1
|
Shabanur Matada MS, Nutalapati V, Velappa Jayaraman S, Sivalingam Y. Tuning Mn-MOF by Incorporating a Phthalocyanine Derivative as an Enzyme Mimic for Efficient EGFET-based Ascorbic Acid Detection. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20806-20819. [PMID: 40152426 DOI: 10.1021/acsami.4c23038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
In this study, we present the effect of catalytic performance in Mn-MOF upon incorporating varied concentrations of phthalocyanine derivative (H2PcP8OH16) for ascorbic acid detection in an extended gate field-effect transistor (EGFET) configuration. The fabricated Mn-OM-MOF-2/CP electrode demonstrated notable selectivity toward ascorbic acid in physiological conditions of sweat, with a sensitivity of 71.375 μA·mM-1·cm-2, a response time of less than 6 s, and a linear range from 5 to 240 μM. The limit of detection (LOD) and limit of quantification (LOQ) were found to be 0.26 and 0.78 μM, respectively. Remarkably, the prepared electrodes followed the Michaelis-Menten kinetics. Among them, the Mn-OM-MOF-2/CP electrode demonstrated the highest affinity for ascorbic acid, with a Km value of 0.142 mM. To gain deeper insights into the charge transfer mechanism during ascorbic acid interaction with Mn-OM-MOF-2/CP, we employed the scanning Kelvin probe (SKP) technique and conducted post-FTIR analysis to understand the sensing mechanism. Additionally, post-UV-visible (UV-vis) measurements were performed to explore how the incorporation of the phthalocyanine derivative enhances affinity. Additional studies using standard artificial sweat have confirmed the Mn-OM-MOF-2/CP electrode's good recovery. Overall, the results of the EGFET method demonstrated the suitability of the Mn-OM-MOF-2/CP electrode for rapid, noninvasive, single-use ascorbic acid detection in 1× phosphate buffer saline (1× PBS).
Collapse
Affiliation(s)
- Mallikarjuna Swamy Shabanur Matada
- Laboratory of Sensors, Energy and Electronic Devices (Lab SEED), Department of Physics and Nanotechnology, SRMIST, Kattankulathur 603203, Tamil Nadu, India
| | - Venkatramaiah Nutalapati
- Functional Materials Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Surya Velappa Jayaraman
- Novel, Advanced, and Applied Materials (NAAM) Laboratory, Department of Physics and Nanotechnology, SRMIST, Kattankulathur 603203, Tamil Nadu, India
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yuvaraj Sivalingam
- Laboratory of Sensors, Energy and Electronic Devices (Lab SEED), Department of Physics and Nanotechnology, SRMIST, Kattankulathur 603203, Tamil Nadu, India
- Computer, Electrical, and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Department of Computer Science, KPR College of Arts Science and Research, Coimbatore 641407, Tamil Nadu, India
| |
Collapse
|
2
|
Bhandari R, Kaleem M, Rai R, Shraogi N, Patnaik S, Misra A. A sensitive molecular probe exhibiting significant change in their photophysical and morphological behavior upon interaction with Fe 3+ ion. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 330:125671. [PMID: 39742620 DOI: 10.1016/j.saa.2024.125671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/17/2024] [Accepted: 12/26/2024] [Indexed: 01/03/2025]
Abstract
An efficient molecular probe 8 has been designed and synthesized. The photophysical, electrochemical and morphological behavior of the probe has been examined in the absence and presence of different ions. The probe 8 at 90 % water fraction in acetonitrile showed aggregation induced emission (AIE). Probe 8 upon interaction with ions binds with Fe3+ ion selectively in a 1:1 stoichiometry and showed fluorescence "turn-Off" response with good limit of detection (LOD = 92.2 nM). The particle size (DLS method) of probe upon increasing water fraction in acetonitrile showed a gradual increase while upon formation of a stable complex, 8 + Fe3+ particle size decreased along with change in morphology of the probe. SEM and TEM studies showed that in pure acetonitrile probe self-assemble into a sheet like structure of uneven surface. While in aggregated state (fw, 90 %) it changes to a uniform hollow rectangular rod shape structure. Further interaction of the probe with Fe3+ ions in aggregated state acquired a well-defined smooth sheet. Electrochemical (CV) studies suggested that the redox property of the probe incurred a marginal change in band gap upon complexation with Fe3+. The cell imaging studies were performed to detect Fe3+ in HeLa cells. The paper strip test and real water sample analysis showed the potential analytical application of probe to detect Fe3+ with a naked-eye sensitive visible color change. The formation of a complex, 8 + Fe3+ involving N and O atoms of the probe molecule was confirmed by 1HNMR and HRMS data.
Collapse
Affiliation(s)
- Rimpi Bhandari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Mohammed Kaleem
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Ravisen Rai
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Nikita Shraogi
- Nano Laboratory, Drug and Chemical Toxicology Group, FEST Division, Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, UP, India
| | - Satyakam Patnaik
- Nano Laboratory, Drug and Chemical Toxicology Group, FEST Division, Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, UP, India
| | - Arvind Misra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India.
| |
Collapse
|
3
|
Meng S, He X, Li B, Yang Y, Mao S, Li Z. A luminescent lanthanide functionalized hydrogen-bonded organic framework hydrogel: Fluorescence sensing platform for copper and iron ions detection. Talanta 2025; 285:127420. [PMID: 39708568 DOI: 10.1016/j.talanta.2024.127420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/29/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
The excessive presence of the metal ions Cu2+ and Fe3+ in the environment poses a serious threat to ecosystems and human health, so timely and accurate detection of them has become essential and urgent. In this paper, a novel hydrogel-based fluorescent sensor, named ME-IPA@SA-TbZn, was fabricated facilely through an in-situ cross-linking modification method and was used for the detection of Cu2+ and Fe3+ in water bodies. The ME-IPA@SA-TbZn is essentially a hybrid hydrogel bead that exhibits vibrant fluorescence, employing Tb and Zn functionalized hydrogen-bonded organic frameworks (HOFs) as the fluorescence functional core and sodium alginate (SA) as the hydrogel matrix. The synthesized hydrogel sensor ME-IPA@SA-TbZn exhibits remarkable capabilities in detecting and distinguishing between Cu2+ and Fe3+ with high selectivity and sensitivity. Specifically, it achieves limits of detection (LODs) of 1.275 μM for Cu2+ and 0.549 μM for Fe3+, respectively, both are below the maximum allowable concentrations set by the U.S. Environmental Protection Agency (EPA) for drinking water. Importantly, the hydrogel sensing platform delivers intuitive and visible results under simple operating conditions, and has been successfully applied to Cu2+ and Fe3+ detection in river samples. In addition, it was demonstrated that disruption of the "antenna" effect, absorption competition quenching (ACQ) effect, and ion exchange (IE) effect are the main mechanisms leading to fluorescence quenching. Based on these results, ME-IPA@SA-TbZn hold promise as a fluorescent sensor for detecting Cu2+ and Fe3+ ions.
Collapse
Affiliation(s)
- Shuang Meng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xuanting He
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Boyu Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yuanyuan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Shun Mao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zhuo Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
4
|
He MQ, Li HW, Wu Y. A novel ratiometric fluorescent nanosensor based-on UiO-66-NH 2 capped carbon dots for nitrite determination. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125422. [PMID: 39547145 DOI: 10.1016/j.saa.2024.125422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/17/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Nitrite is a commonly used food preservative and a water contaminant that has garnered significant attention due to its harmful effects on human health. Developing a simple and sensitive method for determining nitrite levels is crucial for safeguarding public health. In this paper, we present a novel ratiometric fluorescent nanosensor (CDs@UiO-66-NH2), created by combining orange-red-emitting CDs with blue-emitting UiO-66-NH2. This ratiometric probe detects nitrite ions (NO2-) based on the diazotization reaction between the amino group in UiO-66-NH2 and the target NO2-, where the blue emission of UiO-66-NH2 is quenched but the orange-red emission of CDs remains stable. The probe demonstrated a detection range of 0.5-20 μM with a limit of detection (LOD) of 0.157 μM for NO2-. Due to the probe's distinct color changes in response to NO2-, RGB values can be easily read using a smartphone, enabling ultrasensitive visual detection of NO2- with an LOD of 0.76 μM. This sensor was successfully applied to detect NO2- in environmental water samples. Finally, a smartphone-based RGB reading method using CDs@UiO-66-NH2 for visual quantitative detection of NO2- was proposed, broadening the application of CDs@UiO-66-NH2 in environmental protection.
Collapse
Affiliation(s)
- Ming-Qin He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, PR China; Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2 Liutiao Road, Changchun 130023, PR China
| | - Hong-Wei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, PR China; Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2 Liutiao Road, Changchun 130023, PR China
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, PR China; Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2 Liutiao Road, Changchun 130023, PR China.
| |
Collapse
|
5
|
Yang Y, Jiang Y, Jiang H, Qi X, Zhu L, Ju Y, Wang Y, Peng Y, Mei Y, Khant Zaw H, Smruti Mohanty S, Abishek B, Zhou Z, Tang J, Zhang Z. A pH switchable hydrophilic fluorescent BODIPY sodium disulfonate for Fe 3+ multicolor detection: Experimental and DFT studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:124993. [PMID: 39159512 DOI: 10.1016/j.saa.2024.124993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
BODIPY-based chemosensors are widely used owing to merits like good selectivity, high fluorescence quantum yield, and excellent optical stability. As such, a pH-switchable hydrophilic fluorescent probe, BODIPY-PY-(SO3Na)2, was developed for detection of Fe3+ ion in aqueous solutions. BODIPY-PY-(SO3Na)2 revealed strong fluorescence intensity and was responsive to pH value in the range of 6.59-1.96. Additionally, BODIPY-PY-(SO3Na)2 showed good selectivity and sensitivity towards Fe3+. A good linear relationship for Fe3+ detection was obtained from 0.0 μM to 50.0 μM with low detecting limit of 6.34 nM at pH 6.59 and 2.36 nM at pH 4.32, respectively. The response to pH and detection of Fe3+ induced obvious multicolor changes. BODIPY-PY-(SO3Na)2 can also be utilized to quantitatively detect Fe3+ in real water sample. Different mechanisms of Fe3+ detection at investigated pH values were unraveled through relativistic density functional theory (DFT) calculations in BODIPY-PY-(SO3Na)2 and experiments of coexisting cations, anions and molecules. These results enabled us to gain a deeper understanding of the interactions between BODIPY-PY-(SO3Na)2 and Fe3+ and provide valuable fundamental information for design of efficient multicolor chemosensors for Fe3+ as well.
Collapse
Affiliation(s)
- Yi Yang
- Changzhou Vocational Institute of Engineering, Changzhou 213164, China
| | - Yiyang Jiang
- The First Affiliated Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Huijun Jiang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiuxiu Qi
- Changzhou Vocational Institute of Engineering, Changzhou 213164, China
| | - Li Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yichun Ju
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yuan Wang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yan Peng
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yang Mei
- The First Affiliated Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Hein Khant Zaw
- School of International Education, Nanjing Medical University, Nanjing 211166, China
| | - Shreya Smruti Mohanty
- School of International Education, Nanjing Medical University, Nanjing 211166, China
| | - B Abishek
- School of International Education, Nanjing Medical University, Nanjing 211166, China
| | - Zhijie Zhou
- Changzhou Vocational Institute of Engineering, Changzhou 213164, China
| | - Jie Tang
- Changzhou Vocational Institute of Engineering, Changzhou 213164, China
| | - Zhenqin Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
6
|
Ji M, Liu T, Liu N, Hao H, Li Y, Dou J, Duan J, Wang S. Temperature-Dependent Supramolecular Isomeric Co-CPs for Luminescence Recognition and Catalytic Oxidation. Chemistry 2024; 30:e202403060. [PMID: 39390662 DOI: 10.1002/chem.202403060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/23/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Two Co-based supramolecular isomers were synthesized from a fluorinated carboxylic acid ligand under hydrothermal conditions at varying temperatures. Both exhibited similar one-dimensional chain structures while different bending connections of the aromatic rings led to different supramolecular structures, namely CoCP-1 and CoCP-2, respectively. The structural differences of two isomers resulted in discrepant performance with regards to luminescence sensing and catalysis. CoCP-1 demonstrated more significant luminescence quenching activity toward biomarkers 2,6-pyridinedicarboxylic acid (DPA) and homovanillic acid (HVA), which could be distinguished in the presence of Eu3+. The limit of detection (LOD) was found to be as low as 3.4 and 1.3 μM, respectively. The recovery rate of for HVA and DPA was within the range of 98.5-110.3 % and 84.6-99.3 % in simulated urine and serum, respectively, indicating potential reliability in monitoring these two analytes in real samples. Notably, CoCP-2 exhibited catalytic activity for the oxidation of thioethers to sulfoxides. Our finding here suggests that the coordination conformation of the ligands within supramolecular isomers plays a pivotal role in determining the structure and luminescence sensing/catalysis performance.
Collapse
Affiliation(s)
- Mengna Ji
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Tingting Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Nana Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Hongguo Hao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Yunwu Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Jianmin Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Jingui Duan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 211816, Nanjing, China
| | - Suna Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| |
Collapse
|
7
|
Zhang ML, Cao XQ, Cao C, Zheng TF, Xie X, Wen HR, Liu SJ. Highly stable Tb(III) metal-organic framework derived from a new benzothiadiazole functionalized ligand for fluorescence recognition of ascorbic acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124898. [PMID: 39116597 DOI: 10.1016/j.saa.2024.124898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024]
Abstract
Because ascorbic acid (AA) is one of the basic elements to maintain the normal physiological functions of human body, it is urgent to develop a material that can achieve efficient, rapid and in-situ detection for AA. A new fluorescence organic compound 4',4'''-(benzo[c][1,2,5]thiadiazole-4,7-diyl)bis([1,1'-biphenyl]-4-carboxylic acid) (H2BTBC) based on benzothiadiazole group has been synthesized, which can detect Fe3+ ions by fluorescence turn-off effect with a detection limit of 0.015 μM, as well as recognize linear amines by fluorescence turn-on effect. Moreover, a highly stable Tb(III) metal-organic framework has been solvothermally prepared with H2BTBC, namely {[(CH3)2NH2]2[Tb2(BTBC)4]∙solvents}n (JXUST-39), which can selectively detect AA among biological fluids by fluorescence enhancement effect with a detection limit of 0.077 μM. In addition, the mechanism for JXUST-39 detecting AA is possibly the cooperative effect of absorbance-caused enhancement and charge transfer between JXUST-39 and AA. Moreover, LED lamp beads, fluorescent films and fluorescent detection test paper based on JXUST-39 were prepared to achieve portable detection via fluorescence enhancement effect.
Collapse
Affiliation(s)
- Man-Lian Zhang
- School of Chemistry and Chemical Engineering, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, PR China
| | - Xiao-Qin Cao
- School of Chemistry and Chemical Engineering, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, PR China
| | - Chen Cao
- School of Chemistry and Chemical Engineering, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, PR China.
| | - Teng-Fei Zheng
- School of Chemistry and Chemical Engineering, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, PR China
| | - Xin Xie
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, Jiangxi Province, PR China.
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, PR China
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, PR China.
| |
Collapse
|
8
|
Zhang LL, Li L, Wang D, Hong Y, Tang K, Hong J, Chen Z, Yang W, Lu L, Duan LY. Rapid redox-response featured visual ascorbic acid sensor based on simple-assembled europium metal-organic framework. Food Chem 2024; 459:140339. [PMID: 38986206 DOI: 10.1016/j.foodchem.2024.140339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
A facile, fast and visible sensing platform for ascorbic acid (AA) detection has been developed based on self-assembled hydrangea-like europium metal-organic framework (HL-EuMOF). HL-EuMOF was synthesized through a simple one-step mixing process with Eu3+ and 1, 10-phenanthroline-2, 9-dicarboxylic acid at room temperature, which exhibited excellent properties including strong red fluorescence, long decay lifetime (548.623 μs) and good luminescent stability. Based on the specific redox reaction between Fe3+ and AA, the HL-EuMOF@Fe3+ was fabricated with "turn-off" response for AA, where the resulting Fe2+ displayed effective fluorescence quenching ability toward HL-EuMOF. The sensor demonstrated low detection limit (31.94 nM), rapid response time (30 s) and high selectivity. Integration of smartphone-assisted RGB analysis with HL-EuMOF@Fe3+ permitted convenient and visible quantitative determination of AA level. This approach also presented good detection performances in complex human serum and beverage samples, which could provide a valuable tool for AA detection in biomedical research and food industry.
Collapse
Affiliation(s)
- Lin-Lin Zhang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Li Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, College of Science, Jiangxi Agricultural University, Nanchang 330045, China
| | - Dan Wang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yanping Hong
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Kaijie Tang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jiaxin Hong
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zeng Chen
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wuying Yang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Limin Lu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, College of Science, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Lu-Ying Duan
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
9
|
Lu X, Wang Z, Wang J, Li Y, Hou X. Ultrasensitive Fluorescence Detection of Ascorbic Acid Using Silver Ion-Modulated High-Quality CdSe/CdS/ZnS Quantum Dots. ACS OMEGA 2024; 9:27127-27136. [PMID: 38947783 PMCID: PMC11209877 DOI: 10.1021/acsomega.4c01045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 07/02/2024]
Abstract
Improving the sensitivity of the fluorescence method for the detection of bioactive molecules is crucial in biochemical analysis. In this work, an ultrasensitive sensing strategy was constructed for the detection of ascorbic acid (AA) using high-quality 3-mercaptopropionic acid-capped CdSe/CdS/ZnS quantum dots (MPA-CdSe/CdS/ZnS QDs) as the fluorescent probe. The prepared water-soluble QDs exhibited a high photoluminescence quantum yield (PL QY) of up to 96%. Further, the fluorescence intensity of the QDs was intensively quenched through the dynamic quenching of Ag+ ions due to an efficient photoinduced electron transfer progress. While the existence of AA before adding Ag+ ions, Ag+ ions were reduced. Thus, the interaction of the QDs and Ag+ ions was destroyed, which led to the fluorescence distinct recovery. The detection limit of AA could be as low as 0.2 nM using this sensing system. Additionally, most relevant small molecules and physiological ions had no influence on the analysis of AA. Satisfactory results were obtained in orange beverages, showing its great potential as a meaningful platform for highly sensitive and selective AA sensing for clinical analysis.
Collapse
Affiliation(s)
- Xingchang Lu
- Hunan
Provincial Key Laboratory of Micro & Nano Materials Interface
Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Zheng Wang
- School
of Chemistry and Material Science, Hangzhou Institute for Advanced
Study, University of Chinese Academy of
Sciences, Hangzhou, Zhejiang 310024, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianxiu Wang
- Hunan
Provincial Key Laboratory of Micro & Nano Materials Interface
Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yang Li
- School
of Physics and Optoelectronic Engineering, Hangzhou Institute for
Advanced Study, University of Chinese Academy
of Sciences, Hangzhou, Zhejiang 310024, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqi Hou
- School
of Chemistry and Material Science, Hangzhou Institute for Advanced
Study, University of Chinese Academy of
Sciences, Hangzhou, Zhejiang 310024, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Farahmand Kateshali A, Soleimannejad J, Janczak J. Ultrasound-assisted synthesis of a Eu 3+-functionalized Zn II coordination polymer as a fluorescent dual detection probe for highly sensitive recognition of Hg II and L-Cys. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2024; 80:208-218. [PMID: 38856649 DOI: 10.1107/s2052520624003019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/07/2024] [Indexed: 06/11/2024]
Abstract
A new ZnII coordination polymer (CP) based on 2,3-pyrazine dicarboxylic acid (H2pzdc) and 4,4'-bipyridine (bpy) (ZCP) was synthesized using a facile slow evaporation method. Single-crystal X-ray diffraction revealed that ZCP is a two-dimensional porous CP, [Zn2(pzdc)2(bpy)(H2O)2]n, with van der Waals forces as the dominant interaction within its layers forming a 63 network. Employing energetic ultrasound irradiation, nanoscale ZCP (nZCP) was successfully synthesized and Eu3+ ions were incorporated within its host lattice (Eu@nZCP). The resulting platform exhibits superior fluorescence characteristics and demonstrates notable optical durability. Therefore, it was used as a dual detection fluorescent sensing platform for the detection of mercury and L-cysteine (L-Cys) in aqueous media through a turn-off/on strategy. In the turn-off process, the fluorescence emission of Eu@nZCP progressively quenches by the addition of HgII via a photo-induced electron transfer (PET) mechanism. The fluorescence of Eu@nZCP is quenched to establish a low fluorescence background through the incorporation of HgII. This devised turn-on fluorescent system is suitable for the recognition of L-Cys (based on the strong affinity of L-Cys to the HgII ion) through a quencher detachment mechanism. This method attained a relatively wide linear range, spanning from 0.001 to 25 µM, with the low detection limit of 5 nM for the sensing of HgII. Also, the corresponding limit of detection (LOD) for L-Cys is 8 nM in a relatively wide linear range, spanning from 0.001 to 40 µM.
Collapse
Affiliation(s)
| | - Janet Soleimannejad
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Jan Janczak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-950 Wrocław, Poland
| |
Collapse
|
11
|
Zhang T, Cao R, Li J, Tang H, Su H, Feng W, Zhang Z. A dual-responsive RhB-doped MOF probe for simultaneous recognition of Cu 2+ and Fe 3. Sci Rep 2024; 14:11740. [PMID: 38778069 PMCID: PMC11111689 DOI: 10.1038/s41598-024-62177-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Based on the dual response of RhB@UiO-67 (1:6) to Cu2+ and Fe3+, a proportional fluorescent probe with (I392/I581) as the output signal was developed to recognize Cu2+ and Fe3+. Developing highly sensitive and selective trace metal ions probes is crucial to human health and ecological sustainability. In this work, a series of ratio fluorescent probes (RhB@UiO-67) were successfully synthesized using a one-pot method to enable fluorescence sensing of Cu2+ and Fe3+ at low concentrations. The proportional fluorescent probe RhB@UiO-67 (1:6) exhibited simultaneous quenching of Cu2+ and Fe3+, which was found to be of interest. Furthermore, the limits of detection (LODs) for Cu2+ and Fe3+ were determined to be 2.76 μM and 0.76 μM, respectively, for RhB@UiO-67 (1:6). These values were significantly superior to those reported for previous sensors, indicating the probe's effectiveness in detecting Cu2+ and Fe3+ in an ethanol medium. Additionally, RhB@UiO-67 (1:6) demonstrated exceptional immunity and reproducibility towards Cu2+ and Fe3+. The observed fluorescence quenching of Cu2+ and Fe3+ was primarily attributed to the mechanisms of fluorescence resonance energy transfer (FRET), photoinduced electron transfer (PET), and competitive absorption (CA). This work establishes a valuable foundation for the future study and utilization of Cu2+ and Fe3+ sensing technologies.
Collapse
Affiliation(s)
- Teng Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Jinshui East Road 156, Zhengzhou, 450046, China
| | - Rui Cao
- College of Pharmacy, Henan University of Chinese Medicine, Jinshui East Road 156, Zhengzhou, 450046, China
| | - Jingying Li
- College of Pharmacy, Henan University of Chinese Medicine, Jinshui East Road 156, Zhengzhou, 450046, China
| | - Hanxiao Tang
- College of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Hang Su
- College of Pharmacy, Henan University of Chinese Medicine, Jinshui East Road 156, Zhengzhou, 450046, China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Jinshui East Road 156, Zhengzhou, 450046, China
| | - Zhijuan Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Jinshui East Road 156, Zhengzhou, 450046, China.
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, 450046, Henan, China.
- Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
12
|
Kumar A, Kataria R. MOFs as versatile scaffolds to explore environmental contaminants based on their luminescence bustle. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172129. [PMID: 38569964 DOI: 10.1016/j.scitotenv.2024.172129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Metal-Organic Frameworks (MOFs) with luminescent properties hold significant promise for environmental remediation. This review critically examines recent research on these materials design, synthesis, and applications, mainly focusing on their role in combating environmental pollutants. Through a comprehensive analysis of metal ions, ligands, and framework compositions, the review discusses the importance of tailored design and synthesis approaches in achieving desired luminescent characteristics. Key findings highlight the effectiveness of luminous MOFs as fluorescent sensors for a wide range of contaminants, including heavy metals, reactive species, antibiotics, and explosives. Considering all this, the review discusses future research needs and opportunities in the field of luminous MOFs. It emphasizes the importance of developing multifunctional materials, refining design methodologies, exploring sensing mechanisms, and ensuring environmental compatibility, scalability, and affordability. By providing insights into the current state of research and outlining future directions, this review is a valuable resource for researchers seeking to address environmental challenges using MOF-based solutions.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India; Department of Chemistry, University Institute of Sciences, Chandigarh University, Mohali 140301, India
| | - Ramesh Kataria
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India.
| |
Collapse
|
13
|
Liang M, Gao Y, Sun X, Kong RM, Xia L, Qu F. Metal-organic framework-based ratiometric point-of-care testing for quantitative visual detection of nitrite. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134021. [PMID: 38490146 DOI: 10.1016/j.jhazmat.2024.134021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/03/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Nitrite (NO2-) is categorized as a carcinogenic substance and is subjected to severe limitations in water and food. To safeguard the public's health, developing fast and convenient methods for determination of NO2- is of significance. Point-of-care testing (POCT) affords demotic measurement of NO2- and shows huge potential in future technology beyond those possible with traditional methods. Here, a novel ratiometric fluorescent nanoprobe (Ru@MOF-NH2) is developed by integrating UiO-66-NH2 with tris(2,2'-bipyridyl)ruthenium(II) ([Ru(bpy)3]2+) through a one-pot approach. The special diazo-reaction between the amino group of UiO-66-NH2 and NO2- is responsible for the report signal (blue emission) with high selectivity and the red emission from [Ru(bpy)3]2+ offers the reference signal. The proposed probe shows obviously distinguishable color change from blue to red towards NO2- via naked-eye. Moreover, using a smartphone as the detection device to read color hue, ultra-sensitive quantitative detection of NO2- is achieved with a low limit of detection at 0.6 μΜ. The accuracy and repeatability determined in spiked samples through quantitative visualization is in the range of 105 to 117% with a coefficient of variation below 4.3%. This POCT sensing platform presents a promising strategy for detecting NO2- and expands the potential applications for on-site monitoring in food and environment safety assessment.
Collapse
Affiliation(s)
- Maosheng Liang
- Chemistry and Chemical Engineering College, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Yifan Gao
- Chemistry and Chemical Engineering College, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Xiaoling Sun
- Chemistry and Chemical Engineering College, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Rong-Mei Kong
- Chemistry and Chemical Engineering College, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Lian Xia
- Chemistry and Chemical Engineering College, Qufu Normal University, Qufu, Shandong 273165, PR China.
| | - Fengli Qu
- Chemistry and Chemical Engineering College, Qufu Normal University, Qufu, Shandong 273165, PR China
| |
Collapse
|
14
|
Chen Q, Lin R, Wang W, Zuo Y, Zhuo Y, Yu Y, Chen S, Gu H. Efficient Electrochemical Microsensor for the Simultaneous Measurement of Hydrogen Peroxide and Ascorbic Acid in Living Brains. Anal Chem 2024; 96:6683-6691. [PMID: 38619493 DOI: 10.1021/acs.analchem.4c00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Hydrogen peroxide (H2O2) and ascorbic acid (AA), acting as two significant indicative species, correlate with the oxidative stress status in living brains, which have historically been considered to be involved mainly in neurodegenerative disorders such as Alzheimer's disease, Huntington's disease, and Parkinson's disease (PD). The development of efficient biosensors for the simultaneous measurement of their levels in living brains is vital to understand their roles played in the brain and their interactive relationship in the progress of these diseases. Herein, a robust ratiometric electrochemical microsensor was rationally designed to realize the determination of H2O2 and AA simultaneously. Therefore, a specific probe was designed and synthesized with both recognition units responsible for reacting with H2O2 to produce a detectable signal on the microsensor and linkage units helping the probe modify onto the carbon substrate. A topping ingredient, single-walled carbon nanotubes (SWCNTs) was added on the surface of the electrode, with the purpose of not only facilitating the oxidation of AA but also absorbing methylene blue (MB), prompting to read out the inner reference signal. This proposed electrochemical microsensor exhibited a robust ability to real-time track H2O2 and AA in linear ranges of 0.5-900 and 10-1000 μM with high selectivity and accuracy, respectively. Eventually, the efficient electrochemical microsensor was successfully applied to the simultaneous measurement of H2O2 and AA in the rat brain, followed by microinjection, and in the PD mouse brain.
Collapse
Affiliation(s)
- Qiuyue Chen
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, P. R. China
| | - Ruizhi Lin
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, P. R. China
| | - Wenhui Wang
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, P. R. China
| | - Yimei Zuo
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, P. R. China
| | - Yi Zhuo
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, Hunan Provincial Key Laboratory of Neurorestoratology, College of Life Sciences, Hunan Normal University, Changsha 410006, Hunan, P. R. China
| | - Yanyan Yu
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, P. R. China
| | - Shu Chen
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, P. R. China
| | - Hui Gu
- A Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, P. R. China
| |
Collapse
|
15
|
Pei K, Xu J, Wu D, Qi L, Ma L, Zhang R, Qi W. A fluorescent dual-emitting platform for fluorescent "turn-on" ratiometric detection of ascorbic acid in beverages utilizing luminol-embedded iron-based metal-organic frameworks. Food Chem 2024; 434:137417. [PMID: 37738811 DOI: 10.1016/j.foodchem.2023.137417] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/24/2023]
Abstract
A fluorescent dual-emitting platform for fluorescent "turn-on" ratiometric detection of ascorbic acid in beverages was developed utilizing luminol-embedded iron-based metal-organic frameworks (luminol@Fe-DOBDC MOFs). Luminol@Fe-DOBDC MOFs with fluorescent emissions at 430 nm and 540 nm under excitation wavelength of 365 nm were applied to detect ascorbic acid on the basis of ascorbic acid triggering the reduction of Fe3+ into Fe2+. In the presence of ascorbic acid, fluorescent intensity at 540 nm was increased significantly while fluorescent intensity at 430 nm was changed slightly. Two emission peaks separated by 110 nm can eliminate environmental interferences by built-in self-calibration of ratiometric signal, enhancing the sensitivity and accuracy. The increasing ratiometric fluorescent intensity (I540 nm/I430 nm) has linear relationship with the concentration of ascorbic acid from 0.2 to 30 μM with limit of detection of 70 nM. It is an efficient, sensitive and accurate platform to detect ascorbic acid in commercial beverages using transition-metal-based MOFs.
Collapse
Affiliation(s)
- Kanglin Pei
- College of Chemistry, Chongqing Normal University, Chongqing 401331, PR China
| | - Jianyang Xu
- College of Chemistry, Chongqing Normal University, Chongqing 401331, PR China
| | - Di Wu
- College of Chemistry, Chongqing Normal University, Chongqing 401331, PR China.
| | - Lin Qi
- China Tobacco Hongyunhonghe Tobacco (group) Co., Ltd., Kunming 650231, PR China
| | - Lingyan Ma
- College of Chemistry, Chongqing Normal University, Chongqing 401331, PR China
| | - Renwen Zhang
- College of Chemistry, Chongqing Normal University, Chongqing 401331, PR China
| | - Wenjing Qi
- College of Chemistry, Chongqing Normal University, Chongqing 401331, PR China.
| |
Collapse
|
16
|
Deng S, Liu J, Han D, Yang X, Liu H, Zhang C, Blecker C. Synchronous fluorescence detection of nitrite in meat products based on dual-emitting dye@MOF and its portable hydrogel test kit. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132898. [PMID: 37939561 DOI: 10.1016/j.jhazmat.2023.132898] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/07/2023] [Accepted: 10/29/2023] [Indexed: 11/10/2023]
Abstract
A novel ratiometric fluorescent nanoprobe (Rh6G@UIO-66-NH2) was fabricated for efficient nitrite (NO2-) detection in the present study. When NO2- was introduced, it interacted with the amino groups on the surface of Rh6G@UIO-66-NH2, forming diazonium salts that led to the quenching of blue fluorescence. With this strategy, a good linear relationship between NO2- concentration and the fluorescent intensity ratio of the nanoprobe in the range of 1-100 μM was established, with a detection limit of 0.021 μM. This dual-readout nanosensor was applied to analyze the concentration of NO2- in real meat samples, achieving satisfactory recovery rates of 94.72-104.52%, highlighting the practical potential of this method. Furthermore, a portable Gel/Rh6G@UIO-66-NH2 hydrogel test kit was constructed for on-spot dual-mode detection of NO2-. This kit allows for convenient colorimetric analysis and fluorometric detection when used in conjunction with a smartphone. All the photos taken with the portable kit was converted into digital information using ImageJ software. It provides colorimetric and fluorescent visual detection of NO2- over a range of 0.1-1.5 mM, achieving a direct quantitative tool for NO2- identification. This methodology presents a promising strategy for NO2- detection and expands the application prospects for on-spot monitoring of food safety assessment.
Collapse
Affiliation(s)
- Siyang Deng
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; University of Liège, Gembloux Agro-Bio Tech, Unit of Food Science and Formulation, Passage des Déportés 2, Gembloux B-5030, Belgium
| | - Junmei Liu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; University of Liège, Gembloux Agro-Bio Tech, Unit of Food Science and Formulation, Passage des Déportés 2, Gembloux B-5030, Belgium
| | - Dong Han
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xinting Yang
- Research Center for Information Technology, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China
| | - Huan Liu
- Research Center for Information Technology, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China.
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Christophe Blecker
- University of Liège, Gembloux Agro-Bio Tech, Unit of Food Science and Formulation, Passage des Déportés 2, Gembloux B-5030, Belgium
| |
Collapse
|
17
|
Yang L, Wang J, Li CY, Wang MM, Liu JM, Wang S. An in-situ blocking strategy for improved anti-interference inspection of AFB1 based on hollow covalent organic framework capsules with commodious and undisturbed microenvironment. Food Chem 2024; 432:137208. [PMID: 37633150 DOI: 10.1016/j.foodchem.2023.137208] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/05/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023]
Abstract
This work proposed an in-situ blocking strategy for improved anti-interference and signal-amplified inspection of hazards via constructing hollow covalent organic framework (HCOF) capsules. An aptamer-FRET nanoprobe integrated with carbon dots and CuS was introduced into the micro-capsule as signal indicator to demonstrate the proof-of-concept. The HCOF was successfully prepared by removing the metal-organic frameworks (MOF) core from the MOF@COF that had been preloaded with the nanoprobes under mild conditions. Meanwhile, the hydrophobic surface of HCOF enhanced the adsorption and penetration of aflatoxin B1 (AFB1) into the capsule to interact with the nanoprobes. This strategy was applied to detect AFB1 in food samples, achieving a linear response of 1-300 nM along with a detection limit of 0.3 nM. Selectivity test verified that the prepared sensing platform could specifically recognize AFB1 without complex sample pretreatment. This study provides new ideas for improved anti-interference inspection of hazards against complex sample matrix.
Collapse
Affiliation(s)
- Lu Yang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jing Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Chun-Yang Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Man-Man Wang
- School of Public Health, North China University of Science and Technology, No.21 Bohai Road, Caofeidian, Tangshan 063210, Hebei, China
| | - Jing-Min Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
18
|
Li R, Qi X, Wu F, Liu C, Huang X, Bai T, Xing S. Development of a fluorometric and colorimetric dual-mode sensing platform for acid phosphatase assay based on Fe 3+ functionalized CuInS 2/ZnS quantum dots. Anal Chim Acta 2024; 1287:342121. [PMID: 38182392 DOI: 10.1016/j.aca.2023.342121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/16/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND The spectral dual-mode response towards analyte has been attracted much attention, benefiting from the higher detection accuracy of such strategy in comparison to single signal readout. However, the currently reported dual-mode sensors for acid phosphatase (ACP) activity are still limited, and most of them more or less exist some deficiencies, such as complicated construction procedure, high-cost, poor biocompatibility, aggregation-caused quenching and limited emission capacity. RESULTS Herein, we employed Fe3+ functionalized CuInS2/ZnS quantum dots (CIS/ZnS QDs) as nanosensor to develop a novel fluorometric and colorimetric dual-mode assay for ACP activity, combing with ACP-triggered hydrolysis of ascorbic acid 2-phosphate (AAP) into ascorbic acid (AA). The Fe3+ binding to CIS/ZnS QDs can be reduced into Fe2+ during the determination, resulting in the dramatically weakened photoinduced electron transfer (PET) effect and the disappearance of competition absorption. Thus, a highly sensitive ACP assay in the range of 0.22-12.5 U L-1 through fluorescence "turn-on" mode has been achieved with a detection of limit (LOD) of 0.064 U L-1. Meanwhile, the ACP activity can also be quantified by spectrophotometry based on the chromogenic reaction of the formed Fe2+ with 1,10-phenanthroline (Phen). Moreover, the designed nanosensor with good biocompatibility was successfully applied to image and monitor the ACP levels in living cells. SIGNIFICANCE We believe that the proposed method has remarkable advantages and potential application for ACP assay in terms of the high accuracy, simplicity, low cost, as well as its adequate sensitivity.
Collapse
Affiliation(s)
- Ruyi Li
- College of Medical Laboratory, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, PR China
| | - Xiaofei Qi
- College of Medical Laboratory, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, PR China
| | - Fengyao Wu
- College of Medical Laboratory, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, PR China
| | - Cong Liu
- College of Medical Laboratory, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, PR China
| | - Xiaohua Huang
- College of Medical Laboratory, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, PR China
| | - Tianyu Bai
- College of Medical Laboratory, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, PR China.
| | - Shanghua Xing
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China.
| |
Collapse
|
19
|
Wang ZY, Jiang S, Lv MX, Liu ZW, Chi YX, Bai FY, Xing YH. RhB-Embedded Mn-MOF with Cyclotriphosphazene Skeleton as Dual-Emission Sensor for Putrescine as well as Smart Fluorescent Response of Aromatic Diamines and Nitrophenol. Inorg Chem 2023; 62:18414-18424. [PMID: 37917828 DOI: 10.1021/acs.inorgchem.3c02363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Luminescent metal-organic framework composites with multiple luminescence emissions have been efficient sensing platforms. Herein, a fluorescent sensor (RhB@1-0.4) with dual-emission fluorescence properties was prepared by introducing rhodamine B (RhB) into the framework of complex 1, [Mn2.5(HCPCP)(H2O)4]·(CH3CN)0.5 [HCPCP = hexa-(4-carboxyl-phenoxy)-cyclotriphosphazene and CH3CN = acetonitrile), which is a novel crystalline two-dimensional (2D) coordinated organic framework material. It is a highly desirable material, realizing a ratiometric fluorescence response to putrescine with a high signal-to-noise ratio, and the detection limit can be as low as 6.8 μM. In addition, RhB@1-0.4 exhibited a better fluorescent sensing performance for aromatic diamines and nitrophenols compared with that of complex 1. It is a potential functionalized MOF material for the application of multichannel fluorescence sensing.
Collapse
Affiliation(s)
- Zi Yang Wang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Shan Jiang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Mei Xin Lv
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Zi Wen Liu
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Yu Xian Chi
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Feng Ying Bai
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Yong Heng Xing
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| |
Collapse
|
20
|
Jia P, Wu Q, Sun B, Wang L. Formic Acid-Regulated Defect Engineering in Zr-Based Metal-Organic Frameworks toward Fluorescence Sensor for Sensitive Detection of Chlortetracycline. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304096. [PMID: 37415537 DOI: 10.1002/smll.202304096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/12/2023] [Indexed: 07/08/2023]
Abstract
The elaborate defect-engineering of luminescent metal-organic frameworks (MOFs) allows them with enhanced sensing performance. A modulator-induced defect formation strategy is adopted in this paper, and the impact of the open-metal sites on sensing process is rationalized. It is demonstrated that the defect level can be tuned to a remarkable extent by controlling the amount of modulator. When a particular defect concentration is reached, the UiO-66-xFA can be acted as highly sensitive ratiometric fluorescence probes for chlortetracycline (CTE) determination with an ultralow detection limit of 9.9 nm. Furthermore, by virtue of the obvious variation in fluorescence chromaticity of probes from blue to yellow, a sensory hydrogels-based smartphone platform is proposed for visible quantitation of CTE by identifying the RGB values. A delicate device integrated with UV lamp and dark cavity has been developed for avoiding inconsistencies of ambient light and visual errors. Finally, the sensor obtains satisfactory results in the detection of actual seafood samples, with no significant differences from those of liquid chromatography-mass spectrometry. This approach anticipates a novel route to sensitize optical sensors through the design and synthesis of moderate defects in luminescent MOFs.
Collapse
Affiliation(s)
- Pei Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Qiushuang Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Boyang Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| |
Collapse
|
21
|
Huang L, Qin S, Yang K, Xu Y, Wu X, Lin Z, Wang Y. Dual signal AA detection based on fluorescence and local surface plasmon resonance absorption technology. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 306:123570. [PMID: 39492385 DOI: 10.1016/j.saa.2023.123570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/16/2023] [Accepted: 10/21/2023] [Indexed: 11/05/2024]
Abstract
The core/shell Au@MnO2 nanoparticles (Au@MnO2 NPs) were prepared and characterized by UV-vis spectrum, transmission electron microscopy (TEM) and X-ray photoelectron spectrum (XPS). It was found that MnO2 in the shell of Au@MnO2 NPs could oxidize thiamine (VB1) into blue fluorescent thiochrome (TC). The reduction of MnO2 in the shell layer could lead to a decrease of Au@MnO2 NPs size along with a blue shift of the localized surface plasmon resonance (LSPR) peak. Once ascorbic acid (AA) was introduced, MnO2 in the shell was rapidly reduced to Mn2+ ions. Accordingly, the oxidation of VB1 was inhibited and the fluorescence of TC was weakened. Based on these phenomena, we have established a dual signal method for AA determination with the help of UV-vis and fluorescence spectrophotometer. Under the optimum conditions, the LSPR absorption peak shift (Δλ) of Au@MnO2 NPs and the decrease in fluorescence of TC correlated well with AA concentration ranging from 0.75 to 17.5 μM. The detection limits of LSPR absorption assay and fluorescence assay were 0.18 and 0.47 μM, respectively. More importantly, this dual-signal detection method has been used for the determination of AA in vitamin C tablets with high accuracy and precision, indicating its promising potential applications.
Collapse
Affiliation(s)
- Li Huang
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, China
| | - Shangying Qin
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, China
| | - Kun Yang
- Technical Center of Nanning Customs District, Nanning 530200, China
| | - Yuanjin Xu
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, China.
| | - Xiaocui Wu
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, China
| | - Zhongwei Lin
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, China
| | - Yilin Wang
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, China.
| |
Collapse
|
22
|
Saeedi Garakani S, Zhang M, Xie D, Sikdar A, Pang K, Yuan J. Facile Fabrication of Wood-Derived Porous Fe 3C/Nitrogen-Doped Carbon Membrane for Colorimetric Sensing of Ascorbic Acid. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2786. [PMID: 37887937 PMCID: PMC10609461 DOI: 10.3390/nano13202786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Fe3C nanoparticles hold promise as catalysts and nanozymes, but their low activity and complex preparation have hindered their use. Herein, this study presents a synthetic alternative toward efficient, durable, and recyclable, Fe3C-nanoparticle-encapsulated nitrogen-doped hierarchically porous carbon membranes (Fe3C/N-C). By employing a simple one-step synthetic method, we utilized wood as a renewable and environmentally friendly carbon precursor, coupled with poly(ionic liquids) as a nitrogen and iron source. This innovative strategy offers sustainable, high-performance catalysts with improved stability and reusability. The Fe3C/N-C exhibits an outstanding peroxidase-like catalytic activity toward the oxidation of 3,3',5,5'-tetramethylbenzidine in the presence of hydrogen peroxide, which stems from well-dispersed, small Fe3C nanoparticles jointly with the structurally unique micro-/macroporous N-C membrane. Owing to the remarkable catalytic activity for mimicking peroxidase, an efficient and sensitive colorimetric method for detecting ascorbic acid over a broad concentration range with a low limit of detection (~2.64 µM), as well as superior selectivity, and anti-interference capability has been developed. This study offers a widely adaptable and sustainable way to synthesize an Fe3C/N-C membrane as an easy-to-handle, convenient, and recoverable biomimetic enzyme with excellent catalytic performance, providing a convenient and sensitive colorimetric technique for potential applications in medicine, biosensing, and environmental fields.
Collapse
Affiliation(s)
- Sadaf Saeedi Garakani
- Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden; (S.S.G.); (M.Z.); (A.S.); (K.P.)
| | - Miao Zhang
- Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden; (S.S.G.); (M.Z.); (A.S.); (K.P.)
| | - Dongjiu Xie
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, 14109 Berlin, Germany;
| | - Anirban Sikdar
- Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden; (S.S.G.); (M.Z.); (A.S.); (K.P.)
| | - Kanglei Pang
- Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden; (S.S.G.); (M.Z.); (A.S.); (K.P.)
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden; (S.S.G.); (M.Z.); (A.S.); (K.P.)
| |
Collapse
|
23
|
Jiang X, Li W, Liu M, Yang J, Liu M, Gao D, Li H, Ning Z. A Ratiometric Fluorescent Probe Based on RhB Functionalized Tb-MOFs for the Continuous Visual Detection of Fe 3+ and AA. Molecules 2023; 28:5847. [PMID: 37570824 PMCID: PMC10421046 DOI: 10.3390/molecules28155847] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/17/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
In this study, a red-green dual-emitting fluorescent composite (RhB@MOFs) was constructed by introducing the red-emitting organic fluorescent dye rhodamine B (RhB) into metal-organic frameworks (Tb-MOFs). The sample can be used as a ratiometric fluorescent probe, which not only avoids errors caused by instrument and environmental instability but also has multiple applications in detection. The results indicated that the RhB@MOFs exhibited a turned-off response toward Fe3+ and a turned-on response for the continuous detection of ascorbic acid (AA). This ratiometric fluorescent probe possessed high sensitivity and excellent selectivity in the continuous determination of Fe3+ and AA. It is worth mentioning that remarkable fluorescence change could be clearly observed by the naked eye under a UV lamp, which is more convenient in applications. In addition, the mechanisms of Fe3+- and AA-induced fluorescence quench and recovery are discussed in detail. This ratiometric probe displayed outstanding recognition of heavy metal ions and biomolecules, providing potential applications for water quality monitoring and biomolecule determination.
Collapse
Affiliation(s)
- Xin Jiang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China; (X.J.); (W.L.); (M.L.); (J.Y.); (M.L.); (D.G.)
| | - Wenwei Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China; (X.J.); (W.L.); (M.L.); (J.Y.); (M.L.); (D.G.)
| | - Min Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China; (X.J.); (W.L.); (M.L.); (J.Y.); (M.L.); (D.G.)
| | - Jie Yang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China; (X.J.); (W.L.); (M.L.); (J.Y.); (M.L.); (D.G.)
| | - Mengjiao Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China; (X.J.); (W.L.); (M.L.); (J.Y.); (M.L.); (D.G.)
- Key Laboratory of Treatment for Special Wastewater of Sichuan Province Higher Education System, Chengdu 610066, China
| | - Daojiang Gao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China; (X.J.); (W.L.); (M.L.); (J.Y.); (M.L.); (D.G.)
| | - Hongda Li
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China;
| | - Zhanglei Ning
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China; (X.J.); (W.L.); (M.L.); (J.Y.); (M.L.); (D.G.)
- Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling, Sichuan Normal University, Chengdu 610068, China
| |
Collapse
|
24
|
Vinod Mouli MSS, Mishra AK. Flavin based supramolecular gel displaying multi-stimuli triggered sol-gel transition. Org Biomol Chem 2023. [PMID: 37377152 DOI: 10.1039/d3ob00720k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Herein, we report the design and synthesis of an amphiphilic flavin analogue as a robust low molecular weight gelator involving minimal structural modification. Four flavin analogues were evaluated for their gelation capabilities and the flavin analogue with antipodal positioning of the carboxyl and octyl functionalities was found to be the most efficient gelator with the minimum gelation concentration being as low as 0.03 M. A wide range of solvents were used for gelation studies suggesting its widespread applicability. Morphological, photophysical and rheological characterization studies were performed to fully characterize the nature of the gel. Interestingly, reversible multiple stimuli responsive sol-gel transition was observed with changing pH and redox activity, while metal screening showed specific transition in the presence of ferric ions. The gel was able to differentiate between ferric and ferrous species with well-defined sol-gel transition. The current results potentially offer a redox-active flavin-based material as a low molecular weight gelator for the development of next-generation materials.
Collapse
Affiliation(s)
- M S S Vinod Mouli
- Department of Chemistry, Indian Institute of Technology-Hyderabad, Kandi, 502284, Sangareddy, India.
| | - Ashutosh Kumar Mishra
- Department of Chemistry, Indian Institute of Technology-Hyderabad, Kandi, 502284, Sangareddy, India.
| |
Collapse
|
25
|
Yue X, Fu L, Li Y, Xu S, Lin X, Bai Y. Lanthanide bimetallic MOF-based fluorescent sensor for sensitive and visual detection of sulfamerazine and malachite. Food Chem 2023; 410:135390. [PMID: 36623454 DOI: 10.1016/j.foodchem.2023.135390] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/26/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
A lanthanide terbium/europium metal-organic framework (Tb0.6Eu0.4-MOF) was prepared by one-step solvothermal method at room temperature. A series of characterizations including scanning electron microscopy, powder X-ray diffraction spectra, Fourier transform infrared spectra and X-ray photoelectron spectroscopy were carried out to clarify the physical characteristics of the synthesized material. The data clarified that the prepared Tb0.6Eu0.4-MOF possessed rod-like morphology with a width of 1-2 μm, and had good crystal structure, good stability, response speed and excitation-independent emission feature. The bunchy Tb0.6Eu0.4-MOF was then used to construct fluorescent sensors for rapid identification of malachite green and sulfamerazine. It was revealed that the detection mechanism was inner filter effect. The effects of different parameters such as excitation wavelength and incubation times were investigated on the fluorescence analysis performance. The data clarified that the optimal excitation wavelength and incubation time was 240 nm and 3 min, respectively. The detection platform exhibited the high sensitivity and selectivity toward malachite green in the linear range of 2-180 μM and determined limit of detection was 1.12 μM. Besides, the proposed sensor allowed sensitive detection of sulfamerazine in the linear range of 2-140 μM with a low detection limit of 0.1 μM. Meaningfully, a smartphone application was designed to assist the proposed sensor to realize visual, intelligent and rapid detection of malachite green and sulfamerazine. Furthermore, the practical application of the proposed sensor has been also verified by high performance liquid chromatography, showing good accuracy, sensitivity and satisfactory recoveries. The results suggested that the Tb0.6Eu0.4-MOF-based ratiometric fluorescent sensor had the potential to become a promising technique for rapid detection of malachite green or sulfamerazine with smartphone application. Therefore, the prepared Tb0.6Eu0.4-MOF is one kind of efficient and cost-effective potential materials for developing fluorescent sensor for rapid, sensitive and selective detection of sulfamerazine and malachite.
Collapse
Affiliation(s)
- Xiaoyue Yue
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
| | - Long Fu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yan Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Sheng Xu
- College of Computer and Communication Engineering, Zhengzhou University of Light Industry, 450001 Zhengzhou, Henan Province, China
| | - Xin Lin
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China.
| |
Collapse
|
26
|
Oladipo AA, Derakhshan Oskouei S, Gazi M. Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:631-673. [PMID: 37284550 PMCID: PMC10241095 DOI: 10.3762/bjnano.14.52] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023]
Abstract
Increasing trace levels of antibiotics and hormones in the environment and food samples are concerning and pose a threat. Opto-electrochemical sensors have received attention due to their low cost, portability, sensitivity, analytical performance, and ease of deployment in the field as compared to conventional expensive technologies that are time-consuming and require experienced professionals. Metal-organic frameworks (MOFs) with variable porosity, active functional sites, and fluorescence capacity are attractive materials for developing opto-electrochemical sensors. Herein, the insights into the capabilities of electrochemical and luminescent MOF sensors for detection and monitoring of antibiotics and hormones from various samples are critically reviewed. The detailed sensing mechanisms and detection limits of MOF sensors are addressed. The challenges, recent advances, and future directions for the development of stable, high-performance MOFs as commercially viable next-generation opto-electrochemical sensor materials for the detection and monitoring of diverse analytes are discussed.
Collapse
Affiliation(s)
- Akeem Adeyemi Oladipo
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta, via Mersin 10, Türkiye
| | - Saba Derakhshan Oskouei
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta, via Mersin 10, Türkiye
| | - Mustafa Gazi
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta, via Mersin 10, Türkiye
| |
Collapse
|
27
|
Herreros-Lucas C, Vila-Fungueiriño JM, Giménez-López MDC. Electrochemically Versatile Graphite Nanoplatelets Prepared by a Straightforward, Highly Efficient, and Scalable Route. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21375-21383. [PMID: 37015345 PMCID: PMC10165606 DOI: 10.1021/acsami.2c22495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Nanostructured carbon materials with tailor-made structures (e.g., morphology, topological defect, dopant, and surface area) are of significant interest for a variety of applications. However, the preparation method selected for obtaining these tailor-made structures determines the area of application, precluding their use in other technological areas of interest. Currently, there is a lack of simple and low-cost methodologies versatile enough for obtaining freestanding carbon nanostructures that can be used in either energy storage or chemical detection. Here, a novel methodology for the development of a versatile electrochemically active platform based on freestanding graphite nanoplatelets (GNP) has been developed by exploiting the interiors of hollow carbon nanofibers (CNF) comprising nanographene stacks using dry ball-milling. Even though ball-milling could be considered as a universal method for any carbonaceous material, often, it is not as simple (one step, no purification, and no solvents), efficient (just GNP without tubular structures), and quick (just 20 min) as the sustainable method developed in this work, free of surfactants and stabilizer agents. We demonstrate that the freestanding GNP developed in this work (with an average thickness of 3.2 nm), due to the selective edge functionalization with the minimal disruption of the basal plane, can act either as a supercapacitor or as a chemical sensor, showing both a dramatic improvement in the charge storage ability of more than 30 times and an enhanced detection of electrochemically active molecules such as ascorbic acid with a 236 mV potential shift with respect to CNF in both cases. As shown here, GNP stand as an excellent versatile alternative compared to the standard commercially available carbon-based materials. Overall, our approach paves the way for the discovery of new nanocarbon-based electrochemical active platforms with a wide electrochemical applicability.
Collapse
Affiliation(s)
- Carlos Herreros-Lucas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - José Manuel Vila-Fungueiriño
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - María Del Carmen Giménez-López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| |
Collapse
|
28
|
Zhao L, Xu G, Gao C, Song P. A novel RhB@MOF-808 fluorescent probe for the rapid detection of dopamine and Fe 3. Anal Biochem 2023; 671:115154. [PMID: 37100107 DOI: 10.1016/j.ab.2023.115154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/25/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023]
Abstract
Dopamine (DA) and Fe3+ as the important bioactive ingredients, playing an indispensable role in human metabolism. Therefore, developing the accurate detection of DA and Fe3+ is of great significance for disease screening. Herein, we put forward a simple, rapid, and sensitive fluorescent detection strategy for the detection of dopamine and Fe3+ based on Rhodamine B-modified MOF-808 (RhB@MOF-808). RhB@MOF-808 produced strong fluorescence at 580 nm, and the fluorescence was significantly quenched after DA or Fe3+ was added, which was regarded as a static quenching process. Detection limits are as low as 60.25 nM and 48.34 nM, respectively. Furthermore, based on the responses of DA and Fe3+ to the probe, molecular logic gates were successfully designed. More importantly, RhB@MOF-808 had excellent cell membrane permeability and had been successfully used to label DA and Fe3+ in Hela cells, which presented a potential biological application value as a fluorescent probe for detecting DA and Fe3+.
Collapse
Affiliation(s)
- Lefa Zhao
- College of Physics, Liaoning University, Shenyang, 110036, China; School of General Education, Shenyang Sport University, Shenyang, 110115, China
| | - Guangda Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ce Gao
- School of General Education, Shenyang Sport University, Shenyang, 110115, China.
| | - Peng Song
- College of Physics, Liaoning University, Shenyang, 110036, China.
| |
Collapse
|
29
|
Sahoo S, Mondal S, Sarma D. A Luminescent Zinc(II) Coordination Polymer for Selective Detection of Fe
3+
and Cr
2
O
7
2−
in Water and Catalytic CO
2
Fixation. Eur J Inorg Chem 2023. [DOI: 10.1002/ejic.202300067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Subham Sahoo
- Department of Chemistry Indian Institute of Technology Patna Bihar 801106 India
| | - Sumit Mondal
- Department of Chemistry Indian Institute of Technology Patna Bihar 801106 India
| | - Debajit Sarma
- Department of Chemistry Indian Institute of Technology Patna Bihar 801106 India
| |
Collapse
|
30
|
Guan K, Zhang Z, Zhang Q, Ling P, Gao F. Rational design of semiconducting polymer poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(6-{4-ethyl-piperazin-1-yl}-2-phenyl-benzo{de}isoquinoline-1,3-dione)] for highly selective photoelectrochemical assay of p-phenylenediamine. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
31
|
Song N, Zhai Z, Yang L, Zhang D, Zhou Z. Dual-emission dye@MIL-101(Al) composite as fluorescence sensor for the selective and sensitive detection towards arginine. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.124025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
32
|
Zhang MY, Yi FY, Guo QZ, Luo FL, Liu LJ, Guo JF. A ratiometric luminescence sensing platform based on lanthanide-based silica nanoparticles for selective and sensitive detection of Fe 3+ and Cu 2+ ions. Dalton Trans 2023; 52:3300-3307. [PMID: 36847192 DOI: 10.1039/d3dt00119a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Detection of Fe(III) and Cu(II) in water is highly desirable because their abnormal levels can cause serious harm to human health and environmental safety. In this work, a ratiometric luminescence sensing platform based on lanthanide-based silica nanoparticles was constructed for the detection of Fe3+ and Cu2+ ions. The terbium-silica nanoparticles (named SiO2@Tb) with dual-emission signals were successfully prepared by grafting Tb3+ ions onto trimellitic anhydride (TMA) functionalized silica nanospheres. It can serve as a ratiometric fluorescent probe for the detection of Fe3+ and Cu2+ ions in water with the green emission of Tb3+ ions as a response signal and the blue emission of silica nanospheres as the reference signal. Significantly, an easy-to-differentiate color change for visual detection was also realized. SiO2@Tb shows high sensitivity even in very low concentration regions towards the sensing of Fe3+ and Cu2+ with low detection limits of 0.75 μM and 0.91 μM, respectively. Moreover, the mechanism for the luminescence quenching of SiO2@Tb was systematically investigated, and was attributed to the synergetic effect of the absorption competition quenching (ACQ) mechanism and cation exchange. This study demonstrates that SiO2@Tb can be employed as a promising fluorescent probe for the detection of Fe3+ and Cu2+ ions, and the combination of lanthanide ions with silica nanoparticles is an effective strategy to construct a ratiometric fluorescent sensing platform for the determination of analytes in environmental detection.
Collapse
Affiliation(s)
- Meng-Yao Zhang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Feng-Ying Yi
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Qing-Zhong Guo
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Fa-Liang Luo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Lan-Jun Liu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China. .,School of Civil Engineering and Architecture, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Jun-Fang Guo
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
33
|
Liu L, Chen XL, Cai M, Yan RK, Cui HL, Yang H, Wang JJ. Dye@MOF composites (RhB@1): Highly sensitive dual emission sensor for the detection of pesticides, Fe3+ and ascorbate acid. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
34
|
Luo W, Wang C, Min J, Luo H. Gold nanoclusters Cys-Au NCs as selective fluorescent probes for "on-off-on" detection of Fe 3+ and ascorbic acid. RSC Adv 2023; 13:7425-7431. [PMID: 36895769 PMCID: PMC9990083 DOI: 10.1039/d3ra00410d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/15/2023] [Indexed: 03/09/2023] Open
Abstract
Gold nanoclusters exhibit attractive properties owing to their excellent biocompatibility and strong photostability in the biomedical domain. In this research, cysteine-protected fluorescent gold nanoclusters (Cys-Au NCs) were synthesized via decomposing Au(i)-thiolate complexes for the detection of Fe3+ and ascorbic acid in a bidirectional "on-off-on" mode. Meanwhile, the detailed characterization confirmed that the mean particle size of the prepared fluorescent probe was 2.43 nm and showed a fluorescence quantum yield of 3.31%. In addition, our results indicate that the fluorescence probe for ferric ions exhibited a broad detection scope ranging from 0.1 to 2000 μM and excellent selectivity. The as-prepared Cys-Au NCs/Fe3+ was demonstrated to be an ultrasensitive and selective nanoprobe for the detection of ascorbic acid. This study indicated that the "on-off-on" fluorescent probes Cys-Au NCs held a promising application for the bidirectional detection of Fe3+ and ascorbic acid. Furthermore, our novel "on-off-on" fluorescent probes provided insight into the rational design of thiolate-protected gold nanoclusters for biochemical analysis of high selectivity and sensitivity.
Collapse
Affiliation(s)
- Wenjie Luo
- Department of Pharmacy, Xiangyang No.1 People's Hospital, Hubei University of Medicine Xiangyang 441000 China
| | - Changxu Wang
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine Shiyan 442000 China
| | - Jieshu Min
- Department of Pharmacy, Xiangyang No.1 People's Hospital, Hubei University of Medicine Xiangyang 441000 China
| | - Huiyu Luo
- Department of Anesthesiology, Xiangyang Key Laboratory of Movement Disorders, Xiangyang No.1 People's Hospital, Hubei University of Medicine Xiangyang 441000 China
| |
Collapse
|
35
|
Xu C, Liu Q, Chu S, Li P, Wang F, Si Y, Mao G, Wu C, Wang H. A microdots array-based fluoremetric assay with superwettability profile for simultaneous and separate analysis of iron and copper in red wine. Anal Chim Acta 2023; 1254:341045. [PMID: 37005014 DOI: 10.1016/j.aca.2023.341045] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/19/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023]
Abstract
A microdots array-based fluoremetric method with superwettability profile has been developed for the simultaneous and separate detection of Fe3+ and Cu2+ ions in red wine samples. A wettable micropores array was initially designed with high density by using polyacrylic acid (PAA) and hexadecyltrimethoxysilane (HDS), followed by the NaOH etching route. Zinc metal organic frameworks (Zn-MOFs) were fabricated as the fluorescent probes to be immobilized into the micropores array to obtain the fluoremetric microdots array platform. It was found that the fluorescence of Zn-MOFs probes could decrease significantly in the presence of Fe3+ and/or Cu2+ ions towards their simultaneous analysis. Yet, the specific responses to Fe3+ ions could be expected if using histidine to chelate Cu2+ ions. Moreover, the developed Zn-MOFs-based microdots array with superwettability profile can enable the accumulation of targeting ions from the complicated samples without any tedious pre-processing. Also, the cross-contamination of different samples droplets can be largely avoided so as to facilitate the analysis of multiple samples. Subsequently, the feasibility of simultaneous and separate detection of Fe3+ and Cu2+ ions in red wine samples was demonstrated. Such a design of microdots array-based detection platform may promise the wide applications in analyzing Fe3+ and/or Cu2+ ions in the fields of food safety, environmental monitoring, and medical diseases diagnostics.
Collapse
|
36
|
Kalhori S, Ahour F, Aurang P. Determination of trace amount of iron cations using electrochemical methods at N, S doped GQD modified electrode. Sci Rep 2023; 13:1557. [PMID: 36707641 PMCID: PMC9883219 DOI: 10.1038/s41598-023-28872-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/25/2023] [Indexed: 01/29/2023] Open
Abstract
In this work, nitrogen and sulfur co-doped graphene quantum dot-modified glassy carbon electrodes (N, S-GQD/GCE) were used for the recognition of iron cations in aqueous solutions. The dissolved cations are detected based on the faradaic reduction or oxidation current of Fe(III) and Fe(II) obtained at the N, S-GQD/GCE surface. Cyclic voltammetry (CV), square wave voltammetry (SWV), and hydrodynamic amperometry are used as suitable electrochemical techniques for studying electrochemical behavior and determination of Fe cations. Based on the obtained results, it is concluded that the presence of free electrons in the structure of N, S-GQD could facilitate electron transfer reaction between Fe(III) and electrode surface which with increased surface area results in increased sensitivity and lower limit of detection. By performing suitable experiments, the best condition for preparing the modified electrode and determining Fe(III) was selected. Under optimized conditions, the amperometric response is linear from 1 to 100 nM of Fe(III) with a detection limit of 0.23 nM. The validity of the method and applicability of the sensor is successfully tested by the determination of Fe(III) in drug and water real samples. This sensor opened a new platform based on doped nanoparticles for highly sensitive and selective detection of analytes.
Collapse
Affiliation(s)
- S. Kalhori
- grid.412763.50000 0004 0442 8645Department of Nanotechnology, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - F. Ahour
- grid.412763.50000 0004 0442 8645Department of Nanotechnology, Faculty of Chemistry, Urmia University, Urmia, Iran ,grid.412763.50000 0004 0442 8645Institute of Nanotechnology, Urmia University, Urmia, Iran
| | - P. Aurang
- grid.412763.50000 0004 0442 8645Department of Nanotechnology, Faculty of Chemistry, Urmia University, Urmia, Iran
| |
Collapse
|
37
|
Zhang Y, Xu X, Zhang L. Capsulation of red emission chromophore into the CoZn ZIF as nanozymes for on-site visual cascade detection of phosphate ions, o-phenylenediamine, and benzaldehyde. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159091. [PMID: 36191718 DOI: 10.1016/j.scitotenv.2022.159091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/04/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Accurate on-site profiling of the pollutants is of vital significance for estimating environmental pollution. Herein, we propose a paper-based fluorescence-sensing system to precisely report the level of multiple pollutants. A high-performance fluorescence-sensor for apparatus-free and visual on-site tandem precisely reporting phosphate ions (Pi), o-phenylenediamine (OPD), and benzaldehyde (BA) levels have been fabricated successfully by introducing synthesized red emission (>600 nm) fluorescent chromophore 10-(diethylamino)-3-hydroxy-5,6-dihydrobenzo [c]xanthen-12-ium (HTD) into the environment of CoZn zeolitic imidazolate framework (CoZn ZIF) by a simple stirring method. CoZn ZIF@HTD with the bimetallic nodes not merely provided main Zn2+ sites for specific recognition of Pi to generate an enhanced red fluorescent optical signal, Co3+/Co2+ exhibited excellent peroxidase-like activity for the catalytic oxidation of OPD substrate in the presence of H2O2 resulting in color changing from red to yellow. Subsequently, the obvious yellow fading of the OPDox species took place with the addition of BA. By virtue of the sensitively visual tandem detection of Pi, OPD, and BA, the sensor can be applied to real wastewater samples. Meanwhile, this fluorescent sensor was further adopted for practical application in confocal cell imaging and security inks. Overall, this work established a fluorescent sensing system with integrated multifunctional applications for environmental and biological samples, implying the great potential for simultaneous real-time cascade detection of various important pollutants with the merit of low-cost, time-saving, and easy-to-use.
Collapse
Affiliation(s)
- Yaqiong Zhang
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning 110036, People's Republic of China
| | - Xu Xu
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning 110036, People's Republic of China.
| | - Lei Zhang
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning 110036, People's Republic of China.
| |
Collapse
|
38
|
Ren D, Cheng X, Chen Q, Xu G, Wei F, Yang J, Xu J, Wang L, Hu Q, Cen Y. MXene-derived Ti3C2 quantum dots-based ratiometric fluorescence probe for ascorbic acid and acid phosphatase determination. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
39
|
Jia H, Li Z, Wang F, Lu R, Zhang S, Zhang Z. Facile synthesis of NH2-MIL-53(Al)@RhB as a dual-emitting “on-off-on” probe for the detection of Fe3+ and ascorbic acid. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
40
|
Transformation of bulk MnO2 to fluorescent quantum dots for selective and sensitive detection of ferric ions and ascorbic acid by turn-off-on strategy. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
Wang YN, Wang SD, Wang SY, Dou WQ, Dong PH, Lu SQ, Wang F, Sun Y, Yang QF. Water-stable nickel-based coordination polymer for selective and sensitive enhancing and quenching fluorescence sensing of ascorbic acid and acetylacetone. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Fang W, Zhang L, Feng H, Meng J, Zhang Z, Liu Z. Research Progress of fluorescent-substance@MOFs. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Gao X, Liu Y, Zhang K, Weng J, Chen R, Zhang X, Wang Z, Yang S, Liu J. Light-Responsive Carbon Nitride Based Atomic Cu(I) Oxidase Mimics for Dual-Mode Total Antioxidant Capacity Assay. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Xiaoying Gao
- Institute of Advanced Materials, State Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Yunjia Liu
- Institute of Advanced Materials, State Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Ke Zhang
- The Testing Center of Shandong Bureau of China Metallurgical Geology Bureau, Jinan 250000, China
| | - Jinlan Weng
- Institute of Advanced Materials, State Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Rongqing Chen
- Institute of Advanced Materials, State Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Xiaoyi Zhang
- Institute of Advanced Materials, State Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Zhipeng Wang
- Institute of Advanced Materials, State Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Shenghong Yang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jian Liu
- Institute of Advanced Materials, State Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| |
Collapse
|
44
|
Li X, Yan X, Wang C, Ma Y, Jiang Y, Wang R, Shi D, Li Z, Zhu G, Tan B. Green synthesis of surface-group-tunable red emissive carbon dots and their applications for Fe3+ and pyrophosphate detection. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
45
|
LMOF serve as food preservative nanosensor for sensitive detection of nitrite in meat products. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Smartphone assisted fluorescent sensor for Fe3+ and ascorbic acid determination based on off-on carbon dots probe. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Xia N, Chang Y, Zhou Q, Ding S, Gao F. An Overview of the Design of Metal-Organic Frameworks-Based Fluorescent Chemosensors and Biosensors. BIOSENSORS 2022; 12:bios12110928. [PMID: 36354436 PMCID: PMC9688172 DOI: 10.3390/bios12110928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 06/12/2023]
Abstract
Taking advantage of high porosity, large surface area, tunable nanostructures and ease of functionalization, metal-organic frameworks (MOFs) have been popularly applied in different fields, including adsorption and separation, heterogeneous catalysis, drug delivery, light harvesting, and chemical/biological sensing. The abundant active sites for specific recognition and adjustable optical and electrical characteristics allow for the design of various sensing platforms with MOFs as promising candidates. In this review, we systematically introduce the recent advancements of MOFs-based fluorescent chemosensors and biosensors, mainly focusing on the sensing mechanisms and analytes, including inorganic ions, small organic molecules and biomarkers (e.g., small biomolecules, nucleic acids, proteins, enzymes, and tumor cells). This review may provide valuable references for the development of novel MOFs-based sensing platforms to meet the requirements of environment monitoring and clinical diagnosis.
Collapse
|
48
|
Wang X, Li L, Li L, Bu T, Yang K, Xia J, Sun X, Jiang H, Wang L. Tris(bipyridine)ruthenium(II)-functionalized metal-organic frameworks for the ratiometric fluorescence determination of aluminum ions. Mikrochim Acta 2022; 189:402. [PMID: 36190561 DOI: 10.1007/s00604-022-05504-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/19/2022] [Indexed: 10/10/2022]
Abstract
A novel ratiometric fluorescence probe was designed for the determination of Al3+ by self-assembling of NH2-MIL-101(Fe) and [Ru(bpy)3]2+. Under the excitation wavelength of 360 nm, the NH2-MIL-101(Fe)@[Ru(bpy)3]2+ presented a dual-emitting luminescent property at 440 and 605 nm, respectively. In the presence of Al3+, the blue fluorescence of NH2-MIL-101(Fe)@[Ru(bpy)3]2+ at 440 nm was enhanced remarkably, while the red emission at 605 nm was almost not influenced. Therefore, taking the fluorescence at 440 nm as the report signal and 605 nm as the reference signal, quantitative determination was achieved for Al3+ concentration in the ranges 0.2-25 μM and 25-250 μM. The limit of detection (LOD) and limit of quantification (LOQ) were calculated to be 73 nM and 244 nM, respectively. The sensing mechanisms were studied by theoretical calculation and optical spectra. The analysis of real food samples confirmed the suitability of the proposed method. More importantly, portable fluorescent test papers were successfully manufactured to provide a strategy for visual, rapid, and on-site detection of Al3+.
Collapse
Affiliation(s)
- Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Longwen Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Lihua Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Tong Bu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Kairong Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Junfang Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Xinyu Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Hong Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
49
|
Zn-MOF74 as a “turn-on” fluorescent chemosensor for recognition and detection of water in acetone and Al3+ in ethanol with high selectivity and sensitivity. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Peng Y, Shao F, Guo K, Zhuo H, Wang Y, Xie X, Tao Y. SiQDs/Cu-β-CD nanoclusters: A fluorescence probe for the mutual non-interference detection of uric acid and l-cysteine under alkaline conditions. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|