1
|
Gusenda C, Calixto AR, Da Silva JR, Fernandes PA, Grininger M. The Kinetics of Carbon-Carbon Bond Formation in Metazoan Fatty Acid Synthase and Its Impact on Product Fidelity. Angew Chem Int Ed Engl 2025; 64:e202412195. [PMID: 39526922 PMCID: PMC11720392 DOI: 10.1002/anie.202412195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Fatty acid synthase (FAS) multienzymes are responsible for de novo fatty acid biosynthesis and crucial in primary metabolism. Despite extensive research, the molecular details of the FAS catalytic mechanisms are still poorly understood. For example, the β-ketoacyl synthase (KS) catalyzes the fatty acid elongating carbon-carbon-bond formation, which is the key catalytic step in biosynthesis, but factors that determine the speed and accuracy of his reaction are still unclear. Here, we report enzyme kinetics of the KS-mediated carbon-carbon bond formation, enabled by a continuous fluorometric activity assay. We observe that the KS is likely rate-limiting to the fatty acid biosynthesis, its kinetics are adapted to the length of the bound fatty acyl chain, and that the KS is also responsible for the fidelity of biosynthesis by preventing intermediates from undergoing KS-mediated elongation. To provide mechanistic insight into KS selectivity, we performed computational molecular dynamics (MD) simulations. We identify positive cooperativity of the KS dimer, which we suggest to affect the conformational variability of the multienzyme. Advancing our knowledge about the KS molecular mechanism will pave the ground for engineering FAS for biotechnology applications and the design of new therapeutics targeting the fatty acid metabolism.
Collapse
Affiliation(s)
- Christian Gusenda
- Institute of Organic Chemistry and Chemical BiologyBuchmann Institute of Molecular Life SciencesGoethe University FrankfurtMax-von-Laue-Str. 1560438Frankfurt am MainGermany
| | - Ana R. Calixto
- LAQV, REQUIMTEDepartamento de Química e BioquímicaFaculdade de CiênciasUniversidade do PortoRua do Campo Alegre s/n4169-007PortoPortugal
| | - Joana R. Da Silva
- LAQV, REQUIMTEDepartamento de Química e BioquímicaFaculdade de CiênciasUniversidade do PortoRua do Campo Alegre s/n4169-007PortoPortugal
| | - Pedro A. Fernandes
- LAQV, REQUIMTEDepartamento de Química e BioquímicaFaculdade de CiênciasUniversidade do PortoRua do Campo Alegre s/n4169-007PortoPortugal
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical BiologyBuchmann Institute of Molecular Life SciencesGoethe University FrankfurtMax-von-Laue-Str. 1560438Frankfurt am MainGermany
| |
Collapse
|
2
|
Miyada MG, Choi Y, Rich K, La Clair JJ, Burkart MD. Differentiating carrier protein interactions in biosynthetic pathways using dapoxyl solvatochromism. Chem Sci 2024; 15:19913-19919. [PMID: 39568935 PMCID: PMC11575542 DOI: 10.1039/d4sc05499g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024] Open
Abstract
Carrier protein-dependent synthases are ubiquitous enzymes involved both in primary and secondary metabolism. Biocatalysis within these synthases is governed by key interactions between the carrier protein, substrate, and partner enzymes. The weak and transient nature of these interactions has rendered them difficult to study. Here we develop a useful fluorescent solvatochromic probe, dapoxyl-pantetheinamide, to monitor and quantify carrier protein interactions in vitro. Upon loading with target carrier proteins, we observe dramatic shifts in fluorescence emission wavelength and intensity and further demonstrate that this tool has the potential to be applied across numerous biosynthetic pathways. The environmental sensitivity of this probe allows rapid characterization of carrier protein interactions, with the ability to quantitatively determine inhibition of protein-protein interactions. We anticipate future application of these probes for inhibitor screening and in vivo characterization.
Collapse
Affiliation(s)
- Matthew G Miyada
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive, La Jolla CA 92093-0358 USA
| | - Yuran Choi
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive, La Jolla CA 92093-0358 USA
| | - Kyle Rich
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive, La Jolla CA 92093-0358 USA
| | - James J La Clair
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive, La Jolla CA 92093-0358 USA
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive, La Jolla CA 92093-0358 USA
| |
Collapse
|
3
|
Gang J, Ping Y, Du C. Anti-Magnaporthe oryzae Activity of Streptomyces bikiniensis HD-087 In Vitro and Bioinformatics Analysis of Polyketide Synthase Gene pksL. Curr Microbiol 2024; 81:379. [PMID: 39340701 DOI: 10.1007/s00284-024-03898-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024]
Abstract
Streptomyces bikiniensis HD-087 is capable of synthesizing various antimicrobial substances to counter the detrimental effects of hazardous microorganisms. To elucidate whether it produces polyketide antibiotics and the synthesis mechanism of antibiotic substances, the metabolites and related genes of S. bikiniensis HD-087 were analyzed through LC-MS, anti-Magnaporthe oryzae activity detection, and bioinformatics approaches. The result indicated that the strain HD-087 could produce erythromycin, a polyketide antibiotic. The inhibitory zones of the fermentation supernatant of strain HD-087 and methanol solution of erythromycin extract against M. oryzae were 40.84 ± 0.68 mm and 33.18 ± 0.81 mm, respectively. The IC50 value of erythromycin extract for inhibiting spore germination of erythromycin extract was 220.43 μg/mL. There are two polyketide synthesis gene clusters in the genome of strain HD-087, namely t1pks-nrps and t3pks-lantipeptide-t1pks-nrps. The key gene pksL in the t3pks-lantipeptide-t1pks-nrps gene cluster was predicted. The results suggested that it encodes a stable, hydrophilic, and acidic protein, mainly composed of α-helix and random coil. The PksL protein contains dehydrogenase (DH), ketone reductase (KR), acyl carrier protein (ACP), and ketone synthase (KS) domains. Moreover, it can form interaction networks with 11 proteins containing domains, such as polyketide synthase and ACP synthase. The molecular docking between PksL and acetyl-CoA is stable and strong, suggesting that PksL protein could catalyze the synthesis of polyketides with CoA as a substrate. This study provides a theoretical basis for further exploring the polyketides synthesis mechanism and developing antifungal metabolites in S. bikiniensis HD-087.
Collapse
Affiliation(s)
- Jiahan Gang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Yuan Ping
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Chunmei Du
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
4
|
Chen A, Re RN, Davis TD, Tran K, Moriuchi YW, Wu S, La Clair JJ, Louie GV, Bowman ME, Clarke DJ, Mackay CL, Campopiano DJ, Noel JP, Burkart MD. Visualizing the Interface of Biotin and Fatty Acid Biosynthesis through SuFEx Probes. J Am Chem Soc 2024; 146:1388-1395. [PMID: 38176024 DOI: 10.1021/jacs.3c10181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Site-specific covalent conjugation offers a powerful tool to identify and understand protein-protein interactions. In this study, we discover that sulfur fluoride exchange (SuFEx) warheads effectively crosslink the Escherichia coli acyl carrier protein (AcpP) with its partner BioF, a key pyridoxal 5'-phosphate (PLP)-dependent enzyme in the early steps of biotin biosynthesis by targeting a tyrosine residue proximal to the active site. We identify the site of crosslink by MS/MS analysis of the peptide originating from both partners. We further evaluate the BioF-AcpP interface through protein crystallography and mutational studies. Among the AcpP-interacting BioF surface residues, three critical arginine residues appear to be involved in AcpP recognition so that pimeloyl-AcpP can serve as the acyl donor for PLP-mediated catalysis. These findings validate an evolutionary gain-of-function for BioF, allowing the organism to build biotin directly from fatty acid biosynthesis through surface modifications selective for salt bridge formation with acidic AcpP residues.
Collapse
Affiliation(s)
- Aochiu Chen
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, San Diego, California 92093, United States
| | - Rebecca N Re
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, San Diego, California 92093, United States
| | - Tony D Davis
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, San Diego, California 92093, United States
| | - Kelley Tran
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, San Diego, California 92093, United States
| | - Yuta W Moriuchi
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, San Diego, California 92093, United States
| | - Sitong Wu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, San Diego, California 92093, United States
| | - James J La Clair
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, San Diego, California 92093, United States
| | - Gordon V Louie
- Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, San Diego, California 92037, United States
| | - Marianne E Bowman
- Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, San Diego, California 92037, United States
| | - David J Clarke
- EaSTCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Rd, Edinburgh EH9 3FJ, U.K
| | - C Logan Mackay
- EaSTCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Rd, Edinburgh EH9 3FJ, U.K
| | - Dominic J Campopiano
- EaSTCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Rd, Edinburgh EH9 3FJ, U.K
| | - Joseph P Noel
- Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, San Diego, California 92037, United States
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, San Diego, California 92093, United States
| |
Collapse
|
5
|
Mains K, Fox JM. Ketosynthase mutants enable short-chain fatty acid biosynthesis in E. coli. Metab Eng 2023; 77:118-127. [PMID: 36963462 DOI: 10.1016/j.ymben.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/26/2023]
Abstract
Cells build fatty acids in tightly regulated assembly lines, or fatty acid synthases (FASs), in which β-ketoacyl-acyl carrier protein (ACP) synthases (KSs) catalyze sequential carbon-carbon bond forming reactions that generate acyl-ACPs of varying lengths-precursors for a diverse set of lipids and oleochemicals. To date, most efforts to control fatty acid synthesis in engineered microbes have focused on modifying termination enzymes such as acyl-ACP thioesterases, which release free fatty acids from acyl-ACPs. Changes to the substrate specificity of KSs provide an alternative-and, perhaps, more generalizable-approach that focuses on controlling the acyl-ACPs available for downstream products. This study combines mutants of FabF and FabB, the two elongating KSs of the E. coli FAS, with in vitro and in vivo analyses to explore the use of KS mutants to control fatty acid synthesis. In vitro, single amino acid substitutions in the gating loop and acyl binding pocket of FabF shifted the product profiles of reconstituted FASs toward short chains and showed that KS mutants, alone, can cause large shifts in average length (i.e., 6.5-13.5). FabB, which is essential for unsaturated fatty acid synthesis, blunted this effect in vivo, but exogenously added cis-vaccenic acid (C18:1) enabled sufficient transcriptional repression of FabB to restore it. Strikingly, a single mutant of FabB afforded titers of octanoic acid as high as those generated by an engineered thioesterase. Findings indicate that fatty acid synthesis must be decoupled from microbial growth to resolve the influence of KS mutants on fatty acid profiles but show that these mutants offer a versatile approach for tuning FAS outputs.
Collapse
Affiliation(s)
- Kathryn Mains
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | - Jerome M Fox
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA.
| |
Collapse
|
6
|
Corpuz JC, Patel A, Davis TD, Podust LM, McCammon JA, Burkart MD. Essential Role of Loop Dynamics in Type II NRPS Biomolecular Recognition. ACS Chem Biol 2022; 17:2890-2898. [PMID: 36173802 PMCID: PMC9808923 DOI: 10.1021/acschembio.2c00523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Non-ribosomal peptides play a critical role in the clinic as therapeutic agents. To access more chemically diverse therapeutics, non-ribosomal peptide synthetases (NRPSs) have been targeted for engineering through combinatorial biosynthesis; however, this has been met with limited success in part due to the lack of proper protein-protein interactions between non-cognate proteins. Herein, we report our use of chemical biology to enable X-ray crystallography, molecular dynamics (MD) simulations, and biochemical studies to elucidate binding specificities between peptidyl carrier proteins (PCPs) and adenylation (A) domains. Specifically, we determined X-ray crystal structures of a type II PCP crosslinked to its cognate A domain, PigG and PigI, and of PigG crosslinked to a non-cognate PigI homologue, PltF. The crosslinked PCP-A domain structures possess large protein-protein interfaces that predominantly feature hydrophobic interactions, with specific electrostatic interactions that orient the substrate for active site delivery. MD simulations of the PCP-A domain complexes and unbound PCP structures provide a dynamical evaluation of the transient interactions formed at PCP-A domain interfaces, which confirm the previously hypothesized role of a PCP loop as a crucial recognition element. Finally, we demonstrate that the interfacial interactions at the PCP loop 1 region can be modified to control PCP binding specificity through gain-of-function mutations. This work suggests that loop conformational preferences and dynamism account for improved shape complementary in the PCP-A domain interactions. Ultimately, these studies show how crystallographic, biochemical, and computational methods can be used to rationally re-engineer NRPSs for non-cognate interactions.
Collapse
Affiliation(s)
- Joshua C. Corpuz
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0332, USA
| | - Ashay Patel
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0332, USA
| | - Tony D. Davis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0332, USA
| | - Larissa M. Podust
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0332, USA
| | - J. Andrew McCammon
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0332, USA
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla CA 92093, USA
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0332, USA
| |
Collapse
|
7
|
Chen A, Mindrebo JT, Davis TD, Kim WE, Katsuyama Y, Jiang Z, Ohnishi Y, Noel JP, Burkart MD. Mechanism-based cross-linking probes capture the Escherichia coli ketosynthase FabB in conformationally distinct catalytic states. Acta Crystallogr D Struct Biol 2022; 78:1171-1179. [PMID: 36048156 PMCID: PMC9435599 DOI: 10.1107/s2059798322007434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/20/2022] [Indexed: 11/10/2022] Open
Abstract
Ketosynthases (KSs) catalyse essential carbon-carbon bond-forming reactions in fatty-acid biosynthesis using a two-step, ping-pong reaction mechanism. In Escherichia coli, there are two homodimeric elongating KSs, FabB and FabF, which possess overlapping substrate selectivity. However, FabB is essential for the biosynthesis of the unsaturated fatty acids (UFAs) required for cell survival in the absence of exogenous UFAs. Additionally, FabB has reduced activity towards substrates longer than 12 C atoms, whereas FabF efficiently catalyses the elongation of saturated C14 and unsaturated C16:1 acyl-acyl carrier protein (ACP) complexes. In this study, two cross-linked crystal structures of FabB in complex with ACPs functionalized with long-chain fatty-acid cross-linking probes that approximate catalytic steps were solved. Both homodimeric structures possess asymmetric substrate-binding pockets suggestive of cooperative relationships between the two FabB monomers when engaged with C14 and C16 acyl chains. In addition, these structures capture an unusual rotamer of the active-site gating residue, Phe392, which is potentially representative of the catalytic state prior to substrate release. These structures demonstrate the utility of mechanism-based cross-linking methods to capture and elucidate conformational transitions accompanying KS-mediated catalysis at near-atomic resolution.
Collapse
Affiliation(s)
- Aochiu Chen
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jeffrey T. Mindrebo
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Tony D. Davis
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Woojoo E. Kim
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yohei Katsuyama
- Department of Biotechnology, The Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ziran Jiang
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yasuo Ohnishi
- Department of Biotechnology, The Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Joseph P. Noel
- Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
8
|
Chen A, Jiang Z, Burkart MD. Enzymology of standalone elongating ketosynthases. Chem Sci 2022; 13:4225-4238. [PMID: 35509474 PMCID: PMC9006962 DOI: 10.1039/d1sc07256k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/09/2022] [Indexed: 12/16/2022] Open
Abstract
The β-ketoacyl-acyl carrier protein synthase, or ketosynthase (KS), catalyses carbon-carbon bond formation in fatty acid and polyketide biosynthesis via a decarboxylative Claisen-like condensation. In prokaryotes, standalone elongating KSs interact with the acyl carrier protein (ACP) which shuttles substrates to each partner enzyme in the elongation cycle for catalysis. Despite ongoing research for more than 50 years since KS was first identified in E. coli, the complex mechanism of KSs continues to be unravelled, including recent understanding of gating motifs, KS-ACP interactions, substrate recognition and delivery, and roles in unsaturated fatty acid biosynthesis. In this review, we summarize the latest studies, primarily conducted through structural biology and molecular probe design, that shed light on the emerging enzymology of standalone elongating KSs.
Collapse
Affiliation(s)
- Aochiu Chen
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0358 USA
| | - Ziran Jiang
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0358 USA
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0358 USA
| |
Collapse
|
9
|
Prince JP, Bolla JR, Fisher GLM, Mäkelä J, Fournier M, Robinson CV, Arciszewska LK, Sherratt DJ. Acyl carrier protein promotes MukBEF action in Escherichia coli chromosome organization-segregation. Nat Commun 2021; 12:6721. [PMID: 34795302 PMCID: PMC8602292 DOI: 10.1038/s41467-021-27107-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/02/2021] [Indexed: 11/22/2022] Open
Abstract
Structural Maintenance of Chromosomes (SMC) complexes act ubiquitously to compact DNA linearly, thereby facilitating chromosome organization-segregation. SMC proteins have a conserved architecture, with a dimerization hinge and an ATPase head domain separated by a long antiparallel intramolecular coiled-coil. Dimeric SMC proteins interact with essential accessory proteins, kleisins that bridge the two subunits of an SMC dimer, and HAWK/KITE proteins that interact with kleisins. The ATPase activity of the Escherichia coli SMC protein, MukB, which is essential for its in vivo function, requires its interaction with the dimeric kleisin, MukF that in turn interacts with the KITE protein, MukE. Here we demonstrate that, in addition, MukB interacts specifically with Acyl Carrier Protein (AcpP) that has essential functions in fatty acid synthesis. We characterize the AcpP interaction at the joint of the MukB coiled-coil and show that the interaction is necessary for MukB ATPase and for MukBEF function in vivo.
Collapse
Affiliation(s)
- Josh P. Prince
- grid.4991.50000 0004 1936 8948Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK ,grid.14105.310000000122478951Present Address: Meiosis Group, Medical Research Council London Institute of Medical Sciences, Du Cane Road, London, W12 0NN UK
| | - Jani R. Bolla
- grid.4991.50000 0004 1936 8948Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ UK ,The Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford, OX1 3QU UK ,grid.4991.50000 0004 1936 8948Present Address: Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Gemma L. M. Fisher
- grid.4991.50000 0004 1936 8948Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK ,grid.14105.310000000122478951Present Address: DNA Motors Group, Medical Research Council London Institute of Medical Sciences, Du Cane Road, London, W12 0NN UK
| | - Jarno Mäkelä
- grid.4991.50000 0004 1936 8948Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK ,grid.168010.e0000000419368956Present Address: ChEM-H Institute, Stanford University, 290 Jane Stanford Way, Stanford, CA 94305 USA
| | - Marjorie Fournier
- grid.4991.50000 0004 1936 8948Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Carol V. Robinson
- grid.4991.50000 0004 1936 8948Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ UK ,The Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford, OX1 3QU UK
| | - Lidia K. Arciszewska
- grid.4991.50000 0004 1936 8948Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - David J. Sherratt
- grid.4991.50000 0004 1936 8948Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| |
Collapse
|
10
|
Wagh SB, Maslivetc VA, La Clair JJ, Kornienko A. Lessons in Organic Fluorescent Probe Discovery. Chembiochem 2021; 22:3109-3139. [PMID: 34062039 PMCID: PMC8595615 DOI: 10.1002/cbic.202100171] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/22/2021] [Indexed: 02/03/2023]
Abstract
Fluorescent probes have gained profound use in biotechnology, drug discovery, medical diagnostics, molecular and cell biology. The development of methods for the translation of fluorophores into fluorescent probes continues to be a robust field for medicinal chemists and chemical biologists, alike. Access to new experimental designs has enabled molecular diversification and led to the identification of new approaches to probe discovery. This review provides a synopsis of the recent lessons in modern fluorescent probe discovery.
Collapse
Affiliation(s)
- Sachin B Wagh
- The Department of Chemistry and Biochemistry, Texas State University, San Marcos, USA
| | - Vladimir A Maslivetc
- The Department of Chemistry and Biochemistry, Texas State University, San Marcos, USA
| | - James J La Clair
- Xenobe Research Institute, P. O. Box 3052, San Diego, CA, 92163-1062, USA
| | - Alexander Kornienko
- The Department of Chemistry and Biochemistry, Texas State University, San Marcos, USA
| |
Collapse
|
11
|
Mindrebo JT, Chen A, Kim WE, Re RN, Davis TD, Noel JP, Burkart MD. Structure and Mechanistic Analyses of the Gating Mechanism of Elongating Ketosynthases. ACS Catal 2021; 11:6787-6799. [DOI: 10.1021/acscatal.1c00745] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jeffrey T. Mindrebo
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
- Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - Aochiu Chen
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Woojoo E. Kim
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Rebecca N. Re
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Tony D. Davis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Joseph P. Noel
- Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, California 92037, United States
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| |
Collapse
|
12
|
Deciphering the Binding Interactions between Acinetobacter baumannii ACP and β-ketoacyl ACP Synthase III to Improve Antibiotic Targeting Using NMR Spectroscopy. Int J Mol Sci 2021; 22:ijms22073317. [PMID: 33805050 PMCID: PMC8036411 DOI: 10.3390/ijms22073317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/20/2021] [Accepted: 03/21/2021] [Indexed: 11/17/2022] Open
Abstract
Fatty acid synthesis is essential for bacterial viability. Thus, fatty acid synthases (FASs) represent effective targets for antibiotics. Nevertheless, multidrug-resistant bacteria, including the human opportunistic bacteria, Acinetobacter baumannii, are emerging threats. Meanwhile, the FAS pathway of A. baumannii is relatively unexplored. Considering that acyl carrier protein (ACP) has an important role in the delivery of fatty acyl intermediates to other FAS enzymes, we elucidated the solution structure of A. baumannii ACP (AbACP) and, using NMR spectroscopy, investigated its interactions with β-ketoacyl ACP synthase III (AbKAS III), which initiates fatty acid elongation. The results show that AbACP comprises four helices, while Ca2+ reduces the electrostatic repulsion between acid residues, and the unconserved F47 plays a key role in thermal stability. Moreover, AbACP exhibits flexibility near the hydrophobic cavity entrance from D59 to T65, as well as in the α1α2 loop region. Further, F29 and A69 participate in slow exchanges, which may be related to shuttling of the growing acyl chain. Additionally, electrostatic interactions occur between the α2 and α3-helix of ACP and AbKAS III, while the hydrophobic interactions through the ACP α2-helix are seemingly important. Our study provides insights for development of potent antibiotics capable of inhibiting A. baumannii FAS protein–protein interactions.
Collapse
|
13
|
Sulpizio A, Crawford CEW, Koweek RS, Charkoudian LK. Probing the structure and function of acyl carrier proteins to unlock the strategic redesign of type II polyketide biosynthetic pathways. J Biol Chem 2021; 296:100328. [PMID: 33493513 PMCID: PMC7949117 DOI: 10.1016/j.jbc.2021.100328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 02/04/2023] Open
Abstract
Type II polyketide synthases (PKSs) are protein assemblies, encoded by biosynthetic gene clusters in microorganisms, that manufacture structurally complex and pharmacologically relevant molecules. Acyl carrier proteins (ACPs) play a central role in biosynthesis by shuttling malonyl-based building blocks and polyketide intermediates to catalytic partners for chemical transformations. Because ACPs serve as central hubs in type II PKSs, they can also represent roadblocks to successfully engineering synthases capable of manufacturing 'unnatural natural products.' Therefore, understanding ACP conformational dynamics and protein interactions is essential to enable the strategic redesign of type II PKSs. However, the inherent flexibility and transience of ACP interactions pose challenges to gaining insight into ACP structure and function. In this review, we summarize how the application of chemical probes and molecular dynamic simulations has increased our understanding of the structure and function of type II PKS ACPs. We also share how integrating these advances in type II PKS ACP research with newfound access to key enzyme partners, such as the ketosynthase-chain length factor, sets the stage to unlock new biosynthetic potential.
Collapse
Affiliation(s)
- Ariana Sulpizio
- Department of Chemistry, Haverford College, Haverford, Pennsylvania, USA
| | | | - Rebecca S Koweek
- Department of Chemistry, Haverford College, Haverford, Pennsylvania, USA
| | | |
Collapse
|