1
|
Engelhardt A, Ebeling M, Kaltenegger E, Langel D, Ober D. An easy and sensitive assay for acetohydroxyacid synthases based on the simultaneous detection of substrates and products in a single step. Anal Bioanal Chem 2024; 416:7085-7098. [PMID: 39443363 PMCID: PMC11579085 DOI: 10.1007/s00216-024-05613-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Acetohydroxyacid synthase (AHAS, EC 2.2.1.6) catalyzes the first step in the synthesis of the branched-chain amino acids valine, leucine, and isoleucine, pathways being present in plants and microorganisms, but not in animals. Thus, AHAS is an important target for numerous herbicides and, more recently, for the development of antimicrobial agents. The need to develop new and optimized herbicides and pharmaceuticals requires a detailed understanding of the biochemistry of AHAS. AHAS transfers an activated two-carbon moiety derived from pyruvate to either pyruvate or 2-oxobutyrate as acceptor substrates, forming 2-acetolactate or 2-acetohydroxy-2-butyrate, respectively. Various methods have been described in the literature to biochemically characterize AHAS with respect to substrate preferences, substrate specificity, or kinetic parameters. However, the simultaneous detection and quantification of substrates and unstable products of the AHAS-catalyzed reaction have always been a challenge. Using AHAS isoform II from Escherichia coli, we have developed a sensitive assay for AHAS-catalyzed reactions that uses derivatization with ethyl chloroformate to stabilize and volatilize all reactants in the aqueous solution and detect them by gas chromatography coupled to flame ionization detection or mass spectrometry. This assay allows us to characterize the product formation in reactions in single and dual substrate reactions and the substrate specificity of AHAS, and to reinterpret previous biochemical observations. This assay is not limited to the AHAS-catalyzed reactions, but should be applicable to studies of many metabolic pathways.
Collapse
Affiliation(s)
- Annika Engelhardt
- Botanical Institute and Botanic Gardens, Kiel University, D-24098, Kiel, Germany
| | - Marco Ebeling
- Botanical Institute and Botanic Gardens, Kiel University, D-24098, Kiel, Germany
| | | | - Dorothee Langel
- Botanical Institute and Botanic Gardens, Kiel University, D-24098, Kiel, Germany
| | - Dietrich Ober
- Botanical Institute and Botanic Gardens, Kiel University, D-24098, Kiel, Germany.
| |
Collapse
|
2
|
Hui X, Tian JM, Wang X, Zhang ZQ, Zhao YM, Gao WY, Li H. Overall analyses of the reactions catalyzed by acetohydroxyacid synthase/acetolactate synthase using a precolumn derivatization-HPLC method. Anal Biochem 2023; 660:114980. [PMID: 36368345 DOI: 10.1016/j.ab.2022.114980] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
A precolumn derivatization-HPLC method using 2,4-dinitrophenylhydrazine and 4-nitro-o-phenylenediamine as respective labeling reagents for comprehensive analyses of the reactions catalyzed by acetohydroxyacid synthase (AHAS)/acetolactate synthase (ALS) is developed and evaluated in this research. Comparison with the classic Bauerle' UV assay which can analyze the enzymes only through measurement of acetoin production, the HPLC method shows advantages because it can analyze the enzymes not only via determination of consumption of the substrate pyruvate, but also via measurement of formation of the products including acetoin, 2,3-butanedione, and acetaldehyde in the enzymatic reactions. Thus the results deduced from the HPLC method can reflect the trait of each enzyme in a more precise manner. As far as we know, this is the first time that the reactions mediated by AHAS/ALS using pyruvate as a single substrate are globally analyzed and the features of the enzymes are properly discussed.
Collapse
Affiliation(s)
- Xian Hui
- National Engineering Research Center for Miniaturized Detection Systems and College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Jin-Meng Tian
- National Engineering Research Center for Miniaturized Detection Systems and College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Xin Wang
- National Engineering Research Center for Miniaturized Detection Systems and College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Zhen-Qian Zhang
- National Engineering Research Center for Miniaturized Detection Systems and College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Ya-Mei Zhao
- National Engineering Research Center for Miniaturized Detection Systems and College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Wen-Yun Gao
- National Engineering Research Center for Miniaturized Detection Systems and College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China.
| | - Heng Li
- National Engineering Research Center for Miniaturized Detection Systems and College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
3
|
Agrwal A, Verma A, Chantola N, Verma S, Kasana V. Synthesis, molecular docking and extensive structure activity relationship of substituted DHP derivatives: a new class of herbicides. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:379-420. [PMID: 35403565 DOI: 10.1080/03601234.2022.2062188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In the present study, twenty-two derivatives of dihydropyridine (DHP) have been synthesized using the Boric acid catalyst in solventless conditions. The synthesis was confirmed by FTIR analysis, 1HNMR, and 13CNMR analysis. The quantitative structure-activity relationship for all the synthesized derivatives was performed using an artificial neural network with correlation coefficient (R2) 0.8611, mean standard error 0.19, and Comparative molecular field analysis (CoMFA) with correlation coefficient (R2) 0.713, mean standard error 0.27. The molecular docking activity of synthesized compounds was tested using "AUTODOCK VINA" against "Acetohydroxyacid synthase protein receptors (PDB code 1YHZ)" acquired from the "RCSB Protein Data Bank". Docking experiments demonstrated favorable interaction among synthesized DHP derivatives and protein receptors with significant binding energy values. These synthesized derivatives have been screened for their pre-emergence herbicidal bioassay against weed species Echinochola crus galli, and the IC50 value were calculated and activity was compared with Butachlor, significant activity was exhibited by all the derivatives. All the synthesized compounds were also screened for their post emergence herbicidal activity against Echinochola crus galli, and the activity of DHPs were compared with penoxulum. All the synthesized compounds show good to moderate activity. Thus, it is concluded that substituted DHP derivatives may be developed as potential herbicides.
Collapse
Affiliation(s)
- Akansha Agrwal
- Department of Applied Sciences, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| | - Anil Verma
- Department of Chemistry, G.B.Pant University of Agriculture and Technology, Pantnagar, India
| | - Neelam Chantola
- Department of Applied Sciences, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| | - Shivani Verma
- Department of Chemistry, G.B.Pant University of Agriculture and Technology, Pantnagar, India
| | - Virendra Kasana
- Department of Chemistry, G.B.Pant University of Agriculture and Technology, Pantnagar, India
| |
Collapse
|
4
|
Zhang Z, Tu L, Zhang D, Li Z, Huang W. Comparative studies on the absorption and fluorescence responses of hemicyanine to HSO 3-, CN -, HS - and ClO . SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 269:120781. [PMID: 34968839 DOI: 10.1016/j.saa.2021.120781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
A fluorescent probe Hcy-Im bearing an indolium-hemicyanine structure was designed and synthesized to compare its responses to four anions, namely HSO3-, CN-, HS- and ClO-. The results disclosed that Hcy-Im reacted with all these four anions in 5% DMSO-PBS buffer with different speeds and spectral changes. Hcy-Im responded to HSO3- markedly quicker than CN- and HS-, and it responded to CN- a little quicker than HS- while the response to ClO- was much slower than the other three anions. The detection limits for these four anions were calculated to be 0.15 μM, 1.32 μM, 2.07 μM and 2.29 μM, respectively. The characteristic conjugated CN+ and CC bonds in Hcy-Im were responsible for the responses towards these four anions via a Michael addition-rearrangement reaction, a 1, 2-addition reaction or an oxidation reaction. These different sensing mechanisms were verified by 1HNMR and HRMS. Thus, it could be inferred that hemicyanine-based fluorescent probe could detect HSO3- sensitively and selectively while the interference of HSO3- should not be neglected when it was used for the detection of CN-, HS- and ClO-. Moreover, as HSO3-, HS- and ClO- are anions endogenously generated in human bodies, enough attention should be paid to the presence of physiological level of these three anions in certain tissues when hemicyanine-based fluorescent probe is applied for the detection of biorelevant analytes in biological samples.
Collapse
Affiliation(s)
- Zichang Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Liangping Tu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Dan Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Zicheng Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Wencai Huang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
5
|
Wang DW, Yu SY, Pang ZL, Ma DJ, Liang L, Wang X, Wei T, Yang HZ, Ma YQ, Xi Z. Discovery of a Broad-Spectrum Fluorogenic Agonist for Strigolactone Receptors through a Computational Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10486-10495. [PMID: 34478295 DOI: 10.1021/acs.jafc.1c03471] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Strigolactones (SLs) are plant hormones that play various roles in plant physiology, including provoking the germination of parasitic weeds Orobanche and Striga. A family of α/β-hydrolases have been proposed to be the SL receptor proteins. Effective assays for measuring the activity of SL receptors could promote the development of SL-related biology and chemistry. In this study, we developed a new approach called pharmacophore-linked probe virtual screening (PPVS). Its application yielded an effective "off-on" probe named Xilatone Red (XLR). This probe showed a broad spectrum and excellent sensitivity toward SL receptors, including ShD14 (Striga D14), for which the detection limit was determined to be in the micromolar range, outperforming that of the commercial fluorogenic agonist Yoshimulactone Green (YLG). Upon hydrolysis by SL receptors, XLR provided fluorogenic and colorimetric signaling responses. Furthermore, XLR could induce germination of Phelipanche aegyptiaca seeds and prevent Arabidopsis max4-1 branching defects at micromolar concentrations. Our molecular simulations revealed the essential factors in the molecular perception of XLR. We anticipate that this study can prompt the discovery of high-performance SL agonists/antagonists to combat parasitic weeds.
Collapse
Affiliation(s)
- Da-Wei Wang
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemical Biology, National Pesticide Engineering Research Center, and Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Shu-Yi Yu
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemical Biology, National Pesticide Engineering Research Center, and Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhi-Li Pang
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemical Biology, National Pesticide Engineering Research Center, and Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - De-Jun Ma
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemical Biology, National Pesticide Engineering Research Center, and Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lu Liang
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemical Biology, National Pesticide Engineering Research Center, and Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xia Wang
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemical Biology, National Pesticide Engineering Research Center, and Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Tao Wei
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemical Biology, National Pesticide Engineering Research Center, and Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Huang-Ze Yang
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemical Biology, National Pesticide Engineering Research Center, and Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yong-Qing Ma
- The State Key Laboratory of Soil Erosion and Dryland Farming, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemical Biology, National Pesticide Engineering Research Center, and Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
6
|
Cheng J, Li X. Development and Application of Activity-based Fluorescent Probes for High-Throughput Screening. Curr Med Chem 2021; 29:1739-1756. [PMID: 34036907 DOI: 10.2174/0929867328666210525141728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 11/22/2022]
Abstract
High-throughput screening facilitates the rapid identification of novel hit compounds; however, it remains challenging to design effective high-throughput assays, partially due to the difficulty of achieving sensitivity in the assay techniques. Among the various analytical methods that are used, fluorescence-based assays dominate owing to their high sensitivity and ease of operation. Recent advances in activity-based sensing/imaging have further expanded the availability of fluorescent probes as monitors for high-throughput screening of result outputs. In this study, we have reviewed various activity-based fluorescent probes used in high-throughput screening assays, emphasizing their structure-related working mechanisms. Moreover, we have explored the possibility of the development of additional and better probes to boost hit identification and drug development against various targets.
Collapse
Affiliation(s)
- Juan Cheng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xin Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
7
|
Chang AX, Chen B, Yang AG, Hu RS, Feng QF, Chen M, Yang XN, Luo CG, Li YY, Wang YY. The trichome-specific acetolactate synthase NtALS1 gene, is involved in acylsugar biosynthesis in tobacco (Nicotiana tabacum L.). PLANTA 2020; 252:13. [PMID: 32621079 DOI: 10.1007/s00425-020-03418-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
MAIN CONCLUSION NtALS1 is specifically expressed in glandular trichomes, and can improve the content of acylsugars in tobacco. ABTRACT The glandular trichomes of many species in the Solanaceae family play an important role in plant defense. These epidermal outgrowths exhibit specialized secondary metabolism, including the production of structurally diverse acylsugars that function in defense against insects and have substantial developmental potential for commercial uses. However, our current understanding of genes involved in acyl chain biosynthesis of acylsugars remains poor in tobacco. In this study, we identified three acetolactate synthase (ALS) genes in tobacco through homology-based gene prediction using Arabidopsis ALS. Quantitative real-time PCR (qRT-PCR) and tissue distribution analyses suggested that NtALS1 was highly expressed in the tips of glandular trichomes. Subcellular localization analysis showed that the NtALS1 localized to the chloroplast. Moreover, in the wild-type K326 variety background, we generated two ntals1 loss-of-function mutants using the CRISPR-Cas9 system. Acylsugars contents in the two ntals1 mutants were significantly lower than those in the wild type. Through phylogenetic tree analysis, we also identified NtALS1 orthologs that may be involved in acylsugar biosynthesis in other Solanaceae species. Taken together, these findings indicate a functional role for NtALS1 in acylsugar biosynthesis in tobacco.
Collapse
Affiliation(s)
- Ai-Xia Chang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Biao Chen
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Ai-Guo Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Ri-Sheng Hu
- Hunan Tobacco Research Institute, Changsha, China
| | - Quan-Fu Feng
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Ming Chen
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xiao-Ning Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Cheng-Gang Luo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yang-Yang Li
- Hunan Tobacco Research Institute, Changsha, China.
| | - Yuan-Ying Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China.
| |
Collapse
|