1
|
Gupta S, Russell B, Kristensen LG, Tyler J, Costello SM, Marqusee S, Rad B, Ralston CY. Enabling simultaneous photoluminescence spectroscopy and X-ray footprinting mass spectrometry to study protein conformation and interactions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1214-1225. [PMID: 39749913 PMCID: PMC11802294 DOI: 10.1039/d4ay01670j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
X-ray footprinting mass spectrometry (XFMS) is a structural biology method that uses broadband X-rays for in situ hydroxyl radical labeling to map protein interactions and conformation in solution. However, while XFMS alone provides important structural information on biomolecules, as we move into the era of the interactome, hybrid methods are becoming increasingly necessary to gain a comprehensive understanding of protein complexes and interactions. Toward this end, we report the development of the first synergetic application of inline and real-time fluorescent spectroscopy at the Advanced Light Source's XFMS facility to study local protein interactions and global conformational changes simultaneously. To facilitate general use, we designed a flexible and optimum system for producing high-quality spectroscopy-XFMS hybrid data, with rapid interchangeable liquid jet or capillary sample delivery for multimodal inline spectroscopy, and several choices for optofluidic environments. To validate the hybrid system, we used the covalently interacting SpyCatcher-SpyTag split protein system. We show that our hybrid system can be used to detect the interaction of SpyTag and SpyCatcher via fluorescence resonance energy transfer (FRET), while elucidating key structural features throughout the complex at the residue level via XFMS. Our results highlight the usefulness of hybrid method in providing binding and structural details to precisely engineer protein interactions.
Collapse
Affiliation(s)
- Sayan Gupta
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Brandon Russell
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Line G Kristensen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - James Tyler
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| | - Shawn M Costello
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Susan Marqusee
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Behzad Rad
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| | - Corie Y Ralston
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| |
Collapse
|
2
|
He L, McAndrew R, Barbu R, Gifford G, Halacoglu C, Drouin-Allaire C, Weber L, Kristensen LG, Gupta S, Chen Y, Petzold CJ, Allaire M, Li KH, Ralston CY, Gochin M. Structure and Interactions of HIV-1 gp41 CHR-NHR Reverse Hairpin Constructs Reveal Molecular Determinants of Antiviral Activity. J Mol Biol 2024; 436:168650. [PMID: 38866091 PMCID: PMC11297672 DOI: 10.1016/j.jmb.2024.168650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
Engineered reverse hairpin constructs containing a partial C-heptad repeat (CHR) sequence followed by a short loop and full-length N-heptad repeat (NHR) were previously shown to form trimers in solution and to be nanomolar inhibitors of HIV-1 Env mediated fusion. Their target is the in situ gp41 fusion intermediate, and they have similar potency to other previously reported NHR trimers. However, their design implies that the NHR is partially covered by CHR, which would be expected to limit potency. An exposed hydrophobic pocket in the folded structure may be sufficient to confer the observed potency, or they may exist in a partially unfolded state exposing full length NHR. Here we examined their structure by crystallography, CD and fluorescence, establishing that the proteins are folded hairpins both in crystal form and in solution. We examined unfolding in the milieu of the fusion reaction by conducting experiments in the presence of a membrane mimetic solvent and by engineering a disulfide bond into the structure to prevent partial unfolding. We further examined the role of the hydrophobic pocket, using a hairpin-small molecule adduct that occluded the pocket, as confirmed by X-ray footprinting. The results demonstrated that the NHR region nominally covered by CHR in the engineered constructs and the hydrophobic pocket region that is exposed by design were both essential for nanomolar potency and that interaction with membrane is likely to play a role in promoting the required inhibitor structure. The design concepts can be applied to other Class 1 viral fusion proteins.
Collapse
Affiliation(s)
- Li He
- Department of Foundational Biomedical Sciences, Touro University California College of Osteopathic Medicine, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA
| | - Ryan McAndrew
- Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Razvan Barbu
- Master of Science in Medical Health Sciences, Touro University California College of Osteopathic Medicine, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA
| | - Grant Gifford
- Master of Science in Medical Health Sciences, Touro University California College of Osteopathic Medicine, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA
| | - Cari Halacoglu
- Master of Science in Medical Health Sciences, Touro University California College of Osteopathic Medicine, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA
| | - Camille Drouin-Allaire
- Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Lindsey Weber
- Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Line G Kristensen
- Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sayan Gupta
- Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yan Chen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Christopher J Petzold
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Marc Allaire
- Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kathy H Li
- Department of Pharmaceutical Chemistry, UCSF School of Pharmacy, San Francisco, CA 94143, USA
| | - Corie Y Ralston
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Miriam Gochin
- Department of Foundational Biomedical Sciences, Touro University California College of Osteopathic Medicine, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA; Department of Pharmaceutical Chemistry, UCSF School of Pharmacy, San Francisco, CA 94143, USA.
| |
Collapse
|
3
|
Jain R, Dhillon NS, Kanchustambham VL, Lodowski DT, Farquhar ER, Kiselar J, Chance MR. Evaluating Mass Spectrometry-Based Hydroxyl Radical Protein Footprinting of a Benchtop Flash Oxidation System against a Synchrotron X-ray Beamline. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:476-486. [PMID: 38335063 DOI: 10.1021/jasms.3c00368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Hydroxyl radical protein footprinting (HRPF) using synchrotron X-ray radiation (XFP) and mass spectrometry is a well-validated structural biology method that provides critical insights into macromolecular structural dynamics, such as determining binding sites, measuring affinity, and mapping epitopes. Numerous alternative sources for generating the hydroxyl radicals (•OH) needed for HRPF, such as laser photolysis and plasma irradiation, complement synchrotron-based HRPF, and a recently developed commercially available instrument based on flash lamp photolysis, the FOX system, enables access to laboratory benchtop HRPF. Here, we evaluate performing HRPF experiments in-house with a benchtop FOX instrument compared to synchrotron-based X-ray footprinting at the NSLS-II XFP beamline. Using lactate oxidase (LOx) as a model system, we carried out •OH labeling experiments using both instruments, followed by nanoLC-MS/MS bottom-up peptide mass mapping. Experiments were performed under high glucose concentrations to mimic the highly scavenging conditions present in biological buffers and human clinical samples, where less •OH are available for reaction with the biomolecule(s) of interest. The performance of the FOX and XFP HRPF methods was compared, and we found that tuning the •OH dosage enabled optimal labeling coverage for both setups under physiologically relevant highly scavenging conditions. Our study demonstrates the complementarity of FOX and XFP labeling approaches, demonstrating that benchtop instruments such as the FOX photolysis system can increase both the throughput and the accessibility of the HRPF technique.
Collapse
Affiliation(s)
- Rohit Jain
- Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
- Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
- Department of Nutrition, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Nanak S Dhillon
- Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
- Department of Nutrition, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Vijaya Lakshmi Kanchustambham
- Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
- Department of Nutrition, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - David T Lodowski
- Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
- Department of Nutrition, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Erik R Farquhar
- Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
- Department of Nutrition, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Janna Kiselar
- Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
- Department of Nutrition, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Mark R Chance
- Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
- Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
- Department of Nutrition, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
4
|
Luo S, Wohl S, Zheng W, Yang S. Biophysical and Integrative Characterization of Protein Intrinsic Disorder as a Prime Target for Drug Discovery. Biomolecules 2023; 13:biom13030530. [PMID: 36979465 PMCID: PMC10046839 DOI: 10.3390/biom13030530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Protein intrinsic disorder is increasingly recognized for its biological and disease-driven functions. However, it represents significant challenges for biophysical studies due to its high conformational flexibility. In addressing these challenges, we highlight the complementary and distinct capabilities of a range of experimental and computational methods and further describe integrative strategies available for combining these techniques. Integrative biophysics methods provide valuable insights into the sequence–structure–function relationship of disordered proteins, setting the stage for protein intrinsic disorder to become a promising target for drug discovery. Finally, we briefly summarize recent advances in the development of new small molecule inhibitors targeting the disordered N-terminal domains of three vital transcription factors.
Collapse
Affiliation(s)
- Shuqi Luo
- Center for Proteomics and Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Samuel Wohl
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Wenwei Zheng
- College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ 85212, USA
- Correspondence: (W.Z.); (S.Y.)
| | - Sichun Yang
- Center for Proteomics and Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence: (W.Z.); (S.Y.)
| |
Collapse
|
5
|
Gupta S, Raskatov JA, Ralston CY. A Hybrid Structural Method for Investigating Low Molecular Weight Oligomeric Structures of Amyloid Beta. Chembiochem 2022; 23:e202200333. [PMID: 35980391 PMCID: PMC9729406 DOI: 10.1002/cbic.202200333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/16/2022] [Indexed: 01/25/2023]
Abstract
Spurred in part by the failure of recent therapeutics targeting amyloid β plaques in Alzheimer's Disease (AD), attention is increasingly turning to the oligomeric forms of this peptide that form early in the aggregation process. However, while numerous amyloid β fibril structures have been characterized, primarily by NMR spectroscopy and cryo-EM, obtaining structural information on the low molecular weight forms of amyloid β that presumably precede and/or seed fibril formation has proved challenging. These transient forms are heterogeneous, and depend heavily on experimental conditions such as buffer, temperature, concentration, and degree of quiescence during measurement. Here, we present the concept for a new approach to delineating structural features of early-stage low molecular weight amyloid β oligomers, using a solvent accessibility assay in conjunction with simultaneous fluorescence measurements.
Collapse
Affiliation(s)
- Sayan Gupta
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley CA 94720 (USA)
| | - Jevgenij A. Raskatov
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Physical Science Building 356, 1156 High Street, Santa Cruz, CA 95064 (USA)
| | - Corie Y. Ralston
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley CA 94720 (USA)
| |
Collapse
|
6
|
Rosi M, Russell B, Kristensen LG, Farquhar ER, Jain R, Abel D, Sullivan M, Costello SM, Dominguez-Martin MA, Chen Y, Marqusee S, Petzold CJ, Kerfeld CA, DePonte DP, Farahmand F, Gupta S, Ralston CY. An automated liquid jet for fluorescence dosimetry and microsecond radiolytic labeling of proteins. Commun Biol 2022; 5:866. [PMID: 36008591 PMCID: PMC9411504 DOI: 10.1038/s42003-022-03775-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 07/27/2022] [Indexed: 12/02/2022] Open
Abstract
X-ray radiolytic labeling uses broadband X-rays for in situ hydroxyl radical labeling to map protein interactions and conformation. High flux density beams are essential to overcome radical scavengers. However, conventional sample delivery environments, such as capillary flow, limit the use of a fully unattenuated focused broadband beam. An alternative is to use a liquid jet, and we have previously demonstrated that use of this form of sample delivery can increase labeling by tenfold at an unfocused X-ray source. Here we report the first use of a liquid jet for automated inline quantitative fluorescence dosage characterization and sample exposure at a high flux density microfocused synchrotron beamline. Our approach enables exposure times in single-digit microseconds while retaining a high level of side-chain labeling. This development significantly boosts the method’s overall effectiveness and efficiency, generates high-quality data, and opens up the arena for high throughput and ultrafast time-resolved in situ hydroxyl radical labeling. A high-speed liquid jet delivery system improves the X-ray footprinting and mass spectrometry method to label proteins for structural studies.
Collapse
Affiliation(s)
- Matthew Rosi
- Sonoma State University, Rohnert Park, Sonoma, CA, 94928, US
| | - Brandon Russell
- Sonoma State University, Rohnert Park, Sonoma, CA, 94928, US
| | - Line G Kristensen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, US
| | - Erik R Farquhar
- Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, US
| | - Rohit Jain
- Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, US
| | - Donald Abel
- Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, US
| | - Michael Sullivan
- Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, US
| | - Shawn M Costello
- Biophysics Graduate Program, University of California, Berkeley, CA, USA
| | - Maria Agustina Dominguez-Martin
- MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, US.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, US
| | - Yan Chen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, US
| | - Susan Marqusee
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.,Department of Chemistry, University of California, Berkeley, CA, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | - Christopher J Petzold
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, US
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, US.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, US
| | | | - Farid Farahmand
- Sonoma State University, Rohnert Park, Sonoma, CA, 94928, US
| | - Sayan Gupta
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, US.
| | - Corie Y Ralston
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, US.
| |
Collapse
|
7
|
Kristensen LG, Holton JM, Rad B, Chen Y, Petzold CJ, Gupta S, Ralston CY. Hydroxyl radical mediated damage of proteins in low oxygen solution investigated using X-ray footprinting mass spectrometry. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:1333-1342. [PMID: 34475282 PMCID: PMC8415330 DOI: 10.1107/s1600577521004744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/04/2021] [Indexed: 05/12/2023]
Abstract
In the method of X-ray footprinting mass spectrometry (XFMS), proteins at micromolar concentration in solution are irradiated with a broadband X-ray source, and the resulting hydroxyl radical modifications are characterized using liquid chromatography mass spectrometry to determine sites of solvent accessibility. These data are used to infer structural changes in proteins upon interaction with other proteins, folding, or ligand binding. XFMS is typically performed under aerobic conditions; dissolved molecular oxygen in solution is necessary in many, if not all, the hydroxyl radical modifications that are generally reported. In this study we investigated the result of X-ray induced modifications to three different proteins under aerobic versus low oxygen conditions, and correlated the extent of damage with dose calculations. We observed a concentration-dependent protecting effect at higher protein concentration for a given X-ray dose. For the typical doses used in XFMS experiments there was minimal X-ray induced aggregation and fragmentation, but for higher doses we observed formation of covalent higher molecular weight oligomers, as well as fragmentation, which was affected by the amount of dissolved oxygen in solution. The higher molecular weight products in the form of dimers, trimers, and tetramers were present in all sample preparations, and, upon X-ray irradiation, these oligomers became non-reducible as seen in SDS-PAGE. The results provide an important contribution to the large body of X-ray radiation damage literature in structural biology research, and will specifically help inform the future planning of XFMS, and well as X-ray crystallography and small-angle X-ray scattering experiments.
Collapse
Affiliation(s)
- Line G Kristensen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - James M Holton
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Behzad Rad
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Yan Chen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Christopher J Petzold
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Sayan Gupta
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Corie Y Ralston
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| |
Collapse
|