1
|
Singh A, Acharya B, Mukherjee B, Boorla VS, Boral S, Maiti S, De S. Stability and dynamics of extradenticle modulates its function. Curr Res Struct Biol 2024; 7:100150. [PMID: 38784963 PMCID: PMC11112286 DOI: 10.1016/j.crstbi.2024.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/03/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Extradenticle (EXD) is a partner protein of the HOX transcription factors and plays an important role in the development of Drosophila. It confers increased affinity and specificity of DNA-binding to the HOX proteins. However, the DNA-binding homeodomain of EXD has a significantly weaker affinity to DNA compared to the HOX homeodomains. Here, we show that a glycine residue (G290) in the middle of the EXD DNA-binding helix primarily results in this weaker binding. Glycine destabilizes helices. To probe its role in the stability and function of the protein, G290 was mutated to alanine. The intrinsic stability of the DNA-binding helix increased in the G290A mutant as observed by NMR studies and molecular dynamics (MD) simulation. Also, NMR dynamics and MD simulation show that dynamic motions present in the wild-type protein are quenched in the mutant. This in turn resulted in increased stability of the entire homeodomain (ΔΔGG→A of -2.6 kcal/mol). Increased protein stability resulted in three-fold better DNA-binding affinity of the mutant as compared to the wild-type protein. Molecular mechanics with generalized Born and surface area solvation (MMGBSA) analysis of our MD simulation on DNA-bound models of both wild-type and mutant proteins shows that the contribution to binding is enhanced for most of the interface residues in the mutant compared to the wild-type. Interestingly, the flexible N-terminal arm makes more stable contact with the DNA minor groove in the mutant. We found that the two interaction sites i.e. the DNA-binding helix and the unstructured N-terminal arm influence each other via the bound DNA. These results provide an interesting conundrum: alanine at position 290 enhances both the stability and the DNA-binding affinity of the protein, however, evolution prefers glycine at this position. We have provided several plausible explanations for this apparent conundrum. The function of the EXD as a HOX co-factor requires its ability to discriminate similar DNA sequences, which is most likely comprom.
Collapse
Affiliation(s)
- Aakanksha Singh
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Bidisha Acharya
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Beas Mukherjee
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | | | | | | | - Soumya De
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| |
Collapse
|
2
|
Maiti S, Singh A, Maji T, Saibo NV, De S. Experimental methods to study the structure and dynamics of intrinsically disordered regions in proteins. Curr Res Struct Biol 2024; 7:100138. [PMID: 38707546 PMCID: PMC11068507 DOI: 10.1016/j.crstbi.2024.100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 05/07/2024] Open
Abstract
Eukaryotic proteins often feature long stretches of amino acids that lack a well-defined three-dimensional structure and are referred to as intrinsically disordered proteins (IDPs) or regions (IDRs). Although these proteins challenge conventional structure-function paradigms, they play vital roles in cellular processes. Recent progress in experimental techniques, such as NMR spectroscopy, single molecule FRET, high speed AFM and SAXS, have provided valuable insights into the biophysical basis of IDP function. This review discusses the advancements made in these techniques particularly for the study of disordered regions in proteins. In NMR spectroscopy new strategies such as 13C detection, non-uniform sampling, segmental isotope labeling, and rapid data acquisition methods address the challenges posed by spectral overcrowding and low stability of IDPs. The importance of various NMR parameters, including chemical shifts, hydrogen exchange rates, and relaxation measurements, to reveal transient secondary structures within IDRs and IDPs are presented. Given the high flexibility of IDPs, the review outlines NMR methods for assessing their dynamics at both fast (ps-ns) and slow (μs-ms) timescales. IDPs exert their functions through interactions with other molecules such as proteins, DNA, or RNA. NMR-based titration experiments yield insights into the thermodynamics and kinetics of these interactions. Detailed study of IDPs requires multiple experimental techniques, and thus, several methods are described for studying disordered proteins, highlighting their respective advantages and limitations. The potential for integrating these complementary techniques, each offering unique perspectives, is explored to achieve a comprehensive understanding of IDPs.
Collapse
Affiliation(s)
| | - Aakanksha Singh
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Tanisha Maji
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Nikita V. Saibo
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Soumya De
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| |
Collapse
|
3
|
Boral S, Sen S, Kushwaha T, Inampudi KK, De S. Extein residues regulate the catalytic function of Spl DnaX intein enzyme by restricting the near-attack conformations of the active-site residues. Protein Sci 2023; 32:e4699. [PMID: 37313648 PMCID: PMC10288555 DOI: 10.1002/pro.4699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
Intein enzymes catalyze the splicing of their flanking polypeptide chains and have found tremendous biotechnological applications. Their terminal residues form the catalytic core and participate in the splicing reaction. Hence, the neighboring N- and C-terminal extein residues influence the catalytic rate. As these extein residues vary depending on the substrate identity, we tested the influence of 20 amino acids at these sites in the Spl DnaX intein and observed significant variation of spliced product as well as N- and C-terminus cleavage product formation. We investigated the dependence of these reactions on the extein residues by molecular dynamics (MD) simulations on eight extein variants, and found that the conformational sampling of the active-site residues of the intein enzyme differed among these extein variants. We found that the extein variants that sample higher population of near-attack conformers (NACs) of the active-site residues undergo higher product formation in our activity assays. Ground state conformers that closely resemble the transition state are referred to as NACs. Very good correlation was observed between the NAC populations from the MD simulations of eight extein variants and the corresponding product formation from our activity assays. Furthermore, this molecular detail enabled us to elucidate the mechanistic roles of several conserved active-site residues in the splicing reaction. Overall, this study shows that the catalytic power of Spl DnaX intein enzyme, and most likely other inteins, depends on the efficiency of formation of NACs in the ground state, which is further modulated by the extein residues.
Collapse
Affiliation(s)
- Soumendu Boral
- School of BioscienceIndian Institute of Technology KharagpurKharagpurIndia
| | - Srijon Sen
- School of BioscienceIndian Institute of Technology KharagpurKharagpurIndia
| | - Tushar Kushwaha
- Department of BiophysicsAll India Institute of Medical SciencesNew DelhiIndia
| | - Krishna K. Inampudi
- Department of BiophysicsAll India Institute of Medical SciencesNew DelhiIndia
| | - Soumya De
- School of BioscienceIndian Institute of Technology KharagpurKharagpurIndia
| |
Collapse
|
4
|
Tharappel AM, Li Z, Zhu YC, Wu X, Chaturvedi S, Zhang QY, Li H. Calcimycin Inhibits Cryptococcus neoformans In Vitro and In Vivo by Targeting the Prp8 Intein Splicing. ACS Infect Dis 2022; 8:1851-1868. [PMID: 35948057 PMCID: PMC9464717 DOI: 10.1021/acsinfecdis.2c00137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Drug resistance is a significant concern in the treatment of diseases, including cryptococcosis caused by Cryptococcus neoformans (Cne) and Cryptococcus gattii (Cga). Alternative drug targets are necessary to overcome drug resistance before it attains a critical stage. Splicing of inteins from pro-protein precursors is crucial for activities of essential proteins hosting intein elements in many organisms, including human pathogens such as Cne and Cga. Through a high-throughput screening, we identified calcimycin (CMN) as a potent Prp8 intein splicing inhibitor with a minimum inhibitory concentration (MIC) of 1.5 μg/mL against the wild-type Cne-H99 (Cne-WT or Cne). In contrast, CMN inhibited the intein-less mutant strain (Cne-Mut) with a 16-fold higher MIC. Interestingly, Aspergillus fumigatus and a few Candida species were resistant to CMN. Further studies indicated that CMN reduced virulence factors such as urease activity, melanin production, and biofilm formation in Cne. CMN also inhibited Cne intracellular infection in macrophages. In a target-specific split nanoluciferase assay, the IC50 of CMN was 4.6 μg/mL. Binding of CMN to recombinant Prp8 intein was demonstrated by thermal shift assay and microscale thermophoresis. Treating Cne cells with CMN reduced intein splicing. CMN was fungistatic and showed a synergistic effect with the known antifungal drug amphotericin B. Finally, CMN treatment at 20 mg/kg body weight led to 60% reduction in lung fungal load in a cryptococcal pulmonary infection mouse model. Overall, CMN represents a potent antifungal with a novel mechanism of action to treat Cne and possibly Cga infections.
Collapse
Affiliation(s)
- Anil Mathew Tharappel
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson Arizona 85721-0207, United States
- Wadsworth Center, New York State Department of Health, Albany, New York 12208, United States
| | - Zhong Li
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson Arizona 85721-0207, United States
- Wadsworth Center, New York State Department of Health, Albany, New York 12208, United States
| | - Yan Chun Zhu
- Wadsworth Center, New York State Department of Health, Albany, New York 12208, United States
| | - Xiangmeng Wu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson Arizona 85721-0207, United States
| | - Sudha Chaturvedi
- Wadsworth Center, New York State Department of Health, Albany, New York 12208, United States
| | - Qing-Yu Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson Arizona 85721-0207, United States
| | - Hongmin Li
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson Arizona 85721-0207, United States
- Wadsworth Center, New York State Department of Health, Albany, New York 12208, United States
- The BIO5 Institute, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
5
|
Roy S, Boral S, Maiti S, Kushwaha T, Basak AJ, Lee W, Basak A, Gholap SL, Inampudi KK, De S. Structural and dynamic studies of the human RNA binding protein RBM3 reveals the molecular basis of its oligomerization and RNA recognition. FEBS J 2021; 289:2847-2864. [PMID: 34837346 DOI: 10.1111/febs.16301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/30/2021] [Accepted: 11/25/2021] [Indexed: 12/01/2022]
Abstract
Human RNA-binding motif 3 protein (RBM3) is a cold-shock protein which functions in various aspects of global protein synthesis, cell proliferation and apoptosis by interacting with the components of basal translational machinery. RBM3 plays important roles in tumour progression and cancer metastasis, and also has been shown to be involved in neuroprotection and endoplasmic reticulum stress response. Here, we have solved the solution NMR structure of the N-terminal 84 residue RNA recognition motif (RRM) of RBM3. The remaining residues are rich in RGG and YGG motifs and are disordered. The RRM domain adopts a βαββαβ topology, which is found in many RNA-binding proteins. NMR-monitored titration experiments and molecular dynamic simulations show that the beta-sheet and two loops form the RNA-binding interface. Hydrogen bond, pi-pi and pi-cation are the key interactions between the RNA and the RRM domain. NMR, size exclusion chromatography and chemical cross-linking experiments show that RBM3 forms oligomers in solution, which is favoured by decrease in temperature, thus, potentially linking it to its function as a cold-shock protein. Temperature-dependent NMR studies revealed that oligomerization of the RRM domain occurs via nonspecific interactions. Overall, this study provides the detailed structural analysis of RRM domain of RBM3, its interaction with RNA and the molecular basis of its temperature-dependent oligomerization.
Collapse
Affiliation(s)
- Sayantani Roy
- School of Bioscience, Indian Institute of Technology Kharagpur, India
| | - Soumendu Boral
- School of Bioscience, Indian Institute of Technology Kharagpur, India
| | - Snigdha Maiti
- School of Bioscience, Indian Institute of Technology Kharagpur, India
| | - Tushar Kushwaha
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Aditya J Basak
- School of Bioscience, Indian Institute of Technology Kharagpur, India
| | - Woonghee Lee
- Department of Chemistry, University of Colorado Denver, CO, USA
| | - Amit Basak
- School of Bioscience, Indian Institute of Technology Kharagpur, India.,Department of Chemistry, Indian Institute of Technology Kharagpur, India
| | - Shivajirao L Gholap
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Krishna K Inampudi
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Soumya De
- School of Bioscience, Indian Institute of Technology Kharagpur, India
| |
Collapse
|