1
|
Sun J, Saimi M, Rempel D, Cao Q, Chai M, Li W, Gross ML. In-Cell Fast Photochemical Oxidation Interrogates the Native Structure of Integral Membrane Proteins. Angew Chem Int Ed Engl 2025; 64:e202424779. [PMID: 40033852 PMCID: PMC12052488 DOI: 10.1002/anie.202424779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/05/2025]
Abstract
Integral membrane proteins (IMPs) are pivotal for cellular functions but challenging to investigate. Here, IC-FPOMP (in-cell fast photochemical oxidation of MPs) is introduced, a method enabling in situ footprinting of IMPs within live cells. IC-FPOMP generates reactive oxygen radicals from various precursors (TiO2 nanoparticles or H2O2) near the membrane. Leveraging a laser and a 96-well plate platform, high-throughput and rapid footprinting of IMPs are achieved. IC-FPOMP of two human IMPs (human glucose transporter-hGLUT1 and human gamma-glutamyl carboxylase-hGGCX) are successful, providing footprinting of both the transmembrane and extramembrane regions. Comparative analysis of hGLUT1 in liposomes versus cells shows that the membrane may impact the transporter's conformation differently. In-cell drug screening targeting hGLUT1 reveals drug-binding behavior in vivo. In summary, IC-FPOMP offers insights into IMP structure-function relationships in cells and facilitates drug discovery.
Collapse
Affiliation(s)
- Jie Sun
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, Box 1134, St. Louis, MO, 63130, USA
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, 1311 Cumberland Avenue, Knoxville, TN, 37996-1937, USA
| | - Mierxiati Saimi
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave, Box 8231, St. Louis, MO, 63110, USA
| | - Don Rempel
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, Box 1134, St. Louis, MO, 63130, USA
| | - Qing Cao
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave, Box 8231, St. Louis, MO, 63110, USA
| | - Mengqi Chai
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, Box 1134, St. Louis, MO, 63130, USA
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave, Box 8231, St. Louis, MO, 63110, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, Box 1134, St. Louis, MO, 63130, USA
| |
Collapse
|
2
|
Cheng M, Gross ML. Mass Spectrometry-Based Protein Footprinting for Protein Structure Characterization. Acc Chem Res 2025; 58:165-176. [PMID: 39757421 PMCID: PMC11960338 DOI: 10.1021/acs.accounts.4c00545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Protein higher-order structure (HOS) is key to biological function because the mechanisms of protein machinery are encoded in protein three-dimensional structures. Mass spectrometry (MS)-based protein footprinting is advancing protein structure characterization by mapping solvent-accessible regions of proteins and changes in H-bonding, thereby providing higher order structural information. Footprinting provides insights into protein dynamics, conformational changes, and interactions, and when conducted in a differential way, can readily reveal those regions that undergo conformational change in response to perturbations such as ligand binding, mutation, thermal stress, or aggregation. Building on firsthand experience in developing and applying protein footprinting, we provide an account of our progress in method development and applications.In the development section, we describe fast footprinting with reactive reagents (free radicals, carbenes, carbocations) with emphasis on fast photochemical oxidation of proteins (FPOP). The rates of the modifying reactions are usually faster than protein folding/unfolding, ensuring that the chemistry captures the change without biasing the structural information. We then describe slow, specific side-chain labeling or slow footprinting and hydrogen-deuterium exchange (HDX) to provide context for fast footprinting and to show that, with validation, these modifications can deliver valid structural information. One advantage of slow footprinting is that usually no special apparatus (e.g., laser, synchrotron) is needed. We acknowledge that no single footprint is sufficient, and complementary approaches are needed for structure comparisons.In the second part, we cover several of our footprinting applications for the study of biotherapeutics, metal-bound proteins, aggregating (amyloid) proteins, and integral membrane proteins (IMPs). Solving structural problems in these four areas is often challenging for other high-resolution approaches, motivating the development of protein footprinting as a complementary approach. For example, obtaining structural data for the bound and unbound forms of a protein requires that both forms are amenable for 3D structure determination. For problems of this type, information on changes in structure often provides an answer. For amyloid proteins, structures of the starting state (monomer) and the final fibril state are obtainable by standard methods, but the important structures causing disease appear to be those of soluble oligomers that are beyond high-resolution approaches because the mix of structures is polydisperse in number and size. Moreover, the relevant structures are those that occur in cell or in vivo, not in vitro, ruling out many current methods that are not up to the demands of working in complex milieu. IMPs are another appropriate target because they are unstable in water (in the absence of membranes, detergents) and may not retain their HOS during the long signal averaging needed for standard tools. Furthermore, the structural changes occurring in membrane transport or induced by drug binding or other interactions, for example, resist high resolution determination.We provide here an account on MS-based footprinting, broadly describing its multifaceted development, applications, and challenges based on our first-hand experience in fast and slow footprinting and in HDX. The Account is intended for investigators contemplating the use of these tools. We hope to catalyze refinements in methods and applications through collaborative, cross-disciplinary research that involves organic and analytical chemists, material scientists, and structural biologists.
Collapse
Affiliation(s)
- Ming Cheng
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117. Shandong, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Michael L Gross
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| |
Collapse
|
3
|
Britt H, Ben-Younis A, Page N, Thalassinos K. A Conformation-Specific Approach to Native Top-down Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:3203-3213. [PMID: 39453623 PMCID: PMC11622372 DOI: 10.1021/jasms.4c00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Native top-down mass spectrometry is a powerful approach for characterizing proteoforms and has recently been applied to provide similarly powerful insights into protein conformation. Current approaches, however, are limited such that structural insights can only be obtained for the entire conformational landscape in bulk or without any direct conformational measurement. We report a new ion-mobility-enabled method for performing native top-down MS in a conformation-specific manner. Our approach identified conformation-linked differences in backbone dissociation for the model protein calmodulin, which simultaneously informs upon proteoform variations and provides structural insights. We also illustrate that our method can be applied to protein-ligand complexes, either to identify components or to probe ligand-induced structural changes.
Collapse
Affiliation(s)
- Hannah
M. Britt
- Institute
of Structural and Molecular Biology, University
College London, London WC1E 6BT, United Kingdom
| | - Aisha Ben-Younis
- Institute
of Structural and Molecular Biology, University
College London, London WC1E 6BT, United Kingdom
| | - Nathanael Page
- Institute
of Structural and Molecular Biology, University
College London, London WC1E 6BT, United Kingdom
- LGC
Group, Teddington TW11 0LY, United Kingdom
| | - Konstantinos Thalassinos
- Institute
of Structural and Molecular Biology, University
College London, London WC1E 6BT, United Kingdom
- Institute
of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, United
Kingdom
| |
Collapse
|
4
|
Li J, Jethva PN, Rohrs HW, Chemuru S, Miller K, Gross ML, Beckingham KM. Hydrogen/Deuterium Exchange Mass Spectrometry Provides Insights into the Role of Drosophila Testis-Specific Myosin VI Light Chain AndroCaM. Biochemistry 2024; 63:610-624. [PMID: 38357882 PMCID: PMC10932932 DOI: 10.1021/acs.biochem.3c00618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
In Drosophila testis, myosin VI plays a special role, distinct from its motor function, by anchoring components to the unusual actin-based structures (cones) that are required for spermatid individualization. For this, the two calmodulin (CaM) light-chain molecules of myosin VI are replaced by androcam (ACaM), a related protein with 67% identity to CaM. Although ACaM has a similar bi-lobed structure to CaM, with two EF hand-type Ca2+ binding sites per lobe, only one functional Ca2+ binding site operates in the amino-terminus. To understand this light chain substitution, we used hydrogen-deuterium exchange mass spectrometry (HDX-MS) to examine dynamic changes in ACaM and CaM upon Ca2+ binding and interaction with the two CaM binding motifs of myosin VI (insert2 and IQ motif). HDX-MS reveals that binding of Ca2+ to ACaM destabilizes its N-lobe but stabilizes the entire C-lobe, whereas for CaM, Ca2+ binding induces a pattern of alternating stabilization/destabilization throughout. The conformation of this stable holo-C-lobe of ACaM seems to be a "prefigured" version of the conformation adopted by the holo-C-lobe of CaM for binding to insert2 and the IQ motif of myosin VI. Strikingly, the interaction of holo-ACaM with either peptide converts the holo-N-lobe to its Ca2+-free, more stable, form. Thus, ACaM in vivo should bind the myosin VI light chain sites in an apo-N-lobe/holo-C-lobe state that cannot fulfill the Ca2+-related functions of holo-CaM required for myosin VI motor assembly and activity. These findings indicate that inhibition of myosin VI motor activity is a precondition for transition to an anchoring function.
Collapse
Affiliation(s)
- Jing Li
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| | - Prashant N. Jethva
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| | - Henry W. Rohrs
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| | - Saketh Chemuru
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| | - Kathryn Miller
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| | | |
Collapse
|
5
|
Vydra Bousova K, Zouharova M, Jiraskova K, Vetyskova V. Interaction of Calmodulin with TRPM: An Initiator of Channel Modulation. Int J Mol Sci 2023; 24:15162. [PMID: 37894842 PMCID: PMC10607381 DOI: 10.3390/ijms242015162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Transient receptor potential melastatin (TRPM) channels, a subfamily of the TRP superfamily, constitute a diverse group of ion channels involved in mediating crucial cellular processes like calcium homeostasis. These channels exhibit complex regulation, and one of the key regulatory mechanisms involves their interaction with calmodulin (CaM), a cytosol ubiquitous calcium-binding protein. The association between TRPM channels and CaM relies on the presence of specific CaM-binding domains in the channel structure. Upon CaM binding, the channel undergoes direct and/or allosteric structural changes and triggers down- or up-stream signaling pathways. According to current knowledge, ion channel members TRPM2, TRPM3, TRPM4, and TRPM6 are directly modulated by CaM, resulting in their activation or inhibition. This review specifically focuses on the interplay between TRPM channels and CaM and summarizes the current known effects of CaM interactions and modulations on TRPM channels in cellular physiology.
Collapse
|
6
|
McCormick L, Wadmore K, Milburn A, Gupta N, Morris R, Held M, Prakash O, Carr J, Barrett‐Jolley R, Dart C, Helassa N. Long QT syndrome-associated calmodulin variants disrupt the activity of the slowly activating delayed rectifier potassium channel. J Physiol 2023; 601:3739-3764. [PMID: 37428651 PMCID: PMC10952621 DOI: 10.1113/jp284994] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/21/2023] [Indexed: 07/12/2023] Open
Abstract
Calmodulin (CaM) is a highly conserved mediator of calcium (Ca2+ )-dependent signalling and modulates various cardiac ion channels. Genotyping has revealed several CaM mutations associated with long QT syndrome (LQTS). LQTS patients display prolonged ventricular recovery times (QT interval), increasing their risk of incurring life-threatening arrhythmic events. Loss-of-function mutations to Kv7.1 (which drives the slow delayed rectifier potassium current, IKs, a key ventricular repolarising current) are the largest contributor to congenital LQTS (>50% of cases). CaM modulates Kv7.1 to produce a Ca2+ -sensitive IKs, but little is known about the consequences of LQTS-associated CaM mutations on Kv7.1 function. Here, we present novel data characterising the biophysical and modulatory properties of three LQTS-associated CaM variants (D95V, N97I and D131H). We showed that mutations induced structural alterations in CaM and reduced affinity for Kv7.1, when compared with wild-type (WT). Using HEK293T cells expressing Kv7.1 channel subunits (KCNQ1/KCNE1) and patch-clamp electrophysiology, we demonstrated that LQTS-associated CaM variants reduced current density at systolic Ca2+ concentrations (1 μm), revealing a direct QT-prolonging modulatory effect. Our data highlight for the first time that LQTS-associated perturbations to CaM's structure impede complex formation with Kv7.1 and subsequently result in reduced IKs. This provides a novel mechanistic insight into how the perturbed structure-function relationship of CaM variants contributes to the LQTS phenotype. KEY POINTS: Calmodulin (CaM) is a ubiquitous, highly conserved calcium (Ca2+ ) sensor playing a key role in cardiac muscle contraction. Genotyping has revealed several CaM mutations associated with long QT syndrome (LQTS), a life-threatening cardiac arrhythmia syndrome. LQTS-associated CaM variants (D95V, N97I and D131H) induced structural alterations, altered binding to Kv7.1 and reduced IKs. Our data provide a novel mechanistic insight into how the perturbed structure-function relationship of CaM variants contributes to the LQTS phenotype.
Collapse
Affiliation(s)
- Liam McCormick
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
- Manchester Centre for Genomic Medicine, North West Genomic Laboratory HubSaint Mary's HospitalManchesterUK
| | - Kirsty Wadmore
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Amy Milburn
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Nitika Gupta
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Rachael Morris
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Marie Held
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Ohm Prakash
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Joseph Carr
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Richard Barrett‐Jolley
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Caroline Dart
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Nordine Helassa
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
7
|
Young BD, Cook ME, Costabile BK, Samanta R, Zhuang X, Sevdalis SE, Varney KM, Mancia F, Matysiak S, Lattman E, Weber DJ. Binding and Functional Folding (BFF): A Physiological Framework for Studying Biomolecular Interactions and Allostery. J Mol Biol 2022; 434:167872. [PMID: 36354074 PMCID: PMC10871162 DOI: 10.1016/j.jmb.2022.167872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
EF-hand Ca2+-binding proteins (CBPs), such as S100 proteins (S100s) and calmodulin (CaM), are signaling proteins that undergo conformational changes upon increasing intracellular Ca2+. Upon binding Ca2+, S100 proteins and CaM interact with protein targets and induce important biological responses. The Ca2+-binding affinity of CaM and most S100s in the absence of target is weak (CaKD > 1 μM). However, upon effector protein binding, the Ca2+ affinity of these proteins increases via heterotropic allostery (CaKD < 1 μM). Because of the high number and micromolar concentrations of EF-hand CBPs in a cell, at any given time, allostery is required physiologically, allowing for (i) proper Ca2+ homeostasis and (ii) strict maintenance of Ca2+-signaling within a narrow dynamic range of free Ca2+ ion concentrations, [Ca2+]free. In this review, mechanisms of allostery are coalesced into an empirical "binding and functional folding (BFF)" physiological framework. At the molecular level, folding (F), binding and folding (BF), and BFF events include all atoms in the biomolecular complex under study. The BFF framework is introduced with two straightforward BFF types for proteins (type 1, concerted; type 2, stepwise) and considers how homologous and nonhomologous amino acid residues of CBPs and their effector protein(s) evolved to provide allosteric tightening of Ca2+ and simultaneously determine how specific and relatively promiscuous CBP-target complexes form as both are needed for proper cellular function.
Collapse
Affiliation(s)
- Brianna D Young
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mary E Cook
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Brianna K Costabile
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Riya Samanta
- Biophysics Graduate Program, University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Xinhao Zhuang
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Spiridon E Sevdalis
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kristen M Varney
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Silvina Matysiak
- Biophysics Graduate Program, University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Eaton Lattman
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - David J Weber
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; The Institute of Bioscience and Biotechnology Research (IBBR), Rockville, MD 20850, USA.
| |
Collapse
|
8
|
Zhou X, Ma G, Wan Z, Wang S. Label-Free Multimetric Measurement of Molecular Binding Kinetics by Electrical Modulation of a Flexible Nanobiolayer. ACS Sens 2022; 7:3461-3469. [PMID: 36273329 PMCID: PMC10358282 DOI: 10.1021/acssensors.2c01804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Most label-free techniques rely on measuring refractive index or mass change on the sensor surface. Thus, it is challenging for them to measure small molecules or enzymatic processes that only induce a minor mass change on the analyte molecules. Here, we have developed a technique by combining Surface Plasmon Resonance sensing with an Oscillating Biomolecule Layer approach (SPR-OBL) to enhance the sensitivity of traditional SPR. In addition to the inherent mass sensitivity, SPR-OBL is also sensitive to the charge and conformational change of the analyte; hence it overcomes the mass limit and is able to detect small molecules. We show that the multimetric SPR-OBL measurement allows for sensing any changes regarding mass, charge, and conformation, which expands the detection capability of SPR.
Collapse
Affiliation(s)
- Xiaoyan Zhou
- Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, AZ 85287, USA
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Guangzhong Ma
- Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, AZ 85287, USA
| | - Zijian Wan
- Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, AZ 85287, USA
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Shaopeng Wang
- Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, AZ 85287, USA
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
9
|
Stewart AM, Shanmugam M, Kutta RJ, Scrutton NS, Lovett JE, Hay S. Combined Pulsed Electron Double Resonance EPR and Molecular Dynamics Investigations of Calmodulin Suggest Effects of Crowding Agents on Protein Structures. Biochemistry 2022; 61:1735-1742. [PMID: 35979922 PMCID: PMC9454100 DOI: 10.1021/acs.biochem.2c00099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Calmodulin (CaM) is a highly dynamic Ca2+-binding
protein
that exhibits large conformational changes upon binding Ca2+ and target proteins. Although it is accepted that CaM exists in
an equilibrium of conformational states in the absence of target protein,
the physiological relevance of an elongated helical linker region
in the Ca2+-replete form has been highly debated. In this
study, we use PELDOR (pulsed electron–electron double resonance)
EPR measurements of a doubly spin-labeled CaM variant to assess the
conformational states of CaM in the apo-, Ca2+-bound, and
Ca2+ plus target peptide-bound states. Our findings are
consistent with a three-state conformational model of CaM, showing
a semi-open apo-state, a highly extended Ca2+-replete state,
and a compact target protein-bound state. Molecular dynamics simulations
suggest that the presence of glycerol, and potentially other molecular
crowding agents, has a profound effect on the relative stability of
the different conformational states. Differing experimental conditions
may explain the discrepancies in the literature regarding the observed
conformational state(s) of CaM, and our PELDOR measurements show good
evidence for an extended conformation of Ca2+-replete CaM
similar to the one observed in early X-ray crystal structures.
Collapse
Affiliation(s)
- Andrew M Stewart
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames 50011, Iowa, United States.,Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Muralidharan Shanmugam
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Roger J Kutta
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.,Institute of Physical and Theoretical Chemistry, University of Regensburg, Regensburg 93040, Germany
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Janet E Lovett
- SUPA School of Physics and Astronomy and BSRC, The University of St Andrews, St Andrews KY16 9SS, U.K
| | - Sam Hay
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| |
Collapse
|
10
|
Basit A, Yadav AK, Bandyopadhyay P. Calcium Ion Binding to the Mutants of Calmodulin: A Structure-Based Computational Predictive Model of Binding Affinity Using a Charge Scaling Approach in Molecular Dynamics Simulation. J Chem Inf Model 2022; 62:2821-2834. [PMID: 35608259 DOI: 10.1021/acs.jcim.2c00428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The binding of calcium ions (Ca2+) to the calcium-binding proteins (CBPs) controls a plethora of regulatory processes. Among the roles played by CBPs in several diseases, the onset and progress of some cardiovascular diseases are caused by mutations in calmodulin (CaM), an important member of CBPs. Rationalization and prediction of the binding affinity of Ca2+ ions to the CaM can play important roles in understanding the origin of cardiovascular diseases. However, there is no robust structure-based computational method for predicting the binding affinity of Ca2+ ions to the different forms of CBPs in general and CaM in particular. In the current work, we have devised a fast yet accurate computational technique to accurately calculate the binding affinity of Ca2+ to the different forms of CaM. This method combines the well-known molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method and a charge scaling approach developed by previous authors that takes care of the polarization of CaM and Ca2+ ions. Our detailed analysis of the different components of binding free energy shows that subtle changes in electrostatics and van der Waals contribute to the difference in the binding affinity of mutants from that of the wild type (WT), and the charge scaling approach is superior in calculating these subtle changes in electrostatics as compared to the nonpolarizable force field used in this work. A statistically significant regression model made from our binding free energy calculations gives a correlation coefficient close to 0.8 to the experimental results. This structure-based predictive model can open up a new strategy to understand and predict the binding of Ca2+ to the mutants of CBPs, in general.
Collapse
Affiliation(s)
- Abdul Basit
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ajeet Kumar Yadav
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pradipta Bandyopadhyay
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
11
|
Advances in Mass Spectrometry-based Epitope Mapping of Protein Therapeutics. J Pharm Biomed Anal 2022; 215:114754. [DOI: 10.1016/j.jpba.2022.114754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/16/2022] [Accepted: 04/03/2022] [Indexed: 11/21/2022]
|
12
|
Pan X, Kirsch ZJ, Vachet RW. Distinguishing Histidine Tautomers in Proteins Using Covalent Labeling-Mass Spectrometry. Anal Chem 2022; 94:1003-1010. [PMID: 34962759 PMCID: PMC8787799 DOI: 10.1021/acs.analchem.1c03902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In this work, we use diethylpyrocarbonate (DEPC)-based covalent labeling together with LC-MS/MS analysis to distinguish the two sidechain tautomers of histidine residues in peptides and proteins. From labeling experiments on model peptides, we demonstrate that DEPC reacts equally with both tautomeric forms to produce chemically different products with distinct dissociation patterns and LC retention times, allowing the ratios of the two tautomers to be determined in peptides and proteins. Upon measuring the tautomer ratios of several histidine residues in myoglobin, we find good agreement with previous 2D NMR data on this protein. Because our DEPC labeling/MS approach is simpler, faster, and more precise than 2D NMR, our method will be a valuable way to determine how protein structure enforces histidine sidechain tautomerization. Because the tautomeric state of histidine residues is often important for protein structure and function, the ability of DEPC labeling/MS to distinguish histidine tautomers should equip researchers with a tool to understand the histidine residue structure and function more deeply in proteins.
Collapse
|
13
|
Lin Y, Gross ML. Mass Spectrometry-Based Structural Proteomics for Metal Ion/Protein Binding Studies. Biomolecules 2022; 12:135. [PMID: 35053283 PMCID: PMC8773722 DOI: 10.3390/biom12010135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 01/01/2023] Open
Abstract
Metal ions are critical for the biological and physiological functions of many proteins. Mass spectrometry (MS)-based structural proteomics is an ever-growing field that has been adopted to study protein and metal ion interactions. Native MS offers information on metal binding and its stoichiometry. Footprinting approaches coupled with MS, including hydrogen/deuterium exchange (HDX), "fast photochemical oxidation of proteins" (FPOP) and targeted amino-acid labeling, identify binding sites and regions undergoing conformational changes. MS-based titration methods, including "protein-ligand interactions by mass spectrometry, titration and HD exchange" (PLIMSTEX) and "ligand titration, fast photochemical oxidation of proteins and mass spectrometry" (LITPOMS), afford binding stoichiometry, binding affinity, and binding order. These MS-based structural proteomics approaches, their applications to answer questions regarding metal ion protein interactions, their limitations, and recent and potential improvements are discussed here. This review serves as a demonstration of the capabilities of these tools and as an introduction to wider applications to solve other questions.
Collapse
Affiliation(s)
- Yanchun Lin
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
14
|
McKenzie-Coe A, Montes NS, Jones LM. Hydroxyl Radical Protein Footprinting: A Mass Spectrometry-Based Structural Method for Studying the Higher Order Structure of Proteins. Chem Rev 2021; 122:7532-7561. [PMID: 34633178 DOI: 10.1021/acs.chemrev.1c00432] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hydroxyl radical protein footprinting (HRPF) coupled to mass spectrometry has been successfully used to investigate a plethora of protein-related questions. The method, which utilizes hydroxyl radicals to oxidatively modify solvent-accessible amino acids, can inform on protein interaction sites and regions of conformational change. Hydroxyl radical-based footprinting was originally developed to study nucleic acids, but coupling the method with mass spectrometry has enabled the study of proteins. The method has undergone several advancements since its inception that have increased its utility for more varied applications such as protein folding and the study of biotherapeutics. In addition, recent innovations have led to the study of increasingly complex systems including cell lysates and intact cells. Technological advances have also increased throughput and allowed for better control of experimental conditions. In this review, we provide a brief history of the field of HRPF and detail recent innovations and applications in the field.
Collapse
Affiliation(s)
- Alan McKenzie-Coe
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Nicholas S Montes
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Lisa M Jones
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
15
|
Liu XR, Rempel DL, Gross ML. Protein higher-order-structure determination by fast photochemical oxidation of proteins and mass spectrometry analysis. Nat Protoc 2020; 15:3942-3970. [PMID: 33169002 PMCID: PMC10476649 DOI: 10.1038/s41596-020-0396-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/03/2020] [Indexed: 11/09/2022]
Abstract
The higher-order structure (HOS) of proteins plays a critical role in their function; therefore, it is important to our understanding of their function that we have as much information as possible about their three-dimensional structure and how it changes with time. Mass spectrometry (MS) has become an important tool for determining protein HOS owing to its high throughput, mid-to-high spatial resolution, low sample amount requirement and broad compatibility with various protein systems. Modern MS-based protein HOS analysis relies, in part, on footprinting, where a reagent reacts 'to mark' the solvent-accessible surface of the protein, and MS-enabled proteomic analysis locates the modifications to afford a footprint. Fast photochemical oxidation of proteins (FPOP), first introduced in 2005, has become a powerful approach for protein footprinting. Laser-induced hydrogen peroxide photolysis generates hydroxyl radicals that react with solvent-accessible side chains (14 out of 20 amino acid side chains) to fulfill the footprinting. The reaction takes place at sub-milliseconds, faster than most of labeling-induced protein conformational changes, thus enabling a 'snapshot' of protein HOS in solution. As a result, FPOP has been employed in solving several important problems, including mapping epitopes, following protein aggregation, locating small molecule binding, measuring ligand-binding affinity, monitoring protein folding and unfolding and determining hidden conformational changes invisible to other methods. Broader adoption will be promoted by dissemination of the technical details for assembling the FPOP platform and for dealing with the complexities of analyzing FPOP data. In this protocol, we describe the FPOP platform, the conditions for successful footprinting and its examination by mass measurements of the intact protein, the post-labeling sample handling and digestion, the liquid chromatography-tandem MS analysis of the digested sample and the data analysis with Protein Metrics Suite. This protocol is intended not only as a guide for investigators trying to establish an FPOP platform in their own lab but also for those willing to incorporate FPOP as an additional tool in addressing their questions of interest.
Collapse
Affiliation(s)
- Xiaoran Roger Liu
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA.
| | - Don L Rempel
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
16
|
Xie Y, Sheng Y, Li Q, Ju S, Reyes J, Lebrilla CB. Determination of the glycoprotein specificity of lectins on cell membranes through oxidative proteomics. Chem Sci 2020; 11:9501-9512. [PMID: 34094216 PMCID: PMC8162070 DOI: 10.1039/d0sc04199h] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/13/2020] [Indexed: 12/25/2022] Open
Abstract
The cell membrane is composed of a network of glycoconjugates including glycoproteins and glycolipids that presents a dense matrix of carbohydrates playing critical roles in many biological processes. Lectin-based technology has been widely used to characterize glycoconjugates in tissues and cell lines. However, their specificity toward their putative glycan ligand and sensitivity in situ have been technologically difficult to study. Additionally, because they recognize primarily glycans, the underlying glycoprotein targets are generally not known. In this study, we employed lectin proximity oxidative labeling (Lectin PROXL) to identify cell surface glycoproteins that contain glycans that are recognized by lectins. Commonly used lectins were modified with a probe to produce hydroxide radicals in the proximity of the labeled lectins. The underlying polypeptides of the glycoproteins recognized by the lectins are oxidized and identified by the standard proteomic workflow. As a result, approximately 70% of identified glycoproteins were oxidized in situ by all the lectin probes, while only 5% of the total proteins were oxidized. The correlation between the glycosites and oxidation sites demonstrated the effectiveness of the lectin probes. The specificity and sensitivity of each lectin were determined using site-specific glycan information obtained through glycomic and glycoproteomic analyses. Notably, the sialic acid-binding lectins and the fucose-binding lectins had higher specificity and sensitivity compared to other lectins, while those that were specific to high mannose glycans have poor sensitivity and specificity. This method offers an unprecedented view of the interactions of lectins with specific glycoproteins as well as protein networks that are mediated by specific glycan types on cell membranes.
Collapse
Affiliation(s)
- Yixuan Xie
- Department of Chemistry, University of California Davis Davis California USA
| | - Ying Sheng
- Department of Chemistry, Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California Davis Davis California USA
| | - Qiongyu Li
- Department of Chemistry, University of California Davis Davis California USA
| | - Seunghye Ju
- Department of Chemistry, University of California Davis Davis California USA
| | - Joe Reyes
- Marine Science Institute, University of the Philippines Diliman Quezon City Philippines
| | - Carlito B Lebrilla
- Department of Chemistry, University of California Davis Davis California USA
- Department of Biochemistry, University of California Davis Davis California USA
| |
Collapse
|
17
|
Liu T, Marcinko TM, Vachet RW. Protein-Ligand Affinity Determinations Using Covalent Labeling-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1544-1553. [PMID: 32501685 PMCID: PMC7332385 DOI: 10.1021/jasms.0c00131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Determining the binding affinity is an important aspect of characterizing protein-ligand complexes. Here, we describe an approach based on covalent labeling (CL)-mass spectrometry (MS) that can accurately provide protein-ligand dissociation constants (Kd values) using diethylpyrocarbonate (DEPC) as the labeling reagent. Even though DEPC labeling reactions occur on a time scale that is similar to the dissociation/reassociation rates of many protein-ligand complexes, we demonstrate that relatively accurate binding constants can still be obtained as long as the extent of protein labeling is kept below 30%. Using two well-established model systems and one insufficiently characterized system, we find that Kd values can be determined that are close to values obtained in previous measurements. The CL-MS-based strategy that is described here should serve as an alternative for characterizing protein-ligand complexes that are challenging to measure by other methods. Moreover, this method has the potential to provide, simultaneously, the affinity and binding site information.
Collapse
Affiliation(s)
| | | | - Richard W. Vachet
- Corresponding author: Prof. Richard W. Vachet, Department of Chemistry, University of Massachusetts, Amherst, MA 01003, , Phone: (413) 545-2733
| |
Collapse
|
18
|
Liu XR, Zhang MM, Gross ML. Mass Spectrometry-Based Protein Footprinting for Higher-Order Structure Analysis: Fundamentals and Applications. Chem Rev 2020; 120:4355-4454. [PMID: 32319757 PMCID: PMC7531764 DOI: 10.1021/acs.chemrev.9b00815] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Proteins adopt different higher-order structures (HOS) to enable their unique biological functions. Understanding the complexities of protein higher-order structures and dynamics requires integrated approaches, where mass spectrometry (MS) is now positioned to play a key role. One of those approaches is protein footprinting. Although the initial demonstration of footprinting was for the HOS determination of protein/nucleic acid binding, the concept was later adapted to MS-based protein HOS analysis, through which different covalent labeling approaches "mark" the solvent accessible surface area (SASA) of proteins to reflect protein HOS. Hydrogen-deuterium exchange (HDX), where deuterium in D2O replaces hydrogen of the backbone amides, is the most common example of footprinting. Its advantage is that the footprint reflects SASA and hydrogen bonding, whereas one drawback is the labeling is reversible. Another example of footprinting is slow irreversible labeling of functional groups on amino acid side chains by targeted reagents with high specificity, probing structural changes at selected sites. A third footprinting approach is by reactions with fast, irreversible labeling species that are highly reactive and footprint broadly several amino acid residue side chains on the time scale of submilliseconds. All of these covalent labeling approaches combine to constitute a problem-solving toolbox that enables mass spectrometry as a valuable tool for HOS elucidation. As there has been a growing need for MS-based protein footprinting in both academia and industry owing to its high throughput capability, prompt availability, and high spatial resolution, we present a summary of the history, descriptions, principles, mechanisms, and applications of these covalent labeling approaches. Moreover, their applications are highlighted according to the biological questions they can answer. This review is intended as a tutorial for MS-based protein HOS elucidation and as a reference for investigators seeking a MS-based tool to address structural questions in protein science.
Collapse
Affiliation(s)
| | | | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA, 63130
| |
Collapse
|
19
|
Baik JY, Park EYJ, So I. Ca 2+/calmodulin-dependent regulation of polycystic kidney disease 2-like-1 by binding at C-terminal domain. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:277-286. [PMID: 32392919 PMCID: PMC7193909 DOI: 10.4196/kjpp.2020.24.3.277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/20/2020] [Accepted: 02/26/2020] [Indexed: 11/27/2022]
Abstract
Polycystic kidney disease 2-like-1 (PKD2L1), also known as polycystin-L or TRPP3, is a non-selective cation channel that regulates intracellular calcium concentration. Calmodulin (CaM) is a calcium binding protein, consisting of N-lobe and C-lobe with two calcium binding EF-hands in each lobe. In previous study, we confirmed that CaM is associated with desensitization of PKD2L1 and that CaM N-lobe and PKD2L1 EF-hand specifically are involved. However, the CaM-binding domain (CaMBD) and its inhibitory mechanism of PKD2L1 have not been identified. In order to identify CaM-binding anchor residue of PKD2L1, single mutants of putative CaMBD and EF-hand deletion mutants were generated. The current changes of the mutants were recorded with whole-cell patch clamp. The calmidazolium (CMZ), a calmodulin inhibitor, was used under different concentrations of intracellular. Among the mutants that showed similar or higher basal currents with that of the PKD2L1 wild type, L593A showed little change in current induced by CMZ. Co-expression of L593A with CaM attenuated the inhibitory effect of PKD2L1 by CaM. In the previous study it was inferred that CaM C-lobe inhibits channels by binding to PKD2L1 at 16 nM calcium concentration and CaM N-lobe at 100 nM. Based on the results at 16 nM calcium concentration condition, this study suggests that CaM C-lobe binds to Leu-593, which can be a CaM C-lobe anchor residue, to regulate channel activity. Taken together, our results provide a model for the regulation of PKD2L1 channel activity by CaM.
Collapse
Affiliation(s)
- Julia Young Baik
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Eunice Yon June Park
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Insuk So
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
20
|
Evaluation of NHS-Acetate and DEPC labelling for determination of solvent accessible amino acid residues in protein complexes. J Proteomics 2020; 222:103793. [PMID: 32348883 DOI: 10.1016/j.jprot.2020.103793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/27/2020] [Accepted: 04/19/2020] [Indexed: 02/07/2023]
Abstract
The activity of most proteins and protein complexes relies on the formation of defined three-dimensional structures. The analysis of these arrangements is therefore key for understanding their function and regulation in the cell. Besides the traditional structural techniques, structural mass spectrometry delivers insights into the various aspects of protein structure, including stoichiometry, protein-ligand interactions and solvent accessibility. The latter is usually obtained from labelling experiments. In this study, we evaluate two chemical labelling strategies using N-hydroxysuccinimidyl acetate and diethylpyrocarbonate as labelling reagents. We characterised the mass spectra of modified peptides and assessed labelling reactivity of individual amino acid residues in intact proteins. Importantly, we uncovered neutral losses from diethylpyrocarbonate modified amino acids improving the assignments of the peptide fragment spectra. We further established a quantitative labelling workflow to determine labelling percentage and unambiguously distinguish solvent accessible amino acid residues from stochastically labelled residues. Finally, we used ion mobility MS to explore whether labelled proteins maintain their structures and remain stable. We conclude that labelling using N-hydroxysuccinimidyl acetate and diethylpyrocarbonate delivers comparable results, however, N-hydroxysuccinimidyl acetate labelling is compatible with standard proteomic workflows while diethylpyrocarbonate labelling requires specialised experimental conditions and data analysis. SIGNIFICANCE: Covalent labelling is widely used to identify solvent accessible amino acid residues of proteins or protein complexes. However, with increasing sensitivity of available MS instrumentation, a high number of modified residues is usually observed making an unambiguous assignment of solvent accessible residues necessary. In this study, we establish a quantitative labelling workflow for two different labelling strategies to identify accessible amino acid residues. In addition, we characterise observed mass spectra of modified peptides and identified neutral loss of DEPC modified amino acid residues during HCD fragmentation improving their assignments.
Collapse
|
21
|
Abstract
Top-down mass spectrometry (MS) analyzes intact proteins at the proteoform level, which allows researchers to better understand the functions of protein modifications. Recently, top-down proteomics has increased in popularity due to advancements in high-resolution mass spectrometers, increased efficiency in liquid chromatography (LC) separation, and advances in data analysis software. Some unique protein proteoforms, which have been distinguished using top-down MS, have even been shown to exhibit marked variation in biological function compared to similar proteoforms. However, the qualitative identification of a particular proteoform may not be enough to determine the biological relevance of that proteoform. Quantitative top-down MS methods have been notably applied to the study of the differing biological functions of protein proteoforms and have allowed researchers to explore proteomes at the proteoform, rather than the peptide, level. Here, we review the top-down MS methods that have been used to quantitatively identify intact proteins, discuss current applications of quantitative top-down MS analysis, and present new areas where quantitative top-down MS analysis may be implemented.
Collapse
Affiliation(s)
- Kellye A Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK 73019-5251, USA.
| | | |
Collapse
|
22
|
Liu T, Limpikirati P, Vachet RW. Synergistic Structural Information from Covalent Labeling and Hydrogen-Deuterium Exchange Mass Spectrometry for Protein-Ligand Interactions. Anal Chem 2019; 91:15248-15254. [PMID: 31664819 DOI: 10.1021/acs.analchem.9b04257] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydrogen-deuterium exchange (HDX) mass spectrometry (MS) and covalent labeling (CL) MS are typically considered to be complementary methods for protein structural analysis, because one probes the protein backbone, while the other probes side chains. For protein-ligand interactions, we demonstrate in this work that the two labeling techniques can provide synergistic structural information about protein-ligand binding when reagents like diethylpyrocarbonate (DEPC) are used for CL because of the differences in the reaction rates of DEPC and HDX. Using three model protein-ligand systems, we show that the slower time scale for DEPC labeling makes it only sensitive to changes in solvent accessibility and insensitive to changes in protein structural fluctuations, whereas HDX is sensitive to changes in both solvent accessibility and structural fluctuations. When used together, the two methods more clearly reveal binding sites and ligand-induced changes to structural fluctuations that are distant from the binding site, which is more comprehensive information than either technique alone can provide. We predict that these two methods will find widespread usage together for more deeply understanding protein-ligand interactions.
Collapse
Affiliation(s)
- Tianying Liu
- Department of Chemistry , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Patanachai Limpikirati
- Department of Chemistry , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Richard W Vachet
- Department of Chemistry , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| |
Collapse
|
23
|
Liu XR, Rempel DL, Gross ML. Composite Conformational Changes of Signaling Proteins upon Ligand Binding Revealed by a Single Approach: Calcium-Calmodulin Study. Anal Chem 2019; 91:12560-12567. [PMID: 31487155 DOI: 10.1021/acs.analchem.9b03491] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Signaling proteins exemplified by calmodulin usually bind cooperatively to multiple ligands. Intermediate states and allosteric behavior are difficult to characterize. Here we extend a recently reported mass spectrometry (MS)-based method named LITPOMS (ligand titration, fast photochemical oxidation of proteins and mass spectrometry) that characterizes complex binding systems typically found as signaling proteins. As reported previously, calmodulin's response to binding four Ca2+ can be determined by LITPOMS to reveal binding sites, binding order, and most importantly composite binding behavior. Modeling this behavior provides site-specific binding affinities. In this article, we dissect the composite, peptide-level conformational changes at several regions either by digestion with a different protease or by tandem MS of LITPOMS behavior at the amino-acid residue level. Such dissection greatly elevates spatial resolution and increases the confidence of binding-order assignment. These complementary views of complex protein conformational change recapitulate the cumulative understanding via a single approach, providing new insights on poorly understood yet important allostery and underpin an approach applicable for exploring other signaling systems.
Collapse
Affiliation(s)
- Xiaoran Roger Liu
- Department of Chemistry , Washington University in St. Louis , One Brookings Drive , St. Louis , Missouri 63130 , United States
| | - Don L Rempel
- Department of Chemistry , Washington University in St. Louis , One Brookings Drive , St. Louis , Missouri 63130 , United States
| | - Michael L Gross
- Department of Chemistry , Washington University in St. Louis , One Brookings Drive , St. Louis , Missouri 63130 , United States
| |
Collapse
|
24
|
Liu XR, Zhang MM, Zhang B, Rempel DL, Gross ML. Hydroxyl-Radical Reaction Pathways for the Fast Photochemical Oxidation of Proteins Platform As Revealed by 18O Isotopic Labeling. Anal Chem 2019; 91:9238-9245. [PMID: 31241913 PMCID: PMC6635036 DOI: 10.1021/acs.analchem.9b02134] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fast photochemical oxidation of protein (FPOP) has become an important mass spectrometry-based protein footprinting approach. Although the hydroxyl radical (•OH) generated by photolysis of hydrogen peroxide (H2O2) is most commonly used, the pathways for its reaction with amino-acid side chains remain unclear. Here, we report a systematic study of •OH oxidative modification of 13 amino acid residues by using 18O isotopic labeling. The results differentiate three classes of residues on the basis of their oxygen uptake preference toward different oxygen sources. Histidine, arginine, tyrosine, and phenylalanine residues preferentially take oxygen from H2O2. Methionine residues competitively take oxygen from H2O2 and dissolved oxygen (O2), whereas the remaining residues take oxygen exclusively from O2. Results reported in this work deepen the understanding of •OH labeling pathway on a FPOP platform, opening new possibilities for tailoring FPOP conditions in addressing many biological questions in a profound way.
Collapse
Affiliation(s)
- Xiaoran Roger Liu
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri, 63130, United
States
| | - Mengru Mira Zhang
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri, 63130, United
States
| | - Bojie Zhang
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri, 63130, United
States
| | - Don L. Rempel
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri, 63130, United
States
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri, 63130, United
States
| |
Collapse
|
25
|
Zhao L, Lai L, Zhang Z. How calcium ion binding induces the conformational transition of the calmodulin N-terminal domain—an atomic level characterization. Phys Chem Chem Phys 2019; 21:19795-19804. [DOI: 10.1039/c9cp03917a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Ca2+binding and triggering conformation transition of nCaM were detected in unbiased molecular dynamics simulations.
Collapse
Affiliation(s)
- Likun Zhao
- College of Life Science
- University of Chinese Academy of Sciences
- Beijing
- China
| | - Luhua Lai
- BNLMS, and Peking-Tsinghua Center for Life Sciences at the College of Chemistry and Molecular Engineering
- Peking University
- Beijing
- China
- Center for Quantitative Biology
| | - Zhuqing Zhang
- College of Life Science
- University of Chinese Academy of Sciences
- Beijing
- China
| |
Collapse
|