial intelligence. Thus, attention from academic and industry practitioners has increasingly focused on improving the performance of hydrogenation in flow mode by reducing the reaction times, increasing selectivities, and achieve safe operation. This Minireview aims to summarize the most recent research results on this topic with focus on the advantages, current limitations, and future directions of flow chemistry.
Collapse
Affiliation(s)
- Tao Yu
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Jiao Jiao
- Departement of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
- Xian Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Peidong Song
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Wenzheng Nie
- Departement of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Chunhai Yi
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Qian Zhang
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an, 710048, P. R. China
| | - Pengfei Li
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Xian Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|