1
|
Sun Y, Hu Q, Zuo J, Wang H, Guo Z, Wang Y, Tang H. Simultaneous Quantification of Carboxylate Enantiomers in Multiple Human Matrices with the Hydrazide-Assisted Ultrahigh-Performance Liquid Chromatography Coupled with Tandem Mass Spectrometry. Anal Chem 2024; 96:18141-18149. [PMID: 39475527 DOI: 10.1021/acs.analchem.4c04187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
Many chiral carboxylic acids with α-amino, α-hydroxyl, and α-methyl groups are concurrently present in mammals establishing unique molecular phenotypes and multiple biological functions, especially host-microbiota symbiotic interactions. Their chirality-resolved simultaneous quantification is essential to reveal the biochemical details of physiology and pathophysiology, though challenging with their low abundances in some biological matrices and difficulty in enantiomer resolution. Here, we developed a method of the chirality-resolved metabolomics with sensitivity-enhanced quantitation via probe-promotion (Met-SeqPro) for analyzing these chiral carboxylic acids. We designed and synthesized a hydrazide-based novel chiral probe, (S)-benzoyl-proline-hydrazide (SBPH), to convert carboxylic acids into amide diastereomers to enhance their retention and chiral resolution on common C18 columns. Using the d5-SBPH-labeled enantiomers as internal standards, we then developed an optimized ultrahigh-performance liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS) method for simultaneous quantification of 60 enantiomers of 30 chiral carboxylic acids in one run. This enantiomer-resolved method showed excellent sensitivity (LOD < 4 fmol-on-column), linearity (R2 > 0.992), precision (CV < 15%), accuracy (|RE| < 20%), and recovery (80-120%) in multiple biological matrices. With the method, we then quantified 60 chiral carboxylic acids in human urine, plasma, feces, and A549 cells to define their metabolomic phenotypes. This provides basic data for human phenomics and a promising tool for investigating the mammal-microbiome symbiotic interactions.
Collapse
Affiliation(s)
- Yuting Sun
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qingyu Hu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiali Zuo
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - He Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhendong Guo
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yulan Wang
- Singapore Phenome Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, 639798 Singapore
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
Vallamkonda B, Sethi S, Satti P, Das DK, Yadav S, Vashistha VK. Enantiomeric Analysis of Chiral Drugs Using Mass Spectrometric Methods: A Comprehensive Review. Chirality 2024; 36:e23705. [PMID: 39105272 DOI: 10.1002/chir.23705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024]
Abstract
Chirality plays a crucial role in the drug development process, influencing fundamental chemical and biochemical processes and significantly affecting our daily lives. This review provides a comprehensive examination of mass spectrometric (MS) methods for the enantiomeric analysis of chiral drugs. It thoroughly investigates MS-hyphenated techniques, emphasizing their critical role in achieving enantioselective analysis. Furthermore, it delves into the intricate chiral recognition mechanisms inherent in MS, elucidating the fundamental principles that govern successful chiral separations. By critically assessing the obstacles and potential benefits associated with each MS-based method, this review offers valuable insights for researchers navigating the complexities of chiral analysis. Both qualitative and quantitative approaches are explored, presenting a comparative analysis of their strengths and limitations. This review is aimed at significantly enhancing the understanding of chiral MS methods, serving as a crucial resource for researchers and practitioners engaged in enantioselective studies.
Collapse
Affiliation(s)
- Bhaskar Vallamkonda
- Department of Pharmaceutical Science, VIGNAN'S Foundation for Science, Technology & Research, Guntur, Andhra Pradesh, India
| | - Sonika Sethi
- Department of Chemistry, GD Goenka University, Gurugram, Haryana, India
| | - PhanikumarReddy Satti
- Department of Chemistry, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India
| | | | - Suman Yadav
- Department of Chemistry, Swami Shraddhanand College, University of Delhi, Delhi, India
| | | |
Collapse
|
3
|
Zheng J, Yang J, Liang X, Fang M, Wang Y. Dual strategy for 13C-Metabolic flux analysis of central carbon and energy metabolism in Mammalian cells based on LC-isoMRM-MS. Talanta 2024; 266:125074. [PMID: 37651912 DOI: 10.1016/j.talanta.2023.125074] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 09/02/2023]
Abstract
Central carbon and energy metabolism are the most concerned metabolic pathways in 13C-Metabolic flux analysis (13C-MFA). However, some α-keto acids, ribonucleoside triphosphate (NTPs) and deoxyribonucleoside triphosphate (dNTPs) involved in central carbon and energy metabolism pathways were unstable or reactive, leading to inaccurate metabolic flux analysis. To achieve accurate 13C-MFA of central carbon and energy metabolism, we proposed a dual strategy for the detection of 101 metabolites in glucose metabolism pathways. N-Methylphenylethylamine (MPEA) was utilized for derivatization of 4 carboxyl (α-keto acids) and 8 phosphate metabolites (NTPs and dNTPs). After derivatization, the MPEA derivatives were investigated to be stable for 4 weeks under 4 °C and detected with high intensity in ∼104 cells. On the other hand, we analyzed an additional 89 metabolites in central carbon and energy metabolic pathways were directly analyzed by liquid chromatography tandem mass spectrometry (LC-MRM-MS). The limit of detection (LODs) of our method were as low as 0.05 ng/mL and the linear range was at least two orders of magnitude with determination coefficient (R2) > 0.9701. The relative standard divisions (RSDs) of intra- and inter-day of 95% metabolites were below 20%. In addition, the isotope list of 82 detected metabolites in central carbon and energy metabolism were generated according to isotopologues and isotopomers for each metabolite resulting from 13C incorporation. Accurate assessment of mass isotopomer distributions (MIDs) of intracellular 13C-labeled metabolites was achieved in [U-13C]-glucose cultured HepG2 cells by our dual strategy. Finally, we performed MID analysis of 101 metabolites in central carbon and energy metabolism. Overall, this dual method is reproducible and robust for application on 13C-MFA and has a great potential for studying clinical isotope labeled samples.
Collapse
Affiliation(s)
- Jie Zheng
- Singapore Phenome Center, Nanyang Technological University, 639798, Singapore
| | - Junjie Yang
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Nanyang Environment & Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Xu Liang
- Singapore Phenome Center, Nanyang Technological University, 639798, Singapore
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China.
| | - Yulan Wang
- Singapore Phenome Center, Nanyang Technological University, 639798, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
4
|
Zheng J, Yang J, Zhao F, Peng B, Wang Y, Fang M. CIL-ExPMRM: An Ultrasensitive Chemical Isotope Labeling Assisted Pseudo-MRM Platform to Accelerate Exposomic Suspect Screening. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:10962-10973. [PMID: 37469223 DOI: 10.1021/acs.est.3c01830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Exposome is the future of next-generation environmental health to establish the association between environmental exposure and diseases. However, due to low concentrations of exposure chemicals, exposome has been hampered by lacking an effective analytical platform to characterize its composition. In this study, by combining the benefit of chemical isotope labeling and pseudo-multiple reaction monitoring (CIL-pseudo-MRM), we have developed one highly sensitive and high-throughput platform (CIL-ExPMRM) by isotope labeling urinary exposure biomarkers. Dansyl chloride (DnsCl), N-methylphenylethylamine (MPEA), and their isotope-labeled forms were used to derivatize polar hydroxyl and carboxyl compounds, respectively. We have programmed a series of scripts to optimize MRM transition parameters, curate the MRM database (>70,000 compounds), predict accurate retention time (RT), and automize dynamic MRMs. This was followed by an automated MRM peak assignment, peak alignment, and statistical analysis. A computational pipeline was eventually incorporated into a user-friendly website interface, named CIL-ExPMRM (http://www.exposomemrm.com/). The performance of this platform has been validated with a relatively low false positive rate (10.7%) across instrumental platforms. CIL-ExPMRM has systematically overcome key bottlenecks of exposome studies to some extent and outperforms previous methods due to its independence of MS/MS availability, accurate RT prediction, and collision energy optimization, as well as the ultrasensitivity and automated robust intensity-based quantification. Overall, CIL-ExPMRM has great potential to advance the exposomic studies based on urinary biomarkers.
Collapse
Affiliation(s)
- Jie Zheng
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, 639798 Singapore
| | - Junjie Yang
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798 Singapore
| | - Fanrong Zhao
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798 Singapore
| | - Bo Peng
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798 Singapore
| | - Yulan Wang
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, 639798 Singapore
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798 Singapore
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
5
|
Sun G, Choi DM, Xu H, Baeck SH, Row KH, Tang W. Lipase-based MIL-100(Fe) biocomposites as chiral stationary phase for high-efficiency capillary electrochromatographic enantioseparation. Mikrochim Acta 2023; 190:84. [PMID: 36749401 DOI: 10.1007/s00604-023-05647-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/04/2023] [Indexed: 02/08/2023]
Abstract
A novel chiral porous column was fabricated by lipase immobilized MIL-100(Fe) biocomposites as chiral stationary phase through covalent coupling and applied to capillary electrochromatographic enantioseparation. MOF-based lipase biocomposites not only enhance stereoselective activities but also improve the stability and applicability of the enzyme. The functionalized porous columns were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and powder X-ray diffraction. The performance of the porous column was evaluated by enantioseparating amino acid enantiomers, affording high resolution over 2.0. Besides, the enantio-resolutions of phenylephrine, phenylsuccinic acid, chloroquine, and zopiclone were also greater than 2.0. The relative standard deviations of run-to-run, intra-, and inter-day repeatability were within 4.0% in terms of resolution and retention time, exhibiting excellent stability of the column. Conceivably, the results show that MOF-based lipase composites as chiral stationary phase offer a highly efficient means for enantioseparation in capillary electrochromatography, attributing to the enhanced enantioselective activities of lipase by highly ordered frameworks.
Collapse
Affiliation(s)
- Genlin Sun
- Department of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Dong Min Choi
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon, 402-701, South Korea
| | - Helong Xu
- Department of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Sung Hyeon Baeck
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon, 402-701, South Korea.
| | - Kyung Ho Row
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon, 402-701, South Korea.
| | - Weiyang Tang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China. .,Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon, 402-701, South Korea. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
6
|
Efficient determination of enantiomeric ratios of α-hydroxy/amino acids from fermented milks via ion mobility−mass spectrometry. Food Chem 2023; 400:134092. [DOI: 10.1016/j.foodchem.2022.134092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/01/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022]
|
7
|
Novel bovine serum album and β-cyclodextrin-based mixed chiral stationary phase for the enantioseparation in capillary electrochromatography. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Triple chemical derivatization strategy assisted liquid chromatography-mass spectrometry for determination of retinoic acids in human serum. Talanta 2022; 245:123474. [DOI: 10.1016/j.talanta.2022.123474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 11/18/2022]
|
9
|
Wu F, Wu X, Xu F, Han J, Tian H, Ding CF. Recognition of Cis-Trans and Chiral Proline and Its Derivatives by Ion Mobility Measurement of Their Complexes with Natamycin and Metal Ion. Anal Chem 2022; 94:3553-3564. [PMID: 35179030 DOI: 10.1021/acs.analchem.1c04545] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Discrimination of isomers is an important and valuable feature in many analytical applications, and the identification of chiral isomers and cis-trans isomers is the current research focus. In this work, a simple method for direct, simultaneous recognition of d-/l-proline (P), d-/l-/cis-/trans-4-hydroxyproline (4-HP), and d-/l-/cis-/trans-N-tert-butoxycarbony (N-Boc-4-HP) was investigated by means of trapped ion mobility spectrometry-mass spectrometry (TIMS-MS). The isomers with cis-/trans-/d-/l-configuration can be directly recognized based on their mobility upon reaction with natamycin (Nat) and metal ions through noncovalent interactions. The results indicate that the recognition of the enantiomers has certain specificity, and the structural difference of the enantiomers was increased in a complex with Nat and metal ions. Herein, d-/l-P can be recognized through the ternary complexes [P + Nat + Mg - H]+, [P + 2Nat + Ca - H]+, [P + 2Nat + Mn - H]+, and [P + Nat + Cu - H]+. Similarly, c-4-HPL, c-4-HPD, t-4-HPL, and t-4-HPD can be recognized by [4-HP + Nat + Ca - H]+, [4-HP + 2Nat + Ca - H]+, and [4-HP + Nat + Cu - H]+, while N-Boc-c-4-HPL, N-Boc-c-4-HPD, N-Boc-t-4-HPL, and N-Boc-t-4-HPD were recognized through the enantiomer complexes [N-Boc-4-HP + Nat + Li]+, [N-Boc-4-HP + Nat + 2Na - H]+, [N-Boc-4-HP + Nat + K]+, [N-Boc-4-HP + Nat + Mn - H]+, and [N-Boc-4-HP + Nat + Ba - H]+. Moreover, tandem mass spectrometry (MS/MS) results indicated that different collision energies were obtained for the same fragment ions, which implied that the enantiomer complexes that contributed to their mobility separation shared identical interaction mode but had different gas-phase rigid geometries. Furthermore, the relative quantification for the enantiomers was performed, and the results were supported by a satisfactory coefficient (R2 > 0.99). The developed method can provide a promising and powerful strategy for the separation of chiral proline and its d-/l-/cis-/trans derivatives, bearing the advantages of higher speed, better accuracy, high selectivity, and no need for chemical derivatization and chromatographic separation.
Collapse
Affiliation(s)
- Fangling Wu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Xishi Wu
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
| | - Fuxing Xu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Jiaoru Han
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Hui Tian
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| |
Collapse
|
10
|
Calderón C, Lämmerhofer M. Enantioselective metabolomics by liquid chromatography-mass spectrometry. J Pharm Biomed Anal 2022; 207:114430. [PMID: 34757254 DOI: 10.1016/j.jpba.2021.114430] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022]
Abstract
Metabolomics strives to capture the entirety of the metabolites in a biological system by comprehensive analysis, often by liquid chromatography hyphenated to mass spectrometry. A particular challenge thereby is the differentiation of structural isomers. Common achiral targeted and untargeted assays do not distinguish between enantiomers. This may lead to information loss. An increasing number of publications demonstrate that the enantiomeric ratio of certain metabolites can be meaningful biomarkers of certain diseases emphasizing the importance of introducing enantioselective analytical procedures in metabolomics. In this work, the state-of-the-art in the field of LC-MS based metabolomics is summarized with focus on developments in the recent decade. Methodologies, tagging strategies, workflows and general concepts are outlined. Selected biological applications in which enantioselective metabolomics has documented its usefulness are briefly discussed. In general, targeted enantioselective metabolomics assays are often based on a direct approach using chiral stationary phases (CSP) with polysaccharide derivatives, macrocyclic antibiotics, chiral crown ethers, chiral ion exchangers, donor-acceptor phases as chiral selectors. Rarely, these targeted assays focus on more than 20 analytes and usually are restricted to a certain metabolite class. In a variety of cases, pre-column derivatization of metabolites has been performed, especially for amino acids, to improve separation and detection sensitivity. Triple quadrupole instruments are the detection methods of first choice in targeted assays. Here, issues like matrix effect, absence of blank matrix impair accuracy of results. In selected applications, multiple heart cutting 2D-LC (RP followed by chiral separation) has been pursued to overcome this problem and alleviate bias due to interferences. Non-targeted assays, on the other hand, are based on indirect approach involving tagging with a chiral derivatizing agent (CDA). Besides classical CDAs numerous innovative reagents and workflows have been proposed and are discussed. Thereby, a critical issue for the accuracy is often neglected, viz. the validation of the enantiomeric impurity in the CDA. The majority of applications focus on amino acids, hydroxy acids, oxidized fatty acids and oxylipins. Some potential clinical applications are highlighted.
Collapse
Affiliation(s)
- Carlos Calderón
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany; Escuela de Química, Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| |
Collapse
|
11
|
Sun G, Tang W, Lu Y, Row KH. Enantioseparation by simultaneous biphasic recognition using mobile phase additive and chiral stationary phase in capillary electrochromatography. J Chromatogr A 2022; 1666:462856. [DOI: 10.1016/j.chroma.2022.462856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
|
12
|
Zhou L, Lu Y, Sun G. Open tubular capillary column immobilized with sulfobutylether-β-cyclodextrin for chiral separation in capillary electrochromatography. J Sep Sci 2021; 44:2037-2045. [PMID: 33683009 DOI: 10.1002/jssc.202100037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022]
Abstract
A novel chiral open tubular capillary column was fabricated with sulfobutylether-β-cyclodextrin and glycidyl methacrylate for enantioseparation in capillary electrochromatography. First, the pretreated silica-fused capillary was treated with 3-trimethoxysilyl propyl methacrylate to attach double bond ligand onto the surface. A copolymer layer was formed on the surface of capillary using glycidyl methacrylate and ethylene dimethacrylate by in situ one-pot polymerization. Sulfobutylether-β-cyclodextrin was encapsulated inside the copolymerized layer. The morphology of the developed column was characterized by field emission scanning electron microscopy. The effect of organic percentage and pH value of the mobile phase on electroosmotic flow and resolution was also investigated. The performance of the fabricated column was validated by separation of amlodipine besilate, 2,3-diphenylpropionic acid, tropic acid, and pantoprazole enantiomers with good resolutions of 3.67, 4.82, 3.34, and 2.61, respectively. The repeatabilities of column-to-column and day-to-day through relative standard deviation were found better than 4%, exhibiting satisfactory repeatability of the developed column. The results reveal that open tubular capillary columns modified with β-cyclodextrin show a great prospect for enantioseparation of chiral drugs in capillary electrochromatography.
Collapse
Affiliation(s)
- Lifen Zhou
- Department of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, P. R. China
| | - Yao Lu
- Department of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, P. R. China
| | - Genlin Sun
- Department of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, P. R. China
| |
Collapse
|
13
|
12-Plex UHPLC-MS/MS analysis of sarcosine in human urine using integrated principle of multiplex tags chemical isotope labeling and selective imprint enriching. Talanta 2021; 224:121788. [PMID: 33379017 DOI: 10.1016/j.talanta.2020.121788] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 12/16/2022]
Abstract
Urinary sarcosine was considered to be a potential biomarker for prostate cancer (Pca). In this work, an integrated strategy of multiplex tags chemical isotope labeling (MTCIL) combined with magnetic dispersive solid phase extraction (MDSPE), was proposed for specific extraction and high-throughput determination of sarcosine by ultra high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). In the past three months, we have developed 8-plex MTCIL reagents with excellent qualitative and quantitative performance. In this work, the multiplexing capacity of MTCIL reagents (MTCIL360/361/362/363/364/365/366/375/376/378/379/381) was increased 1.5-fold from 8-plex to 12-plex. MTCIL359 was prepared and used to label sarcosine standard as internal standard (IS). The structural analogue derivative (MTCIL373-sarcosine) of all targeted MTCIL-sarcosine derivatives was synthesized and used as a novel dummy template to prepare dummy magnetic molecularly imprinted polymers (DMMIPs). The integration of MTCIL and DMMIPs procedures were extremely favorable to excellent chromatographic separation and efficient mass spectrometric detection. The labeling efficiency, chromatographic retention and mass spectrometry responses of MTCIL reagents were consistent for sarcosine. In a single UHPLC-MS/MS run (2.0 min), this method can simultaneously quantify sarcosine in 12-plex urine samples and achieve unbiased concentrations comparison between different urine samples. Analytical parameters including linearity (R2 0.989-0.997), detection limits (0.02 nM), precision (2.6-11.5%), accuracy (96.1-107.4%), matrix effect, labeling and extraction efficiency were carefully validated. The proposed method was successfully applied for urinary sarcosine determination of healthy male individuals and Pca patients. It was found that the sarcosine concentrations in these two groups were statistically extremely significantly different (P < 0.001). The developed method was a powerful analytical tool to substantially promote the analysis throughput and large-scale experiments about the potential biomarker research.
Collapse
|
14
|
Lu Y, Sun G. Hydroxypropyl-β-cyclodextrin encapsulated stationary phase based on silica monolith particles for enantioseparation in liquid chromatography. J Sep Sci 2020; 44:735-743. [PMID: 33253443 DOI: 10.1002/jssc.202000978] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 01/13/2023]
Abstract
Hydroxypropyl-β-cyclodextrin-encapsulated stationary phase incorporated on silica monolith particles was prepared by physical embedding, providing a new method for the development of chiral stationary phase for enantioseparation in liquid chromatography. Ground silica monolith particles of about 2.0 μm were prepared via sol-gel reaction followed by differential sedimentation. Initially, the silica monolith particles were pretreated with 3-trimethoxysilyl propyl methacrylate to attach double-bonded ligands onto the surface, then a network structure was formed onto the surface of the particle using N-isopropyl acrylamide as functional monomer. Hydroxypropyl-β-cyclodextrin was encapsulated inside N-isopropyl acrylamide copolymerized layer on the surface of silica monolith particles. The effect of the amount of chiral selector on the chromatographic efficiency of the chiral stationary phase was examined. The glass lined stainless steel columns (1 mm internal diameter, 300 mm length) were packed with the stationary phase for estimation of the efficiency by separation of phenylsuccinic acid, oxybutynin, equol, and naproxen enantiomers in high-performance liquid chromatography, with the resolutions of 1.54, 1.72, 2.54, and 2.31, respectively. The column to column repeatabilities through relative standard deviation were found better than 3%. The experimental results indicate that the sol-gel ground silica particles modified with β-cyclodextrin provide a promising way for the separation of chiral enantiomers.
Collapse
Affiliation(s)
- Yao Lu
- Department of pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, P. R. China
| | - Genlin Sun
- Department of pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, P. R. China
| |
Collapse
|
15
|
Derivatization-based sample-multiplexing for enhancing throughput in liquid chromatography/tandem mass spectrometry quantification of metabolites: an overview. J Chromatogr A 2020; 1634:461679. [DOI: 10.1016/j.chroma.2020.461679] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/02/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022]
|
16
|
Aso S, Ogawa S, Nishimoto-Kusunose S, Satoh M, Ishige T, Nomura F, Higashi T. Derivatization-based quadruplex LC/ESI-MS/MS method for high throughput quantification of serum dehydroepiandrosterone sulfate. Biomed Chromatogr 2020; 35:e5027. [PMID: 33179271 DOI: 10.1002/bmc.5027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/30/2020] [Accepted: 11/08/2020] [Indexed: 01/22/2023]
Abstract
The quantification of the circulating dehydroepiandrosterone sulfate (DHEAS) might be of diagnostic help for several diseases. For the DHEAS quantification, LC/ESI-MS/MS has the advantage of a high specificity compared with immunoassay, whereas LC/ESI-MS/MS has room to improve the analysis throughput. One of the promising solutions to enhance the analysis throughput is sample-multiplexing in the same injection, which can reduce the total LC/ESI-MS/MS run time. In this study, a quadruplex LC/ESI-MS/MS method was developed to quantify DHEAS in four different serum samples in a single run. After the four samples were separately deproteinized and derivatized with one of four Girard reagents (Girard reagent T, P and their isotopologs), the resulting samples were mixed, then injected into the LC/ESI-MS/MS. The applicability and advantage of the developed method were evaluated based on the analysis of nine batches of serum samples from healthy subjects (total 36 samples). The limit of quantitation was 0.050 μg/ml, which was sensitive enough for clinical laboratory use. The method was precise (intra- and inter-assay RSDs ≤ 3.6%), accurate (94.4-108.1%) and robust for the matrix effects. The analysis time was also shortened by about 60% for 36 samples by the introduced method compared with the conventional method.
Collapse
Affiliation(s)
- Saki Aso
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda-shi, Chiba, Japan
| | - Shoujiro Ogawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda-shi, Chiba, Japan.,Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama-shi, Hiroshima, Japan
| | | | - Mamoru Satoh
- Division of Clinical Mass Spectrometry, Chiba University Hospital, Chiba-shi, Chiba, Japan
| | - Takayuki Ishige
- Division of Laboratory Medicine, Chiba University Hospital, Chiba-shi, Chiba, Japan
| | - Fumio Nomura
- Division of Clinical Genetics, Chiba University Hospital, Chiba-shi, Chiba, Japan
| | - Tatsuya Higashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda-shi, Chiba, Japan
| |
Collapse
|
17
|
Hu J, Chen SE, Zhu S, Jia W, Sun J, Zhao XE, Liu H. 13-Plex UHPLC-MS/MS Analysis of Hexanal and Heptanal Using Multiplex Tags Chemical Isotope Labeling Technology. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1965-1973. [PMID: 32840365 DOI: 10.1021/jasms.0c00222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, a new series of chemical isotope labeling reagents, levofloxacin-hydrazide-based mass tags (LHMTs) named as LHMT359/360/361/362/363/364/365/366/373/375/376/378/379/381 were first designed and synthesized for the high-throughput analysis of potential biomarkers containing hexanal and heptanal of lung cancer. We exploited a new core structure of levofloxacin-d3, which significantly enhanced the multiplexing capability. Among them, LHMT359 was used for labeling standard compounds as internal standards for quantification. Using LHMT373-heptanal as dummy template, dummy magnetic molecularly imprinted polymers (DMMIPs) were prepared for magnetic dispersive solid-phase extraction after derivatization procedure. Other 12 LHMTs were established for high-throughput labeling hexanal and heptanal in human serum samples. The presynthesized DMMIPs can selectively extract LHMTs-derivatives of hexanal and heptanal from equally mixed derivatization solutions. The enriched derivatives of hexanal and heptanal were quantified by ultrahigh-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). A single UHPLC-MS/MS run enabled simultaneously quantifying hexanal and heptanal from 12 serum samples only within 2 min. The limits of detection were all 0.5 pM for hexanal and heptanal. The accuracies from human serum samples ranged from -10.2% to +11.0% with the intra- and interday precisions less than 11.3%. Meanwhile, this method was successfully applied for the analysis of hexanal and heptanal in serum samples from healthy people and lung cancer patients. The results show that this method has the significant advantages of high sensitivity, accuracy, selectivity, and analysis-throughput. The method application indicates that the developed method is promising in the screening of suspected lung cancer patients.
Collapse
Affiliation(s)
- Jingwen Hu
- Key Laboratory of Life-organic Analysis of Shandong Province & Key Laboratory of Pharmaceutical Intermediates and Natural Medicine Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Shi-En Chen
- Key Laboratory of Life-organic Analysis of Shandong Province & Key Laboratory of Pharmaceutical Intermediates and Natural Medicine Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Shuyun Zhu
- Key Laboratory of Life-organic Analysis of Shandong Province & Key Laboratory of Pharmaceutical Intermediates and Natural Medicine Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Wenhui Jia
- Key Laboratory of Life-organic Analysis of Shandong Province & Key Laboratory of Pharmaceutical Intermediates and Natural Medicine Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, Qinghai, P. R. China
| | - Xian-En Zhao
- Key Laboratory of Life-organic Analysis of Shandong Province & Key Laboratory of Pharmaceutical Intermediates and Natural Medicine Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
18
|
Chen SE, Zhu S, Hu J, Sun J, Zheng Z, Zhao XE, Liu H. 8-Plex stable isotope labeling absolute quantitation strategy combined with dual-targeted recognizing function material for simultaneous separation and determination of glucosylsphingosine and galactosylsphingosine in human plasma. Anal Chim Acta 2020; 1124:40-51. [DOI: 10.1016/j.aca.2020.05.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 02/01/2023]
|
19
|
Derivatization-based magnetic dummy molecularly imprinted polymers integrated with 4-plex stable isotope labeling derivatization strategy for specific and rapid determination of L-hydroxyproline in human serum. Anal Chim Acta 2020; 1127:57-68. [DOI: 10.1016/j.aca.2020.06.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 12/17/2022]
|
20
|
Sun L, Zhu S, Zheng Z, Sun J, Zhao XE, Liu H. 9-Plex ultra high performance liquid chromatography tandem mass spectrometry determination of free hydroxyl polycyclic aromatic hydrocarbons in human plasma and urine. J Chromatogr A 2020; 1623:461182. [DOI: 10.1016/j.chroma.2020.461182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
|
21
|
González-Riano C, Dudzik D, Garcia A, Gil-de-la-Fuente A, Gradillas A, Godzien J, López-Gonzálvez Á, Rey-Stolle F, Rojo D, Ruperez FJ, Saiz J, Barbas C. Recent Developments along the Analytical Process for Metabolomics Workflows. Anal Chem 2019; 92:203-226. [PMID: 31625723 DOI: 10.1021/acs.analchem.9b04553] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Carolina González-Riano
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - Danuta Dudzik
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain.,Department of Biopharmaceutics and Pharmacodynamics, Faculty of Pharmacy , Medical University of Gdańsk , 80-210 Gdańsk , Poland
| | - Antonia Garcia
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - Alberto Gil-de-la-Fuente
- Department of Information Technology, Escuela Politécnica Superior , Universidad San Pablo-CEU , 28003 Madrid , Spain
| | - Ana Gradillas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - Joanna Godzien
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain.,Clinical Research Centre , Medical University of Bialystok , 15-089 Bialystok , Poland
| | - Ángeles López-Gonzálvez
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - Fernanda Rey-Stolle
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - David Rojo
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - Francisco J Ruperez
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - Jorge Saiz
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| |
Collapse
|