1
|
Chen X, Chowdhury MN, Jin H. An Intrinsically Disordered RNA Binding Protein Modulates mRNA Translation and Storage. J Mol Biol 2025; 437:168884. [PMID: 39617253 DOI: 10.1016/j.jmb.2024.168884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/15/2024]
Abstract
Proteins with intrinsically disordered regions (IDR) play diverse functions in regulating gene expression in the cell. Many of these proteins interact with cytoplasmic ribosomes. However, the molecular functions related to the interactions are largely unclear. In this study, using an abundant RNA-binding protein, Sbp1, with a structurally well-defined RNA recognition motif and an intrinsically disordered RGG domain as a model system, we investigated how an RNA binding protein with IDR modulates mRNA storage and translation. Using genomic and molecular approaches, we show that Sbp1 slows ribosome movement on cellular mRNAs and promotes polysome stacking or aggregation. Sbp1-associated polysomes display a ring-shaped structure in addition to a beads-on-string morphology visualized under the electron microscope, likely to be an intermediate slow translation state between actively translating polysomes and the translation-sequestered RNA granule. Moreover, the binding of Sbp1 to the 5'UTRs of mRNAs represses both cap-dependent and cap-independent translation initiation of proteins, many are functionally important for general protein synthesis in the cell. Finally, post-translational modifications at the arginine in the RGG motif change the Sbp1 protein interactome and play important roles in directing cellular mRNAs to either translation or storage. Taken together, our study demonstrates that under physiological conditions, intrinsically disordered RNA binding proteins promote polysome aggregation and regulate mRNA translation and storage using multiple distinctive mechanisms. This research also establishes a framework with which functions of other IDR-containing proteins can be investigated and defined.
Collapse
Affiliation(s)
- Xin Chen
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, United States
| | - Mashiat N Chowdhury
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, United States
| | - Hong Jin
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, United States; Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, United States; Carl R. Woese Institute for Genomic Biology, 1206 West Gregory Drive, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, United States.
| |
Collapse
|
2
|
Scarpitti MR, Pastore B, Tang W, Kearse MG. Characterization of ribosome stalling and no-go mRNA decay stimulated by the fragile X protein, FMRP. J Biol Chem 2024; 300:107540. [PMID: 38971316 PMCID: PMC11338112 DOI: 10.1016/j.jbc.2024.107540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/22/2024] [Accepted: 06/29/2024] [Indexed: 07/08/2024] Open
Abstract
Loss of functional fragile X mental retardation protein (FMRP) causes fragile X syndrome and is the leading monogenic cause of autism spectrum disorders and intellectual disability. FMRP is most notably a translational repressor and is thought to inhibit translation elongation by stalling ribosomes as FMRP-bound polyribosomes from brain tissue are resistant to puromycin and nuclease treatment. Here, we present data showing that the C-terminal noncanonical RNA-binding domain of FMRP is essential and sufficient to induce puromycin-resistant mRNA•ribosome complexes. Given that stalled ribosomes can stimulate ribosome collisions and no-go mRNA decay (NGD), we tested the ability of FMRP to drive NGD of its target transcripts in neuroblastoma cells. Indeed, FMRP and ribosomal proteins, but not poly(A)-binding protein, were enriched in isolated nuclease-resistant disomes compared to controls. Using siRNA knockdown and RNA-seq, we identified 16 putative FMRP-mediated NGD substrates, many of which encode proteins involved in neuronal development and function. Increased mRNA stability of four putative substrates was also observed when either FMRP was depleted or NGD was prevented via RNAi. Taken together, these data support that FMRP stalls ribosomes but only stimulates NGD of a small select set of transcripts, revealing a minor role of FMRP that would be misregulated in fragile X syndrome.
Collapse
Affiliation(s)
- MaKenzie R Scarpitti
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Benjamin Pastore
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Wen Tang
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Michael G Kearse
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
3
|
Scarpitti MR, Pastore B, Tang W, Kearse MG. Characterization of ribosome stalling and no-go mRNA decay stimulated by the Fragile X protein, FMRP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.577121. [PMID: 38352534 PMCID: PMC10862907 DOI: 10.1101/2024.02.02.577121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Loss of functional fragile X mental retardation protein (FMRP) causes fragile X syndrome (FXS) and is the leading monogenic cause of autism spectrum disorders and intellectual disability. FMRP is most notably a translational repressor and is thought to inhibit translation elongation by stalling ribosomes as FMRP-bound polyribosomes from brain tissue are resistant to puromycin and nuclease treatment. Here, we present data showing that the C-terminal non-canonical RNA-binding domain of FMRP is essential and sufficient to induce puromycin-resistant mRNA•ribosome complexes. Given that stalled ribosomes can stimulate ribosome collisions and no-go mRNA decay (NGD), we tested the ability of FMRP to drive NGD of its target transcripts in neuroblastoma cells. Indeed, FMRP and ribosomal proteins, but not PABPC1, were enriched in isolated nuclease-resistant disomes compared to controls. Using siRNA knockdown and RNA-seq, we identified 16 putative FMRP-mediated NGD substrates, many of which encode proteins involved in neuronal development and function. Increased mRNA stability of the putative substrates was also observed when either FMRP was depleted or NGD was prevented via RNAi. Taken together, these data support that FMRP stalls ribosomes and can stimulate NGD of a select set of transcripts in cells, revealing an unappreciated role of FMRP that would be misregulated in FXS.
Collapse
|
4
|
Kaul N, Pradhan SJ, Boin NG, Mason MM, Rosales J, Starke EL, Wilkinson EC, Chapman EG, Barbee SA. FMRP cooperates with miRISC components to repress translation and regulate neurite morphogenesis in Drosophila. RNA Biol 2024; 21:11-22. [PMID: 39190491 PMCID: PMC11352701 DOI: 10.1080/15476286.2024.2392304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Fragile X Syndrome (FXS) is the most common inherited form of intellectual disability and is caused by mutations in the gene encoding the Fragile X messenger ribonucleoprotein (FMRP). FMRP is an evolutionarily conserved and neuronally enriched RNA-binding protein (RBP) with functions in RNA editing, RNA transport, and protein translation. Specific target RNAs play critical roles in neurodevelopment, including the regulation of neurite morphogenesis, synaptic plasticity, and cognitive function. The different biological functions of FMRP are modulated by its cooperative interaction with distinct sets of neuronal RNA and protein-binding partners. Here, we focus on interactions between FMRP and components of the microRNA (miRNA) pathway. Using the Drosophila S2 cell model system, we show that the Drosophila ortholog of FMRP (dFMRP) can repress translation when directly tethered to a reporter mRNA. This repression requires the activity of AGO1, GW182, and MOV10/Armitage, conserved proteins associated with the miRNA-containing RNA-induced silencing complex (miRISC). Additionally, we find that untagged dFMRP can interact with a short stem-loop sequence in the translational reporter, a prerequisite for repression by exogenous miR-958. Finally, we demonstrate that dFmr1 interacts genetically with GW182 to control neurite morphogenesis. These data suggest that dFMRP may recruit the miRISC to nearby miRNA binding sites and repress translation via its cooperative interactions with evolutionarily conserved components of the miRNA pathway.
Collapse
Affiliation(s)
- Navneeta Kaul
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Sarala J. Pradhan
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Nathan G. Boin
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Madeleine M. Mason
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Julian Rosales
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, USA
| | - Emily L. Starke
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Emily C. Wilkinson
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Erich G. Chapman
- Department of Biological Sciences, University of Denver, Denver, CO, USA
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, USA
- Molecular and Cellular Biophysics Program, University of Denver, Denver, CO, USA
| | - Scott A. Barbee
- Department of Biological Sciences, University of Denver, Denver, CO, USA
- Molecular and Cellular Biophysics Program, University of Denver, Denver, CO, USA
| |
Collapse
|
5
|
Chaves-Arquero B, Collins KM, Abis G, Kelly G, Christodoulou E, Taylor IA, Ramos A. Affinity-enhanced RNA-binding domains as tools to understand RNA recognition. CELL REPORTS METHODS 2023; 3:100508. [PMID: 37426752 PMCID: PMC10326445 DOI: 10.1016/j.crmeth.2023.100508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/14/2023] [Accepted: 05/30/2023] [Indexed: 07/11/2023]
Abstract
Understanding how the RNA-binding domains of a protein regulator are used to recognize its RNA targets is a key problem in RNA biology, but RNA-binding domains with very low affinity do not perform well in the methods currently available to characterize protein-RNA interactions. Here, we propose to use conservative mutations that enhance the affinity of RNA-binding domains to overcome this limitation. As a proof of principle, we have designed and validated an affinity-enhanced K-homology (KH) domain mutant of the fragile X syndrome protein FMRP, a key regulator of neuronal development, and used this mutant to determine the domain's sequence preference and to explain FMRP recognition of specific RNA motifs in the cell. Our results validate our concept and our nuclear magnetic resonance (NMR)-based workflow. While effective mutant design requires an understanding of the underlying principles of RNA recognition by the relevant domain type, we expect the method will be used effectively in many RNA-binding domains.
Collapse
Affiliation(s)
- Belén Chaves-Arquero
- Institute of Structural and Molecular Biology (ISMB), University College London, London WC1E 6AA, UK
- Department of Structural and Chemical Biology, Center for Biological Research, CIB, CSIC, Av. Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Katherine M. Collins
- Institute of Structural and Molecular Biology (ISMB), University College London, London WC1E 6AA, UK
| | - Giancarlo Abis
- Institute of Structural and Molecular Biology (ISMB), University College London, London WC1E 6AA, UK
| | - Geoff Kelly
- The Medical Research Council Biomedical NMR Centre, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Evangelos Christodoulou
- Structural Biology Science Technology Platform, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ian A. Taylor
- Macromolecular Structure Laboratory, the Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Andres Ramos
- Institute of Structural and Molecular Biology (ISMB), University College London, London WC1E 6AA, UK
| |
Collapse
|
6
|
Chowdhury MN, Chen X, Jin H. An intrinsically Disordered RNA Binding Protein Modulates mRNA Translation and Storage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541713. [PMID: 37293096 PMCID: PMC10245857 DOI: 10.1101/2023.05.22.541713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Many proteins with intrinsically disordered regions interact with cytoplasmic ribosomes. However, many of the molecular functions related to these interactions are unclear. In this study, using an abundant RNA-binding protein with a structurally well-defined RNA recognition motif and an intrinsically disordered RGG domain as a model system, we investigated how this protein modulates mRNA storage and translation. Using genomic and molecular approaches, we show that the presence of Sbp1 slows ribosome movement on cellular mRNAs and promotes polysome stalling. Sbp1-associated polysomes display a ring-shaped structure in addition to a beads-on-string morphology visualized under electron microscope. Moreover, post-translational modifications at the RGG motif play important roles in directing cellular mRNAs to either translation or storage. Finally, binding of Sbp1 to the 5'UTRs of mRNAs represses both cap-dependent and cap-independent translation initiation of proteins functionally important for general protein synthesis in the cell. Taken together, our study demonstrates an intrinsically disordered RNA binding protein regulates mRNA translation and storage via distinctive mechanisms under physiological conditions and establishes a framework with which functions of important RGG-proteins can be investigated and defined.
Collapse
Affiliation(s)
- Mashiat N. Chowdhury
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801
| | - Xin Chen
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801
| | - Hong Jin
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, 1206 West Gregory Drive, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801
| |
Collapse
|
7
|
Chowdhury MN, Jin H. The RGG motif proteins: Interactions, functions, and regulations. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1748. [PMID: 35661420 PMCID: PMC9718894 DOI: 10.1002/wrna.1748] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 01/31/2023]
Abstract
Proteins with motifs rich in arginines and glycines were discovered decades ago and are functionally involved in a staggering range of essential processes in the cell. Versatile, specific, yet adaptable molecular interactions enabled by the unique combination of arginine and glycine, combined with multiplicity of molecular recognition conferred by repeated di-, tri-, and multiple peptide motifs, allow RGG motif proteins to interact with a broad range of proteins and nucleic acids. Furthermore, posttranslational modifications at the arginines in the motif extend the RGG protein's capacity for a fine-tuned regulation. In this review, we focus on the biochemical properties of the RGG motif, its molecular interactions with RNAs and proteins, and roles of the posttranslational modification in modulating their interactions. We discuss current knowledge of the RGG motif proteins involved in mRNA transport and translation, highlight our merging understanding of their molecular functions in translational regulation and summarize areas of research in the future critical in understanding this important family of proteins. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Mechanisms.
Collapse
Affiliation(s)
- Mashiat N. Chowdhury
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801
| | - Hong Jin
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801,Carl R. Woese Institute for Genomic Biology, 1206 West Gregory Drive, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801,Corresponding author: Phone: (217)244-9493, Fax: (217)244-5858,
| |
Collapse
|
8
|
Scarpitti MR, Warrick JE, Yoder EL, Kearse MG. A noncanonical RNA-binding domain of the fragile X protein, FMRP, elicits translational repression independent of mRNA G-quadruplexes. J Biol Chem 2022; 298:102660. [PMID: 36328245 PMCID: PMC9712993 DOI: 10.1016/j.jbc.2022.102660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022] Open
Abstract
Loss of functional fragile X mental retardation protein (FMRP) causes fragile X syndrome, the leading form of inherited intellectual disability and the most common monogenic cause of autism spectrum disorders. FMRP is an RNA-binding protein that controls neuronal mRNA localization and translation. FMRP is thought to inhibit translation elongation after being recruited to target transcripts via binding RNA G-quadruplexes (G4s) within the coding sequence. Here, we directly test this model and report that FMRP inhibits translation independent of mRNA G4s. Furthermore, we found that the RGG box motif together with its natural C-terminal domain forms a noncanonical RNA-binding domain (ncRBD) that is essential for translational repression. The ncRBD elicits broad RNA-binding ability and binds to multiple reporter mRNAs and all four homopolymeric RNAs. Serial deletion analysis of the ncRBD identified that the regions required for mRNA binding and translational repression overlap but are not identical. Consistent with FMRP stalling elongating ribosomes and causing the accumulation of slowed 80S ribosomes, transcripts bound by FMRP via the ncRBD cosediment with heavier polysomes and were present in puromycin-resistant ribosome complexes. Together, this work identifies a ncRBD and translational repression domain that shifts our understanding of how FMRP inhibits translation independent of mRNA G4s.
Collapse
Affiliation(s)
- MaKenzie R Scarpitti
- The Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio, USA; Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio, USA; Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Julia E Warrick
- The Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio, USA; Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio, USA; Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Evelyn L Yoder
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio, USA; Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Michael G Kearse
- The Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio, USA; Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio, USA; Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
9
|
D'Souza MN, Ramakrishna S, Radhakrishna BK, Jhaveri V, Ravindran S, Yeramala L, Nair D, Palakodeti D, Muddashetty RS. Function of FMRP Domains in Regulating Distinct Roles of Neuronal Protein Synthesis. Mol Neurobiol 2022; 59:7370-7392. [PMID: 36181660 DOI: 10.1007/s12035-022-03049-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022]
Abstract
The Fragile-X Mental Retardation Protein (FMRP) is an RNA binding protein that regulates translation of mRNAs essential for synaptic development and plasticity. FMRP interacts with a specific set of mRNAs, aids in their microtubule-dependent transport and regulates their translation through its association with ribosomes. However, the biochemical role of FMRP's domains in forming neuronal granules and associating with microtubules and ribosomes is currently undefined. We report that the C-terminus domain of FMRP is sufficient to bind to ribosomes akin to the full-length protein. Furthermore, the C-terminus domain alone is essential and responsible for FMRP-mediated neuronal translation repression. However, dendritic distribution of FMRP and its microtubule association is favored by the synergistic combination of FMRP domains rather than individual domains. Interestingly, we show that the phosphorylation of hFMRP at Serine-500 is important in modulating the dynamics of translation by controlling ribosome association. This is a fundamental mechanism governing the size and number of FMRP puncta that contain actively translating ribosomes. Finally through the use of pathogenic mutations, we emphasize the hierarchical contribution of FMRP's domains in translation regulation.
Collapse
Affiliation(s)
- Michelle Ninochka D'Souza
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India, 560065.,The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, India, 560064.,Centre for Brain Research, Indian Institute of Science, CV Raman Avenue, Bangalore, India, 560012
| | - Sarayu Ramakrishna
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India, 560065.,The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, India, 560064.,Centre for Brain Research, Indian Institute of Science, CV Raman Avenue, Bangalore, India, 560012
| | | | - Vishwaja Jhaveri
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India, 560065
| | - Sreenath Ravindran
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India, 560065
| | - Lahari Yeramala
- National Centre For Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India, 560065
| | - Deepak Nair
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India, 560012
| | - Dasaradhi Palakodeti
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India, 560065
| | - Ravi S Muddashetty
- Centre for Brain Research, Indian Institute of Science, CV Raman Avenue, Bangalore, India, 560012.
| |
Collapse
|
10
|
The Fragile X Proteins Differentially Regulate Translation of Reporter mRNAs with G-quadruplex Structures. J Mol Biol 2022; 434:167396. [PMID: 34896112 PMCID: PMC8892671 DOI: 10.1016/j.jmb.2021.167396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/29/2021] [Accepted: 12/01/2021] [Indexed: 02/01/2023]
Abstract
Fragile X Syndrome, as well as some manifestations of autism spectrum disorder, results from improper RNA regulation due to a deficiency of fragile X mental retardation protein (FMRP). FMRP and its autosomal paralogs, fragile X related proteins 1 & 2 (FXR1P/2P), have been implicated in many aspects of RNA regulation, from protein synthesis to mRNA stability and decay. The literature on the fragile X related proteins' (FXPs) role in mRNA regulation and their potential mRNA targets is vast. Therefore, we developed an approach to investigate the function of FXPs in translational control using three potential mRNA targets. Briefly, we first selected top mRNA candidates found to be associated with the FXPs and whose translation are influenced by one or more of the FXPs. We then narrowed down the FXPs' binding site(s) within the mRNA, analyzed the strength of this binding in vitro, and determined how each FXP affects the translation of a minimal reporter mRNA with the binding site. Overall, all FXPs bound with high affinity to RNAs containing G-quadruplexes, such as Cyclin Dependent Kinase Inhibitor p21 and FMRP's own coding region. Interestingly, FMRP inhibited the translation of each mRNA distinctly and in a manner that appears to correlate with its binding to each mRNA. In contrast, FXR1P/2P inhibited all mRNAs tested. Finally, although binding of our RNAs was due to the RGG (arginine-glycine-glycine) motif-containing C-terminal region of the FXPs, this region was not sufficient to cause inhibition of translation.
Collapse
|
11
|
Hecw controls oogenesis and neuronal homeostasis by promoting the liquid state of ribonucleoprotein particles. Nat Commun 2021; 12:5488. [PMID: 34531401 PMCID: PMC8446043 DOI: 10.1038/s41467-021-25809-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 08/31/2021] [Indexed: 01/17/2023] Open
Abstract
Specialised ribonucleoprotein (RNP) granules are a hallmark of polarized cells, like neurons and germ cells. Among their main functions is the spatial and temporal modulation of the activity of specific mRNA transcripts that allow specification of primary embryonic axes. While RNPs composition and role are well established, their regulation is poorly defined. Here, we demonstrate that Hecw, a newly identified Drosophila ubiquitin ligase, is a key modulator of RNPs in oogenesis and neurons. Hecw depletion leads to the formation of enlarged granules that transition from a liquid to a gel-like state. Loss of Hecw activity results in defective oogenesis, premature aging and climbing defects associated with neuronal loss. At the molecular level, reduced ubiquitination of the Fmrp impairs its translational repressor activity, resulting in altered Orb expression in nurse cells and Profilin in neurons. Ribonucleoprotein (RNP) granules are responsible for mRNA transport and local translation required for neuronal and oocyte maturation. Here the authors show that loss of the Drosophila Ub ligase Hecw enlarges RNP granules, leads to a liquid to gel-like transition, and results in defective oogenesis and neuronal loss.
Collapse
|