1
|
Gao J, Yang S, Xu C, Dong Z, Chen S, Zheng L, Lan L, He G. Ultrasensitive detection of doxycycline enabled by oxygen vacancy modulated TiO 2 nanotubes. Mikrochim Acta 2025; 192:214. [PMID: 40053125 DOI: 10.1007/s00604-025-07072-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/25/2025] [Indexed: 03/18/2025]
Abstract
TiO2 nanotubes rich in oxygen vacancies (Ov), which were successfully fabricated on Ti foils, were used as the working electrode of a photoelectrochemical (PEC) sensor. The TiO2 nanotube electrode optimized with abundant Ov demonstrated a remarkable photocurrent density of 1.03 mA/cm2, which is approximately 2.9 times higher than that of the TiO2 nanotube electrode. When applied to the detection of DOC, this electrode exhibited a wide linear detection range spanning from 0.1 to 100 μM and achieved an exceptionally low detection limit of 0.043 μM with a signal-to-noise ratio of 3. Furthermore, comparative experiments indicated that the Ov-enriched TiO2 nanotube electrode exhibited excellent anti-interference capabilities and long-term stability, ensuring the accuracy and reliability of the detection outcomes. The superior detection performance is primarily attributed to two aspects: on one hand, Ov act as electron traps, facilitating the capture and transfer of photogenerated electrons, effectively prolonging the lifetime of these carriers; on the other hand, Ov also serves as active sites, enhancing the adsorption of DOC molecules and reaction kinetics, further amplifying the detection signal. This work offers a theoretical and experimental groundwork for the rapid monitoring of residual antibiotics.
Collapse
Affiliation(s)
- Juan Gao
- The First Affiliated Hospital of Anhui University of Science and Technology (Huainan First People's Hospital), Huainan, 232001, P. R. China.
- School of Mechanics and Photoelectric Physics, Anhui University of Science and Technology, Huainan, Anhui, 232001, P. R. China.
| | - Sen Yang
- School of Mechanics and Photoelectric Physics, Anhui University of Science and Technology, Huainan, Anhui, 232001, P. R. China
| | - Chen Xu
- School of Mechanics and Photoelectric Physics, Anhui University of Science and Technology, Huainan, Anhui, 232001, P. R. China
| | - Zerui Dong
- School of Mechanics and Photoelectric Physics, Anhui University of Science and Technology, Huainan, Anhui, 232001, P. R. China
| | - SiZhu Chen
- School of Mechanics and Photoelectric Physics, Anhui University of Science and Technology, Huainan, Anhui, 232001, P. R. China
| | - Lingcheng Zheng
- The First Affiliated Hospital of Anhui University of Science and Technology (Huainan First People's Hospital), Huainan, 232001, P. R. China
- School of Mechanics and Photoelectric Physics, Anhui University of Science and Technology, Huainan, Anhui, 232001, P. R. China
| | - Leilei Lan
- School of Mechanics and Photoelectric Physics, Anhui University of Science and Technology, Huainan, Anhui, 232001, P. R. China
| | - Gang He
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
2
|
Fan X, Zhang X, Zhang Y, Jiang S, Song W, Song D. IR-Driven Multisignal Conditioning for Multiplex Detection: Thermal-Responsive Triple DNA-Mediated Reconfigurable Photoelectrochemical/Photothermal Dual-Mode Strategy. ACS Sens 2025; 10:292-300. [PMID: 39752297 DOI: 10.1021/acssensors.4c02504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Superior to traditional multiplex photoelectrochemical (PEC) sensors, integrated multitarget assay on a single reconstructive electrode interface is promising in real-time detection through eliminating the need of specialized instrumentation and cumbersome interfacial modifications. Current interface reconstruction approaches including pH modulation and bioenzyme cleavage involve biohazardous and time-consuming operations, which cannot meet the demand for rapid, eco-friendly, and portable detection, which are detrimental to the development of multiplex PEC sensors toward portability. Herein, we report a pioneer work on IR-driven "four-to-one" multisignal conditioning to facile reconfigure electrode interface for multitarget detection via photoelectrochemical/photothermal dual mode. The copper sulfide quantum dot (CuS QD) with excellent photoelectrochemical properties and a photothermal effect is first labeled on DNA S2. Once the CuS QD-S2 complementarily pairs with the DNA S3 on the photocathode surface, thermal-responsive triple DNA is formed, and the photocurrent and photothermal dual-mode signals for one target assay are produced. Upon the dissociation of the triple DNA by IR irradiation, the electrode interface is reconfigured for the self-calibrating dual-mode detection of another target. The feasibility of the IR-driven multisignal conditioning sensor is confirmed by detecting coexistent antibiotics kanamycin (KANA) and neomycin (NEO) in complex real samples. The low-loss interface reconfiguration and rapid "four-to-one" multisignal modulation highlight a broad prospect for self-calibrating multiplex assay in the fields of environment, medicine, and food safety.
Collapse
Affiliation(s)
- Xue Fan
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, China
| | - Xuechen Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, China
| | - Yanru Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, China
| | - Shan Jiang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Wenbo Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, China
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, China
| |
Collapse
|
3
|
Shao R, Deng L, Hu S, Yang M, Min A. Detection of alkaline phosphatase activity with a CsPbBr 3/Y6 heterojunction-based photoelectrochemical sensor. Mikrochim Acta 2024; 191:316. [PMID: 38724679 DOI: 10.1007/s00604-024-06393-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/27/2024] [Indexed: 05/15/2024]
Abstract
An ultra-sensitive photoelectrochemical (PEC) sensor based on perovskite composite was developed for the determination of alkaline phosphatase (ALP) in human serum. In contrast to CsPbBr3 or Y6 that generated anodic current, the heterojunction of CsPbBr3/Y6 promoted photocarriers to separate and generated cathodic photocurrent. Ascorbic acid (AA) was produced by ALP hydrolyzing L-ascorbic acid 2-phosphate trisodium salt (AAP), which can combine with the holes on the photoelectrode surface, accelerating the transmission of photogenerated carriers, leading to enhanced photocurrent intensity. Thus, the enhancement of PEC current was linked to ALP activity. The PEC sensor exhibits good sensitivity for detection of ALP owing to the unique photoelectric properties of the CsPbBr3/Y6 heterojunction. The detection limit of the sensor was 0.012 U·L-1 with a linear dynamic range of 0.02-2000 U·L-1. Therefore, this PEC sensing platform shows great potential for the development of different PEC sensors.
Collapse
Affiliation(s)
- Rong Shao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Lei Deng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Shujun Hu
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, 410083, China
- Research Center of Oral and Maxillofacail Tumor, Xiangya Hospital, Central South University, Changsha, 410083, China
| | - Minghui Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Anjie Min
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, 410083, China.
- Research Center of Oral and Maxillofacail Tumor, Xiangya Hospital, Central South University, Changsha, 410083, China.
| |
Collapse
|
4
|
Song J, Chen Y, Li L, Tan M, Su W. Recent Progress in Photoelectrochemical Sensing of Pesticides in Food and Environmental Samples: Photoactive Materials and Signaling Mechanisms. Molecules 2024; 29:560. [PMID: 38338305 PMCID: PMC10856573 DOI: 10.3390/molecules29030560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/13/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
Pesticides have become an integral part of modern agricultural practices, but their widespread use poses a significant threat to human health. As such, there is a pressing need to develop effective methods for detecting pesticides in food and environmental samples. Traditional chromatography methods and common rapid detection methods cannot satisfy accuracy, portability, long storage time, and solution stability at the same time. In recent years, photoelectrochemical (PEC) sensing technology has gained attention as a promising approach for detecting various pesticides due to its salient advantages, including high sensitivity, low cost, simple operation, fast response, and easy miniaturization, thus becoming a competitive candidate for real-time and on-site monitoring of pesticide levels. This review provides an overview of the recent advancements in PEC methods for pesticide detection and their applications in ensuring food and environmental safety, with a focus on the categories of photoactive materials, from single semiconductor to semiconductor-semiconductor heterojunction, and signaling mechanisms of PEC sensing platforms, including oxidation of pesticides, steric hindrance, generation/decrease in sacrificial agents, and introduction/release of photoactive materials. Additionally, this review will offer insights into future prospects and confrontations, thereby contributing novel perspectives to this evolving domain.
Collapse
Affiliation(s)
- Jie Song
- State Key Laboratory of Marine Food Processing & Safety Control, Qingdao 266400, China;
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.C.); (L.L.); (M.T.)
| | - Yuqi Chen
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.C.); (L.L.); (M.T.)
| | - Ling Li
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.C.); (L.L.); (M.T.)
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.C.); (L.L.); (M.T.)
| | - Wentao Su
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.C.); (L.L.); (M.T.)
| |
Collapse
|
5
|
Olejnik A, Polaczek K, Szkodo M, Stanisławska A, Ryl J, Siuzdak K. Laser-Induced Graphitization of Polydopamine on Titania Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2023; 15. [PMID: 37915241 PMCID: PMC10658452 DOI: 10.1021/acsami.3c11580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023]
Abstract
Since the discovery of laser-induced graphite/graphene, there has been a notable surge of scientific interest in advancing diverse methodologies for their synthesis and applications. This study focuses on the utilization of a pulsed Nd:YAG laser to achieve graphitization of polydopamine (PDA) deposited on the surface of titania nanotubes. The partial graphitization is corroborated through Raman and XPS spectroscopies and supported by water contact angle, nanomechanical, and electrochemical measurements. Reactive molecular dynamics simulations confirm the possibility of graphitization in the nanosecond time scale with the evolution of NH3, H2O, and CO2 gases. A thorough exploration of the lasing parameter space (wavelength, pulse energy, and number of pulses) was conducted with the aim of improving either electrochemical activity or photocurrent generation. Whereas the 532 nm laser pulses interacted mostly with the PDA coating, the 365 nm pulses were absorbed by both PDA and the substrate nanotubes, leading to a higher graphitization degree. The majority of the photocurrent and quantum efficiency enhancement is observed in the visible light between 400 and 550 nm. The proposed composite is applied as a photoelectrochemical (PEC) sensor of serotonin in nanomolar concentrations. Because of the suppressed recombination and facilitated charge transfer caused by the laser graphitization, the proposed composite exhibits significantly enhanced PEC performance. In the sensing application, it showed superior sensitivity and a limit of detection competitive with nonprecious metal materials.
Collapse
Affiliation(s)
- Adrian Olejnik
- Department
of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications
and Informatics, Gdańsk University
of Technology, Narutowicza 11/12 St., Gdańsk 80-233, Poland
- Centre
for Plasma and Laser Engineering, The Szewalski
Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 St., Gdańsk 80-231, Poland
| | - Krzysztof Polaczek
- Centre
for Plasma and Laser Engineering, The Szewalski
Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 St., Gdańsk 80-231, Poland
- Department
of Biomedical Chemistry, Faculty of Chemistry
University of Gdansk, Wita Stwosza 63 St, Gdańsk 80-308, Poland
| | - Marek Szkodo
- Institute
of Manufacturing and Materials Technology, Faculty of Mechanical Engineering
and Ship Technology, Gdańsk University
of Technology, Narutowicza 11/12 St., Gdańsk 80-233, Poland
| | - Alicja Stanisławska
- Institute
of Manufacturing and Materials Technology, Faculty of Mechanical Engineering
and Ship Technology, Gdańsk University
of Technology, Narutowicza 11/12 St., Gdańsk 80-233, Poland
| | - Jacek Ryl
- Institute
of Nanotechnology and Materials Engineering and Advanced Materials
Center, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233, Poland
| | - Katarzyna Siuzdak
- Centre
for Plasma and Laser Engineering, The Szewalski
Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14 St., Gdańsk 80-231, Poland
| |
Collapse
|
6
|
SARS-CoV-2 detection enabled by a portable and label-free photoelectrochemical genosensor using graphitic carbon nitride and gold nanoparticles. Electrochim Acta 2023; 451:142271. [PMID: 36974119 PMCID: PMC10024957 DOI: 10.1016/j.electacta.2023.142271] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 03/16/2023] [Indexed: 03/28/2023]
Abstract
Fast, sensitive, simple, and cheap sensors are highly desirable to be applied in the health system because they improve point-of-care diagnostics, which can reduce the number of cases of infection or even deaths. In this context, here we report the development of a label-free genosensor using a screen-printed electrode modified with 2D-carbonylated graphitic carbon nitride (c-g-C3N4), poly(diallyldimethylammonium) chloride (PDDA), and glutathione-protected gold nanoparticles (GSH-AuNPs) for photoelectrochemical (PEC) detection of SARS-CoV-2. We also made use of Arduino and 3D printing to miniaturize the sensor device. The electrode surface was characterized by AFM and SEM techniques, and the gold nanoparticles by UV–Vis spectrophotometry. For SARS-CoV-2 detection, capture probe DNA was immobilized on the electrode surface. The hybridization of the final genosensor was tested with a synthetic single-strand DNA target and with natural saliva samples using the photoelectrochemistry method. The device presented a linear range from 1 to 10,000 fmol L−1 and a limit of detection of 2.2 and 3.4 fmol L−1 using cpDNA 1A and 3A respectively. The sensibility and accuracy found for the genosensor using cpDNA 1A using biological samples were 93.3 and 80% respectively, indicating the potential of the label-free and portable genosensor to detect SARS-CoV-2 RNA in saliva samples.
Collapse
|
7
|
Rapid room-temperature mechanosynthesis tensile-strained Bi3O4Br for robust photomineralization. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
|
8
|
Wu D, Karimi-Maleh H, Liu X, Fu L. Bibliometrics Analysis of Research Progress of Electrochemical Detection of Tetracycline Antibiotics. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2023; 2023:6443610. [PMID: 36852208 PMCID: PMC9966827 DOI: 10.1155/2023/6443610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/27/2022] [Accepted: 10/07/2022] [Indexed: 06/18/2023]
Abstract
Tetracycline is a broad-spectrum class of antibiotics. The use of excessive doses of tetracycline antibiotics can result in their residues in food, posing varying degrees of risk to human health. Therefore, the establishment of a rapid and sensitive field detection method for tetracycline residues is of great practical importance to improve the safety of food-derived animal foods. Electrochemical analysis techniques are widely used in the field of pollutant detection because of the simple detection principle, easy operation of the instrument, and low cost of analysis. In this review, we summarize the electrochemical detection of tetracycline antibiotics by bibliometrics. Unlike the previously published reviews, this article reviews and analyzes the development of this topic. The contributions of different countries and different institutions were analyzed. Keyword analysis was used to explain the development of different research directions. The results of the analysis revealed that developments and innovations in materials science can enhance the performance of electrochemical detection of tetracycline antibiotics. Among them, gold nanoparticles and carbon nanotubes are the most used nanomaterials. Aptamer sensing strategies are the most favored methodologies in electrochemical detection of tetracycline antibiotics.
Collapse
Affiliation(s)
- Dihua Wu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu 610056, China
- Department of Chemical Engineering and Energy, Laboratory of Nanotechnology, Quchan University of Technology, Quchan 94771-67335, Iran
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa
| | - Xiaozhu Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
9
|
Khan SU, Trashin S, Beltran V, Korostei YS, Pelmus M, Gorun SM, Dubinina TV, Verbruggen SW, De Wael K. Photoelectrochemical Behavior of Phthalocyanine-Sensitized TiO 2 in the Presence of Electron-Shuttling Mediators. Anal Chem 2022; 94:12723-12731. [PMID: 36094164 DOI: 10.1021/acs.analchem.2c02210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dye-sensitized TiO2 has found many applications for dye-sensitized solar cells (DSSC), solar-to-chemical energy conversion, water/air purification systems, and (electro)chemical sensors. We report an electrochemical system for testing dye-sensitized materials that can be utilized in photoelectrochemical (PEC) sensors and energy conversion. Unlike related systems, the reported system does not require a direct electron transfer from semiconductors to electrodes. Rather, it relies on electron shuttling by redox mediators. A range of model photocatalytic materials were prepared using three different TiO2 materials (P25, P90, and PC500) and three sterically hindered phthalocyanines (Pcs) with electron-rich tert-butyl substituents (t-Bu4PcZn, t-Bu4PcAlCl, and t-Bu4PcH2). The materials were compared with previously developed TiO2 modified by electron-deficient, also sterically hindered fluorinated phthalocyanine F64PcZn, a singlet oxygen (1O2) producer, as well as its metal-free derivative, F64PcH2. The PEC activity depended on the redox mediator, as well as the type of TiO2 and Pc. By comparing the responses of one-electron shuttles, such as K4Fe(CN)4, and 1O2-reactive electron shuttles, such as phenol, it is possible to reveal the action mechanism of the supported photosensitizers, while the overall activity can be assessed using hydroquinone. t-Bu4PcAlCl showed significantly lower blank responses and higher specific responses toward chlorophenols compared to t-Bu4PcZn due to the electron-withdrawing effect of the Al3+ metal center. The combination of reactivity insights and the need for only microgram amounts of sensing materials renders the reported system advantageous for practical applications.
Collapse
Affiliation(s)
- Shahid Ullah Khan
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Antwerp 2020, Belgium.,NANOlab Center of Excellence, University of Antwerp, Antwerp 2020, Belgium.,DuEL Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp 2020, Belgium
| | - Stanislav Trashin
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Antwerp 2020, Belgium.,NANOlab Center of Excellence, University of Antwerp, Antwerp 2020, Belgium
| | - Victoria Beltran
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Antwerp 2020, Belgium.,NANOlab Center of Excellence, University of Antwerp, Antwerp 2020, Belgium
| | - Yuliya S Korostei
- Institiute of Physiologically Active Compounds, Russian Academy of Science, Chernogolovka, Moscow Region 14243, Russian Federation
| | - Marius Pelmus
- Department of Chemistry and Biochemistry and the Center for Functional Materials, Seton Hall University, South Orange, New Jersey 07079, United States
| | - Sergiu M Gorun
- Department of Chemistry and Biochemistry and the Center for Functional Materials, Seton Hall University, South Orange, New Jersey 07079, United States
| | - Tatiana V Dubinina
- Institiute of Physiologically Active Compounds, Russian Academy of Science, Chernogolovka, Moscow Region 14243, Russian Federation.,Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Sammy W Verbruggen
- NANOlab Center of Excellence, University of Antwerp, Antwerp 2020, Belgium.,DuEL Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp 2020, Belgium
| | - Karolien De Wael
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Antwerp 2020, Belgium.,NANOlab Center of Excellence, University of Antwerp, Antwerp 2020, Belgium
| |
Collapse
|
10
|
Zhao S, Riedel M, Patarroyo J, Bastús NG, Puntes V, Yue Z, Lisdat F, Parak WJ. Tailoring of the photocatalytic activity of CeO 2 nanoparticles by the presence of plasmonic Ag nanoparticles. NANOSCALE 2022; 14:12048-12059. [PMID: 35946341 DOI: 10.1039/d2nr01318e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The present study investigates basic features of a photoelectrochemical system based on CeO2 nanoparticles fixed on gold electrodes. Since photocurrent generation is limited to the absorption range of the CeO2 in the UV range, the combination with metal nanoparticles has been studied. It can be shown that the combination of silver nanoparticles with the CeO2 can shift the excitation range into the visible light wavelength range. Here a close contact between both components has been found to be essential and thus, hybrid CeO2@Ag nanoparticles have been prepared and analyzed. We have collected arguments that electron transfer occurs between both compositional elements of the hybrid nanoparticles.The photocurrent generation can be rationalized on the basis of an energy diagram underlying the necessity of surface plasmon excitation in the metal nanoparticles, which is also supported by wavelength-dependent photocurrent measurements. However, electrochemical reactions seem to occur at the CeO2 surface and consequently, the catalytic properties of this material can be exploited as exemplified with the photoelectrochemical reduction of hydrogen peroxide. It can be further demonstrated that the layer-by layer technique can be exploited to create a multilayer system on top of a gold electrode which allows the adjustment of the sensitivity of the photoelectrochemical system. Thus, with a 5-layer electrode with hybrid CeO2@Ag nanoparticles submicromolar hydrogen peroxide concentrations can be detected.
Collapse
Affiliation(s)
- Shuang Zhao
- Fachbereich Physik, CHyN, Universität Hamburg, 22761 Hamburg, Germany.
| | - Marc Riedel
- Biosystems Technology, Institute of Life Sciences and Biomedical Technologies, Technical University of Applied Sciences Wildau, 15745 Wildau, Germany.
| | - Javier Patarroyo
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
| | - Neus G Bastús
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
| | - Victor Puntes
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
- Vall d'Hebron Institut de Recerca (VHIR), 08035 Barcelona, Catalonia, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Catalonia, Spain
| | - Zhao Yue
- Department of Microelectronics, Nankai University, 30071 Tianjin, China.
| | - Fred Lisdat
- Biosystems Technology, Institute of Life Sciences and Biomedical Technologies, Technical University of Applied Sciences Wildau, 15745 Wildau, Germany.
| | - Wolfgang J Parak
- Fachbereich Physik, CHyN, Universität Hamburg, 22761 Hamburg, Germany.
| |
Collapse
|
11
|
Neven L, Barich H, Rutten R, De Wael K. Novel (Photo)electrochemical Analysis of Aqueous Industrial Samples Containing Phenols. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Sheng S, Zhang Z, Wang M, He X, Jiang C, Wang Y. Synthesis of MIL-125(Ti) derived TiO2 for selective photoelectrochemical sensing and photocatalytic degradation of tetracycline. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Shen Y, Wei Y, Liu Z, Nie C, Ye Y. Engineering of 2D artificial nanozyme-based blocking effect-triggered colorimetric sensor for onsite visual assay of residual tetracycline in milk. Mikrochim Acta 2022; 189:233. [PMID: 35622176 DOI: 10.1007/s00604-022-05329-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/07/2022] [Indexed: 11/24/2022]
Abstract
Accurate and low-cost onsite assay of residual antibiotics in food and agriculture-related matrixes (e.g., milk) is of significant importance for evaluating and controlling food pollution risk. Herein, we employed hybrid Cu-doped-g-C3N4 nanozyme to engineer smartphone-assisted onsite visual sensor for reliable and precise reporting the levels of tetracycline (TC) residues in milk through π-π stacking-triggered blocking effect. Benefiting from the synergetic effects of Cu2+ and g-C3N4 nanosheet, Cu-doped-g-C3N4 nanocomposite exhibited an improved peroxidase-like activity, which could effectively catalyze H2O2 to oxidate colorless TMB into steel-blue product oxTMB. Interestingly, owing to the blocking effect caused by the π-π stacking interaction between TC tetraphenyl skeleton and Cu-doped-g-C3N4 nanozyme, the affinity of Cu-doped-g-C3N4 nanocomposite toward the catalytic substrates was remarkably blocked, resulting in a TC concentration-dependent fading of solution color. Using smartphone-assisted detection a simple, low-cost, reliable, and sensitive portable colorimetric sensor-based nanozyme for onsite visual monitoring the residual TC in milk was successfully developed with a detection limit of 86.27 nM. Of particular mention is that this detection limit is comparable to most other reported colorimetric methods and below most official allowable residue thresholds in milk matrixes. This work gave a novel insight to integrate two-dimensional (2D) artificial nanozymes-based π-π stacking-triggered blocking effect with smartphone-assisted detection for developing efficient and low-cost colorimetric point-of-care testing of the risk factors in food and agriculture-related matrixes.
Collapse
Affiliation(s)
- Yizhong Shen
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai, 200436, China. .,School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230009, China.
| | - Yunlong Wei
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230009, China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai, 200436, China
| | - Chao Nie
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230009, China
| | - Yingwang Ye
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
14
|
Neven L, Barich H, Sleegers N, Cánovas R, Debruyne G, De Wael K. Development of a combi-electrosensor for the detection of phenol by combining photoelectrochemistry and square wave voltammetry. Anal Chim Acta 2022; 1206:339732. [DOI: 10.1016/j.aca.2022.339732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 11/27/2022]
|
15
|
Neven L, Barich H, Ching HYV, Khan SU, Colomier C, Patel HH, Gorun SM, Verbruggen S, Van Doorslaer S, De Wael K. Correlation between the Fluorination Degree of Perfluorinated Zinc Phthalocyanines, Their Singlet Oxygen Generation Ability, and Their Photoelectrochemical Response for Phenol Sensing. Anal Chem 2022; 94:5221-5230. [PMID: 35316027 DOI: 10.1021/acs.analchem.1c04357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electron-withdrawing perfluoroalkyl peripheral groups grafted on phthalocyanine (Pc) macrocycles improve their single-site isolation, solubility, and resistance to self-oxidation, all beneficial features for catalytic applications. A high degree of fluorination also enhances the reducibility of Pcs and could alter their singlet oxygen (1O2) photoproduction. The ethanol/toluene 20:80 vol % solvent mixture was found to dissolve perfluorinated FnPcZn complexes, n = 16, 52, and 64, and minimize the aggregation of the sterically unencumbered F16PcZn. The 1O2 production ability of FnPcZn complexes was examined using 9,10-dimethylanthracene (DMA) and 2,2,6,6-tetramethylpiperidine (TEMP) in combination with UV-vis and electron paramagnetic resonance (EPR) spectroscopy, respectively. While the photoreduction of F52PcZn and F64PcZn in the presence of redox-active TEMP lowered 1O2 production, DMA was a suitable 1O2 trap for ranking the complexes. The solution reactivity was complemented by solid-state studies via the construction of photoelectrochemical sensors based on TiO2-supported FnPcZn, FnPcZn|TiO2. Phenol photo-oxidation by 1O2, followed by its electrochemical reduction, defines a redox cycle, the 1O2 production having been found to depend on the value of n and structural features of the supported complexes. Consistent with solution studies, F52PcZn was found to be the most efficient 1O2 generator. The insights on reactivity testing and structural-activity relationships obtained may be useful for designing efficient and robust sensors and for other 1O2-related applications of FnPcZn.
Collapse
Affiliation(s)
- Liselotte Neven
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.,NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.,BIMEF Research Group, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Hanan Barich
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.,NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - H Y Vincent Ching
- BIMEF Research Group, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Shahid U Khan
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.,NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.,DuEL Research Group, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Christopher Colomier
- Department of Chemistry and Biochemistry and the Centre for Functional Materials, Seton Hall University, 400 South Orange Ave, New Jersey 07079, United States
| | - Hemantbhai H Patel
- Department of Chemistry and Biochemistry and the Centre for Functional Materials, Seton Hall University, 400 South Orange Ave, New Jersey 07079, United States
| | - Sergiu M Gorun
- Department of Chemistry and Biochemistry and the Centre for Functional Materials, Seton Hall University, 400 South Orange Ave, New Jersey 07079, United States
| | - Sammy Verbruggen
- DuEL Research Group, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Sabine Van Doorslaer
- BIMEF Research Group, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Karolien De Wael
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.,NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
16
|
Chen W, Liu S, Fu Y, Yan H, Qin L, Lai C, Zhang C, Ye H, Chen W, Qin F, Xu F, Huo X, Qin H. Recent advances in photoelectrocatalysis for environmental applications: Sensing, pollutants removal and microbial inactivation. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214341] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Neven L, Barich H, Pelmus M, Gorun S, De Wael K, Pelmuş M, Gorun SM. The Role of Singlet Oxygen, Superoxide, Hydroxide and Hydrogen Peroxide in the Photoelectrochemical Response of Phenols at a Supported Highly Fluorinated Zinc Phthalocyanine. ChemElectroChem 2022. [DOI: 10.1002/celc.202200108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Liselotte Neven
- Universiteit Antwerpen Faculteit Wetenschappen Bioscience Engineering Groenenborgerlaan 171 2020 Antwerpen BELGIUM
| | - Hanan Barich
- Universiteit Antwerpen Faculteit Wetenschappen Bioscience Engineering Groenenborgerlaan 171 2020 Antwerpen BELGIUM
| | - Marius Pelmus
- Seton Hall University Chemistry and Biochemistry and the Center for Functional Materials UNITED STATES
| | - Sergiu Gorun
- Seton Hall University Chemistry and Biochemistry and the Center for Functional Materials UNITED STATES
| | - Karolien De Wael
- Universiteit Antwerpen Faculteit Wetenschappen Bioscience Engineering BELGIUM
| | - Marius Pelmuş
- Seton Hall University Chemistry and Biochemistry and the Center for Functional Materials UNITED STATES
| | - Segiu M. Gorun
- Seton Hall University Chemistry and Biochemistry and the Center for Functional Materials UNITED STATES
| |
Collapse
|
18
|
Barich H, Cánovas R, De Wael K. Electrochemical identification of hazardous phenols and their complex mixtures in real samples using unmodified screen-printed electrodes. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Trashin S, Morales-Yánez F, Thiruvottriyur Shanmugam S, Paredis L, Carrión EN, Sariego I, Muyldermans S, Polman K, Gorun SM, De Wael K. Nanobody-Based Immunosensor Detection Enhanced by Photocatalytic-Electrochemical Redox Cycling. Anal Chem 2021; 93:13606-13614. [PMID: 34585567 DOI: 10.1021/acs.analchem.1c02876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Detection of antigenic biomarkers present in trace amounts is of crucial importance for medical diagnosis. A parasitic disease, human toxocariasis, lacks an adequate diagnostic method despite its worldwide occurrence. The currently used serology tests may stay positive even years after a possibly unnoticed infection, whereas the direct detection of a re-infection or a still active infection remains a diagnostic challenge due to the low concentration of circulating parasitic antigens. We report a time-efficient sandwich immunosensor using small recombinant single-domain antibodies (nanobodies) derived from camelid heavy-chain antibodies specific to Toxocara canis antigens. An enhanced sensitivity to pg/mL levels is achieved by using a redox cycle consisting of a photocatalytic oxidation and electrochemical reduction steps. The photocatalytic oxidation is achieved by a photosensitizer generating singlet oxygen (1O2) that, in turn, readily reacts with p-nitrophenol enzymatically produced under alkaline conditions. The photooxidation produces benzoquinone that is electrochemically reduced to hydroquinone, generating an amperometric response. The light-driven process could be easily separated from the background, thus making amperometric detection more reliable. The proposed method for detection of the toxocariasis antigen marker shows superior performances compared to other detection schemes with the same nanobodies and outperforms by at least two orders of magnitude the assays based on regular antibodies, thus suggesting new opportunities for electrochemical immunoassays of challenging low levels of antigens.
Collapse
Affiliation(s)
| | - Francisco Morales-Yánez
- Department of Biomedical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium.,Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | | | - Linda Paredis
- Department of Biomedical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Erik N Carrión
- Department of Chemistry and Biochemistry and the Center for Functional Materials, Seton Hall University, South Orange, New Jersey 07079, United States
| | - Idalia Sariego
- Department of Parasitology, Institute of Tropical Medicine Pedro Kouri, 17100 Havana, Cuba
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Katja Polman
- Department of Biomedical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Sergiu M Gorun
- Department of Chemistry and Biochemistry and the Center for Functional Materials, Seton Hall University, South Orange, New Jersey 07079, United States
| | | |
Collapse
|
20
|
|
21
|
Fan B, Zhao Y, Putra BR, Harito C, Bavykin D, Walsh FC, Carta M, Malpass‐Evans R, McKeown NB, Marken F. Photoelectroanalytical Oxygen Detection with Titanate Nanosheet – Platinum Hybrids Immobilised into a Polymer of Intrinsic Microporosity (PIM‐1). ELECTROANAL 2020. [DOI: 10.1002/elan.202060353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Bingbing Fan
- Department of Chemistry University of Bath Claverton Down BA2 7AY UK
- School of Material Science and Engineering Zhengzhou University Henan 450001 China
| | - Yuanzhu Zhao
- Department of Chemistry University of Bath Claverton Down BA2 7AY UK
| | - Budi Riza Putra
- Department of Chemistry University of Bath Claverton Down BA2 7AY UK
- Department of Chemistry Faculty of Mathematics and Natural Sciences Bogor Agricultural University Bogor West Java Indonesia
| | - Christian Harito
- Industrial Engineering Department Faculty of Engineering Bina Nusantara University Jakarta Indonesia 11480
- Energy Technology Research Group Faculty of Engineering and Physical Science University of Southampton SO17 1BJ Southampton UK
| | - Dmitry Bavykin
- Energy Technology Research Group Faculty of Engineering and Physical Science University of Southampton SO17 1BJ Southampton UK
| | - Frank C. Walsh
- Energy Technology Research Group Faculty of Engineering and Physical Science University of Southampton SO17 1BJ Southampton UK
| | - Mariolino Carta
- Department of Chemistry Swansea University College of Science, Grove Building Singleton Park Swansea SA2 8PP UK
| | - Richard Malpass‐Evans
- EaStCHEM School of Chemistry University of Edinburgh, Joseph Black Building David Brewster Road Edinburgh Scotland EH9 3JF UK
| | - Neil B. McKeown
- EaStCHEM School of Chemistry University of Edinburgh, Joseph Black Building David Brewster Road Edinburgh Scotland EH9 3JF UK
| | - Frank Marken
- Department of Chemistry University of Bath Claverton Down BA2 7AY UK
| |
Collapse
|
22
|
Blidar A, Trashin S, Carrión EN, Gorun SM, Cristea C, De Wael K. Enhanced Photoelectrochemical Detection of an Analyte Triggered by Its Concentration by a Singlet Oxygen-Generating Fluoro Photosensitizer. ACS Sens 2020; 5:3501-3509. [PMID: 33118815 DOI: 10.1021/acssensors.0c01609] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The use of a photocatalyst (photosensitizer) which produces singlet oxygen instead of enzymes for oxidizing analytes creates opportunities for designing cost-efficient and sensitive photoelectrochemical sensors. We report that perfluoroisopropyl-substituted zinc phthalocyanine (F64PcZn) interacts specifically with a complex phenolic compound, the antibiotic rifampicin (RIF), but not with hydroquinone or another complex phenolic compound, the antibiotic doxycycline. The specificity is imparted by the selective preconcentration of RIF in the photocatalytic layer, as revealed by electrochemical and optical measurements, complemented by molecular modeling that confirms the important role of a hydrophobic cavity formed by the iso-perfluoropropyl groups of the photocatalyst. The preconcentration effect favorably enhances the RIF photoelectrochemical detection limit as well as sensitivity to nanomolar (ppb) concentrations, LOD = 7 nM (6 ppb) and 2.8 A·M-1·cm-2, respectively. The selectivity to RIF, retained in the photosensitizer layer, is further enhanced by the selective removal of all unretained phenols via simple washing of the electrodes with pure buffer. The utility of the sensor for analyzing municipal wastewater was demonstrated. This first demonstration of enhanced selectivity and sensitivity due to intrinsic interactions of a molecular photocatalyst (photosensitizer) with an analyte, without use of a biorecognition element, may allow the design of related, robust, simple, and viable sensors.
Collapse
Affiliation(s)
- Adrian Blidar
- Department of Analytical Chemistry, “Iuliu Hatieganu” University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania
| | | | - Erik N. Carrión
- Department of Chemistry and Biochemistry and the Center for Functional Materials, Seton Hall University, South Orange, New Jersey 07079, United States
| | - Sergiu M. Gorun
- Department of Chemistry and Biochemistry and the Center for Functional Materials, Seton Hall University, South Orange, New Jersey 07079, United States
| | - Cecilia Cristea
- Department of Analytical Chemistry, “Iuliu Hatieganu” University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania
| | | |
Collapse
|
23
|
Sanz CG, Serrano SHP, Brett CMA. Electroanalysis of Cefadroxil Antibiotic at Carbon Nanotube/Gold Nanoparticle Modified Glassy Carbon Electrodes. ChemElectroChem 2020. [DOI: 10.1002/celc.202000255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Caroline G. Sanz
- University of Coimbra, CEMMPREFaculty of Sciences and Technology, Department of Chemistry 3004-535 Coimbra Portugal
- Department of Fundamental Chemistry, Institute of ChemistryUniversity of São Paulo 05508-000 São Paulo/SP Brazil
| | - Silvia H. P. Serrano
- Department of Fundamental Chemistry, Institute of ChemistryUniversity of São Paulo 05508-000 São Paulo/SP Brazil
| | - Christopher M. A. Brett
- University of Coimbra, CEMMPREFaculty of Sciences and Technology, Department of Chemistry 3004-535 Coimbra Portugal
| |
Collapse
|
24
|
Moro G, Barich H, Driesen K, Felipe Montiel N, Neven L, Domingues Mendonça C, Thiruvottriyur Shanmugam S, Daems E, De Wael K. Unlocking the full power of electrochemical fingerprinting for on-site sensing applications. Anal Bioanal Chem 2020; 412:5955-5968. [DOI: 10.1007/s00216-020-02584-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023]
|