1
|
Loomis CL, Im SC, Scott EE. Adrenodoxin allosterically alters human cytochrome P450 11B enzymes to accelerate substrate binding and decelerate release. RSC Chem Biol 2024:d4cb00015c. [PMID: 39129792 PMCID: PMC11310744 DOI: 10.1039/d4cb00015c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024] Open
Abstract
Two human mitochondrial membrane CYP11B enzymes play a pivotal role in steroidogenesis. CYP11B1 generates the major glucocorticoid cortisol, while CYP11B2 catalysis yields the primary mineralocorticoid aldosterone. Catalysis by both requires electron delivery by a soluble iron-sulfur adrenodoxin redox partner. However recent studies have shown that adrenodoxin/CYP11B interaction alone allosterically increases substrate and inhibitor affinity as exhibited by decreased dissociation constant (K d) values. The current study moves beyond such equilibrium studies, by defining adrenodoxin effects on the rates of P450 ligand binding and release separately. Stopped-flow data clearly demonstrate that adrenodoxin interaction with the P450 proximal surfaces increases ligand binding in both P450 CYP11B active sites by increasing the on rate constant and decreasing the off rate constant. As substrate entry and exit from the sequestered P450 active site requires conformational changes on the distal side of the P450 enzyme, a likely explanation is that adrenodoxin binding allosterically modulates CYP11B conformational changes. The 93% identical CYP11B enzymes can bind and hydroxylate each other's native substrates differing only by a hydroxyl. However, CYP11B1 exhibits monophasic substrate binding and CYP11B2 biphasic substrate binding, even when the substrates are swapped. This indicates that small differences in amino acid sequence between human CYP11B1 and CYP11B2 enzymes are more functionally important in ligand binding and could suggest avenues for more selective inhibition of these drug targets. Both protein/protein interactions and protein/substrate interactions are most likely to act by modulating CYP11B conformational dynamics.
Collapse
Affiliation(s)
- Cara L Loomis
- Department of Biological Chemistry, University of Michigan Ann Arbor MI 48109 USA
| | - Sang-Choul Im
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, University of Michigan Ann Arbor MI USA
- Ann Arbor Veterans Affairs Medical Center Ann Arbor MI USA
| | - Emily E Scott
- Department of Biological Chemistry, University of Michigan Ann Arbor MI 48109 USA
- Department of Medicinal Chemistry, University of Michigan Ann Arbor MI 48109 USA
- Department of Pharmacology, University of Michigan Ann Arbor MI 48109 USA
| |
Collapse
|
2
|
Jay N, McGlohon JE, Estrada DF. Interactions of human mitochondrial Ferredoxin 1 (Adrenodoxin) by NMR; modulation by cytochrome P450 substrate and by truncation of the C-terminal tail. J Inorg Biochem 2023; 249:112370. [PMID: 37734220 PMCID: PMC10798138 DOI: 10.1016/j.jinorgbio.2023.112370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/28/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023]
Abstract
Human Ferredoxin 1, also referred to as Adrenodoxin (Adx), is the sole electron carrier supporting the function of all seven mitochondrial cytochrome P450 (CYP) enzymes. Adx utilizes conserved negatively charged residues along its α-helix3 to interact with either the proximal surface of CYP enzymes or the binding surface of Adrendodoxin Reductase (AdR). However, in the oxidized state, Adx assumes a monomer-homodimer equilibrium that requires the presence of its unstructured C-terminal tail. Crystallographic structures of full-length human Adx dimers indicate that part of the binding surface necessary for its interactions with CYPs or with AdR is partially occluded by the dimer interface. In this study, protein NMR spectroscopy was used to interrogate the interactions between full-length (2-124) or truncated monomeric (2-108) human Adx and human CYP24A1 (with and without its vitamin-D substrate) as well as interactions with AdR. Here, monomeric Adx induced a similar pattern of peak broadening as that induced by addition of CYP24A1 substrate, consistent with a 1:1 Adx:CYP interaction as the functional complex. Additionally, removal of the C-terminal tail appears to enhance the interaction with AdR, despite removal of some of the AdR contacts in the tail region. This finding was also supported by an NMR competition assay. These findings suggest that the Adx dimers do not undergo meaningful interactions with either CYP or AdR, but may instead be responsible for regulating access to monomeric Adx. These conclusions are discussed in the context of a revised model of the Adx electron shuttle mechanism.
Collapse
Affiliation(s)
- Natalie Jay
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA.
| | - Janie E McGlohon
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA.
| | - D Fernando Estrada
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA.
| |
Collapse
|
3
|
Kumar A, Estrada DF. Structural basis of bidirectional allostery across the heme in a cytochrome P450 enzyme. J Biol Chem 2023; 299:104977. [PMID: 37390989 PMCID: PMC10416055 DOI: 10.1016/j.jbc.2023.104977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/02/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023] Open
Abstract
Cytochromes P450 (CYPs) are heme-containing enzymes that are present in all kingdoms of life and share a structurally homologous, globular protein fold. CYPs utilize structures distal to the heme to recognize and coordinate substrates, while the necessary interactions with redox partner proteins are mediated at the opposite, proximal surface. In the current study, we investigated the functional allostery across the heme for the bacterial enzyme CYP121A1, which utilizes a non-polar distal-to-distal dimer interface for specific binding of its dicyclotyrosine substrate. Fluorine-detected Nuclear Magnetic Resonance (19F-NMR) spectroscopy was combined with site-specific labeling of a distal surface residue (S171C of the FG-loop), one residue of the B-helix (N84C), and two proximal surface residues (T103C and T333C) with a thiol-reactive fluorine label. Adrenodoxin was used as a substitute redox protein and was found to promote a closed arrangement of the FG-loop, similar to the addition of substrate alone. Disruption of the protein-protein interface by mutagenesis of two CYP121 basic surface residues removed the allosteric effect. Moreover, 19F-NMR spectra of the proximal surface indicate that ligand-induced allostery modulates the environment at the C-helix but not the meander region of the enzyme. In light of the high degree of structural homology in this family of enzymes, we interpret the findings from this work to represent a conserved allosteric network in CYPs.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Science, University at Buffalo, Buffalo, New York, USA
| | - D Fernando Estrada
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Science, University at Buffalo, Buffalo, New York, USA.
| |
Collapse
|
4
|
Loomis CL, Brixius-Anderko S, Scott EE. Redox partner adrenodoxin alters cytochrome P450 11B1 ligand binding and inhibition. J Inorg Biochem 2022; 235:111934. [PMID: 35952394 PMCID: PMC9907956 DOI: 10.1016/j.jinorgbio.2022.111934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023]
Abstract
Human cytochrome P450 11B1 (CYP11B1) generation of the major glucocorticoid cortisol requires two electrons delivered sequentially by the iron‑sulfur protein adrenodoxin. While the expected adrenodoxin binding site is on the opposite side of the heme and 15-20 Å away, evidence is provided that adrenodoxin allosterically impacts CYP11B1 ligand binding and catalysis. The presence of adrenodoxin both decreases the dissociation constant (Kd) for substrate binding and increases the proportion of substrate that is bound at saturation. Adrenodoxin additionally decreases the Michaelis-Menten constant for the native substrate. Similar studies with several inhibitors also demonstrate the ability of adrenodoxin to modulate inhibition (IC50 values). Somewhat similar allosterism has recently been observed for the closely related CYP11B2/aldosterone synthase, but there are several marked differences in adrenodoxin effects on the two CYP11B enzymes. Comparison of the sequences and structures of these two CYP11B enzymes helps identify regions likely responsible for the functional differences. The allosteric effects of adrenodoxin on CYP11B enzymes underscore the importance of considering P450/redox partner interactions when evaluating new inhibitors.
Collapse
Affiliation(s)
- Cara L Loomis
- Departments of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Emily E Scott
- Departments of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Departments of Medicinal Chemistry, Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
5
|
Biyani M, Yasuda K, Isogai Y, Okamoto Y, Weilin W, Kodera N, Flechsig H, Sakaki T, Nakajima M, Biyani M. Novel DNA Aptamer for CYP24A1 Inhibition with Enhanced Antiproliferative Activity in Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18064-18078. [PMID: 35436103 DOI: 10.1021/acsami.1c22965] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Overexpression of the vitamin D3-inactivating enzyme CYP24A1 (cytochrome P450 family 24 subfamily and hereafter referred to as CYP24) can cause chronic kidney diseases, osteoporosis, and several types of cancers. Therefore, CYP24 inhibition has been considered a potential therapeutic approach. Vitamin D3 mimetics and small molecule inhibitors have been shown to be effective, but nonspecific binding, drug resistance, and potential toxicity limit their effectiveness. We have identified a novel 70-nt DNA aptamer-based inhibitor of CYP24 by utilizing the competition-based aptamer selection strategy, taking CYP24 as the positive target protein and CYP27B1 (the enzyme catalyzing active vitamin D3 production) as the countertarget protein. One of the identified aptamers, Apt-7, showed a 5.8-fold higher binding affinity with CYP24 than the similar competitor CYP27B1. Interestingly, Apt-7 selectively inhibited CYP24 (the relative CYP24 activity decreased by 39.1 ± 3% and showed almost no inhibition of CYP27B1). Furthermore, Apt-7 showed cellular internalization in CYP24-overexpressing A549 lung adenocarcinoma cells via endocytosis and induced endogenous CYP24 inhibition-based antiproliferative activity in cancer cells. We also employed high-speed atomic force microscopy experiments and molecular docking simulations to provide a single-molecule explanation of the aptamer-based CYP24 inhibition mechanism. The novel aptamer identified in this study presents an opportunity to generate a new probe for the recognition and inhibition of CYP24 for biomedical research and could assist in the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Madhu Biyani
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kaori Yasuda
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yasuhiro Isogai
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yuki Okamoto
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Wei Weilin
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Noriyuki Kodera
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Holger Flechsig
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Toshiyuki Sakaki
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Miki Nakajima
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Manish Biyani
- BioSeeds Corporation, JAIST venture business laboratory, Ishikawa Create Labo, Asahidai 2-13, Nomi City, Ishikawa 923-1211, Japan
| |
Collapse
|
6
|
Jay N, Duffy SR, Estrada DF. Characterization of a Cleavable Fusion of Human CYP24A1 with Adrenodoxin Reveals the Variable Role of Hydrophobics in Redox Partner Binding. Biochemistry 2022; 61:57-66. [PMID: 34979083 DOI: 10.1021/acs.biochem.1c00770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The improper maintenance of the bioactivated form of vitamin-D (1α,25(OH)2D) may result in vitamin-D insufficiency and therefore compromise the absorption of dietary calcium. A significant regulator of vitamin-D metabolism is the inactivating function of the mitochondrial enzyme cytochrome P450 24A1 (CYP24A1). In humans, CYP24A1 carries out hydroxylation of carbon-23 (C23) or carbon-24 (C24) of the 1α,25(OH)2D side chain, eventually resulting in production of either an antagonist of the vitamin-D receptor (C23 pathway) or calcitroic acid (C24 pathway). Despite its importance to human health, the human isoform (hCYP24A1) remains largely uncharacterized due in part to the difficulty in producing the enzyme using recombinant means. In this study, we utilize a cleavable fusion with the cognate redox partner, human Adx (hAdx), to stabilize hCYP24A1 during production. The subsequent cleavage and isolation of active hCYP24A1 allowed for an investigation of substrate and analog binding, enzymatic activity, and redox partner recognition. We demonstrate involvement of a nonpolar contact involving Leu-80 of hAdx and a nonconserved proximal surface of hCYP24A1. Interestingly, shortening the length of this residue (L80V) results in enhanced binding between the CYP-Adx complex and 1α,25(OH)2D yet unexpectedly results in decreased catalysis. The same mutation has a negligible effect on rat CYP24A1 (a C24-hydroxylase), indicating the presence of a species-specific requirement that may correlate with differences in regioselectivity of the reaction. Taken together, this work presents an example of production of a challenging human CYP as well as providing details regarding hydrophobic modulation of a CYP-Adx complex that is critical to human vitamin-D metabolism.
Collapse
Affiliation(s)
- Natalie Jay
- Department of Biochemistry, University at Buffalo, Buffalo, New York 14203, United States
| | - Sean R Duffy
- Department of Biochemistry, University at Buffalo, Buffalo, New York 14203, United States
| | - D Fernando Estrada
- Department of Biochemistry, University at Buffalo, Buffalo, New York 14203, United States
| |
Collapse
|
7
|
Glass SM, Webb SN, Guengerich FP. Binding of cytochrome P450 27C1, a retinoid desaturase, to its accessory protein adrenodoxin. Arch Biochem Biophys 2021; 714:109076. [PMID: 34732331 DOI: 10.1016/j.abb.2021.109076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 01/11/2023]
Abstract
Of the 57 human cytochrome P450 (P450) enzymes, seven are mitochondrial: 11A1, 11B1, 11B2, 24A1, 27A1, 27B1, and 27C1. Mitochondrial P450s utilize an electron transport system with adrenodoxin (Adx) and NADPH-adrenodoxin reductase (AdR). AdR reduces Adx, which then transfers electrons to the P450. The interactions between proteins in the mitochondrial P450 system are largely driven by electrostatic interactions, though the specifics vary depending on the P450. Unlike other mitochondrial P450s, the interaction between P450 27C1, a retinoid 3,4-desaturase expressed in the skin, and Adx remains largely uncharacterized. In this work, we utilized an Alexa Fluor 488 C5 maleimide-labeled Adx to measure binding affinities between Adx and P450 27C1 or AdR. Both proteins bound Adx tightly, with Kd values < 100 nM, and binding affinities decreased with increasing ionic strength, supporting the role of electrostatic interactions in mediating these interactions. Cross-linking mass spectrometry and computational modeling were performed to identify interactions between P450 27C1 and Adx. While the residues of Adx identified in interactions were consistent with studies of other mitochondrial P450s, the binding interface of P450 27C1 was quite large and supported multiple Adx binding positions, including ones outside of the canonical Adx binding site. Additionally, Adx did not appear to be an allosteric effector of P450 27C1 substrate binding, in contrast to some other mitochondrial P450s. Overall, we conclude that P450-Adx interactions are P450-specific.
Collapse
Affiliation(s)
- Sarah M Glass
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States
| | - Stephany N Webb
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States.
| |
Collapse
|
8
|
Zhang H, Zhou Q, Guo C, Feng L, Wang H, Liao X, Lin D. Structural Basis for the C-Terminal Domain of Mycobacterium tuberculosis Ribosome Maturation Factor RimM to Bind Ribosomal Protein S19. Biomolecules 2021; 11:597. [PMID: 33919647 PMCID: PMC8073977 DOI: 10.3390/biom11040597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 01/25/2023] Open
Abstract
Multidrug-resistant tuberculosis (TB) is a serious threat to public health, calling for the development of new anti-TB drugs. Chaperon protein RimM, involved in the assembly of ribosomal protein S19 into 30S ribosomal subunit during ribosome maturation, is a potential drug target for TB treatment. The C-terminal domain (CTD) of RimM is primarily responsible for binding S19. However, both the CTD structure of RimM from Mycobacterium tuberculosis (MtbRimMCTD) and the molecular mechanisms underlying MtbRimMCTD binding S19 remain elusive. Here, we report the solution structure, dynamics features of MtbRimMCTD, and its interaction with S19. MtbRimMCTD has a rigid hydrophobic core comprised of a relatively conservative six-strand β-barrel, tailed with a short α-helix and interspersed with flexible loops. Using several biophysical techniques including surface plasmon resonance (SPR) affinity assays, nuclear magnetic resonance (NMR) assays, and molecular docking, we established a structural model of the MtbRimMCTD-S19 complex and indicated that the β4-β5 loop and two nonconserved key residues (D105 and H129) significantly contributed to the unique pattern of MtbRimMCTD binding S19, which might be implicated in a form of orthogonality for species-dependent RimM-S19 interaction. Our study provides the structural basis for MtbRimMCTD binding S19 and is beneficial to the further exploration of MtbRimM as a potential target for the development of new anti-TB drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Donghai Lin
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (H.Z.); (Q.Z.); (C.G.); (L.F.); (H.W.); (X.L.)
| |
Collapse
|
9
|
Yablokov EO, Sushko TA, Kaluzhskiy LA, Kavaleuski AA, Mezentsev YV, Ershov PV, Gilep AA, Ivanov АS, Strushkevich NV. Substrate-induced modulation of protein-protein interactions within human mitochondrial cytochrome P450-dependent system. J Steroid Biochem Mol Biol 2021; 208:105793. [PMID: 33271253 DOI: 10.1016/j.jsbmb.2020.105793] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/18/2020] [Accepted: 11/14/2020] [Indexed: 12/28/2022]
Abstract
Steroidogenesis is strictly regulated at multiple levels, as produced steroid hormones are crucial to maintain physiological functions. Cytochrome P450 enzymes are key players in adrenal steroid hormone biosynthesis and function within short redox-chains in mitochondria and endoplasmic reticulum. However, mechanisms regulating supply of reducing equivalents in the mitochondrial CYP-dependent system are not fully understood. In the present work, we aimed to estimate how the specific steroids, substrates, intermediates and products of multistep reactions modulate protein-protein interactions between adrenodoxin (Adx) and mitochondrial CYP11 s. Using the SPR technology we determined that steroid substrates affect affinity and stability of CYP11s-Adx complexes in an isoform-specific mode. In particular, cholesterol induces a 4-fold increase in the rate of CYP11A1 - Adx complex formation without significant effect on dissociation (koff decreased ∼1.5-fold), overall increasing complex affinity. At the same time steroid substrates decrease the affinity of both CYP11B1 - Adx and CYP11B2 - Adx complexes, predominantly reducing their stability (4-7 fold). This finding reveals differentiation of protein-protein interactions within the mitochondrial pool of CYPs, which have the same electron donor. The regulation of electron supply by the substrates might affect the overall steroid hormones production. Our experimental data provide further insight into protein-protein interactions within CYP-dependent redox chains involved in steroidogenesis.
Collapse
Affiliation(s)
- E O Yablokov
- Institute of Biomedical Chemistry, 119121, Pogodinskaya str. 10, Building 8, Moscow, Russia.
| | - T A Sushko
- Department of Bioengineering, School of Engineering, The University of Tokyo, 4-6 - 1 Shirokanedai, Minato-ku, 108-8639, Tokyo, Japan
| | - L A Kaluzhskiy
- Institute of Biomedical Chemistry, 119121, Pogodinskaya str. 10, Building 8, Moscow, Russia
| | - A A Kavaleuski
- Institute of Bioorganic Chemistry National Academy of Sciences of Belarus, 220141, Kuprevicha str. 5/2, Minsk, Belarus
| | - Y V Mezentsev
- Institute of Biomedical Chemistry, 119121, Pogodinskaya str. 10, Building 8, Moscow, Russia
| | - P V Ershov
- Institute of Biomedical Chemistry, 119121, Pogodinskaya str. 10, Building 8, Moscow, Russia
| | - A A Gilep
- Institute of Bioorganic Chemistry National Academy of Sciences of Belarus, 220141, Kuprevicha str. 5/2, Minsk, Belarus
| | - А S Ivanov
- Institute of Biomedical Chemistry, 119121, Pogodinskaya str. 10, Building 8, Moscow, Russia
| | - N V Strushkevich
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205, Moscow, Russia
| |
Collapse
|
10
|
Brixius-Anderko S, Scott EE. Structural and functional insights into aldosterone synthase interaction with its redox partner protein adrenodoxin. J Biol Chem 2021; 296:100794. [PMID: 34015331 PMCID: PMC8215293 DOI: 10.1016/j.jbc.2021.100794] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 01/27/2023] Open
Abstract
Aldosterone is the major mineralocorticoid in the human body controlling blood pressure and salt homeostasis. Overproduction of aldosterone leads to primary aldosteronism, which is the most common form of secondary hypertension with limited treatment options. Production of aldosterone by cytochrome P450 11B2 (CYP11B2, aldosterone synthase) requires two reduction events with the electrons delivered by the iron/sulfur protein adrenodoxin. Very limited information is available about the structural and functional basis of adrenodoxin/CYP11B2 interaction, which impedes the development of new treatment options for primary aldosteronism. A systematic study was carried out to determine if adrenodoxin interaction with CYP11B2 might also have an allosteric component in addition to electron transfer. Indeed, local increases in adrenodoxin concentration promote binding of the substrate 11-deoxycorticosterone and the inhibitor osilodrostat (LCI699) in the active site-over 17 Å away-as well as enhance the inhibitory effect of this latter drug. The CYP11B2 structure in complex with adrenodoxin identified specific residues at the protein-protein interface interacting via five salt bridges and four hydrogen bonds. Comparisons with cholesterol-metabolizing CYP11A1 and cortisol-producing CYP11B1, which also bind adrenodoxin, revealed substantial structural differences in these regions. The structural and functional differences between different P450 interactions with adrenodoxin may provide valuable clues for an orthogonal treatment approach for primary aldosteronism by specifically targeting the interaction between CYP11B2 and adrenodoxin.
Collapse
Affiliation(s)
| | - Emily E Scott
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA; Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
11
|
Child SA, Reddish MJ, Glass SM, Goldfarb MH, Barckhausen IR, Guengerich FP. Functional interactions of adrenodoxin with several human mitochondrial cytochrome P450 enzymes. Arch Biochem Biophys 2020; 694:108596. [PMID: 32980349 DOI: 10.1016/j.abb.2020.108596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/11/2022]
Abstract
Seven of the 57 human cytochrome P450 (P450) enzymes are mitochondrial and carry out important reactions with steroids and vitamins A and D. These seven P450s utilize an electron transport chain that includes NADPH, NADPH-adrenodoxin reductase (AdR), and adrenodoxin (Adx) instead of the diflavin NADPH-P450 reductase (POR) used by the other P450s in the endoplasmic reticulum. Although numerous studies have been published involving mitochondrial P450 systems, the experimental conditions vary considerably. We compared human Adx and bovine Adx, a commonly used component, and found very similar catalytic activities in reactions catalyzed by human P450s 11B2, 27A1, and 27C1. Binding constants of 6-200 nM were estimated for Adx binding to these P450s using microscale thermophoresis. All P450 catalytic reactions were saturated at 10 μM Adx, and higher concentrations were not inhibitory up to at least 50 μM. Collectively these studies demonstrate the tight binding of Adx (both human and bovine) to AdR and to several mitochondrial P450s and provide guidance for optimization of Adx-dependent P450 reactions.
Collapse
Affiliation(s)
- Stella A Child
- The Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States
| | - Michael J Reddish
- The Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States
| | - Sarah M Glass
- The Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States
| | - Margo H Goldfarb
- The Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States
| | - Ian R Barckhausen
- The Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States
| | - F Peter Guengerich
- The Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, United States.
| |
Collapse
|