1
|
Stea DM, D’Alessio A. Caveolae: Metabolic Platforms at the Crossroads of Health and Disease. Int J Mol Sci 2025; 26:2918. [PMID: 40243482 PMCID: PMC11988808 DOI: 10.3390/ijms26072918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/14/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Caveolae are small flask-shaped invaginations of the plasma membrane enriched in cholesterol and sphingolipids. They play a critical role in various cellular processes, including signal transduction, endocytosis, and mechanotransduction. Caveolin proteins, specifically Cav-1, Cav-2, and Cav-3, in addition to their role as structural components of caveolae, have been found to regulate the activity of signaling molecules. A growing body of research has highlighted the pivotal role of caveolae and caveolins in maintaining cellular metabolic homeostasis. Indeed, studies have demonstrated that caveolins interact with the key components of insulin signaling, glucose uptake, and lipid metabolism, thereby influencing energy production and storage. The dysfunction of caveolae or the altered expression of caveolins has been associated with metabolic disorders, including obesity, type 2 diabetes, and ocular diseases. Remarkably, mutations in caveolin genes can disrupt cellular energy balance, promote oxidative stress, and exacerbate metabolic dysregulation. This review examines current research on the molecular mechanisms through which caveolae and caveolins regulate cellular metabolism, explores their involvement in the pathogenesis of metabolic disorders, and discusses potential therapeutic strategies targeting caveolin function and the stabilization of caveolae to restore metabolic homeostasis.
Collapse
Affiliation(s)
- Dante Maria Stea
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Alessio D’Alessio
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli”, IRCCS, 00168 Rome, Italy
| |
Collapse
|
2
|
Sasaki S, Ueno H, Arai N, Asakura K, Banno T. A molecular strategy for creating functional vesicles with balancing structural stability and stimuli-responsiveness. NANOSCALE 2025; 17:6863-6873. [PMID: 39968841 DOI: 10.1039/d5nr00151j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Vesicles, closed bilayer structures composed of amphiphiles, have attracted considerable attention as functional materials. Structural stability and stimulus responsiveness are required for next-generation functional vesicles. However, there is a dilemma between these properties because the desired membrane structure varies in terms of structural stability and stimulus sensitivity. Herein, we propose a new approach for the development of giant vesicles (GVs) through the molecular design and synthesis of amphiphiles with or without amide linkages, forming hydrogen bonding. From the 1H NMR analysis and fluorescence spectra of environment-responsive probes, intermolecular hydrogen bonding between the amide linkages in the membrane contributed to the enhanced structural stability of the GVs. Moreover, by adding amphiphiles containing a photoresponsive azobenzene moiety to GVs composed of amphiphiles with or without amide linkages, a distinct mechanism of photoresponsive deformation was observed: the former exhibited large and irreversible deformation, while the latter showed a modest and reversible manner due to the photoisomerisation of azobenzene under ultraviolet and subsequent visible light illumination. This difference was also attributed to the membrane structure affected by intermolecular hydrogen bonding. Based on these results, the finding provides a molecular methodology for developing highly functional vesicles.
Collapse
Affiliation(s)
- Shoi Sasaki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Hibiki Ueno
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Noriyoshi Arai
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-4-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Kouichi Asakura
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Taisuke Banno
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| |
Collapse
|
3
|
Perera D, Lishchuk V, Moghaddam AH, Mylläri J, Wiedmer SK. Differences in the distribution of steroids in sterol-containing liposomes: A study by liposome electrokinetic chromatography. J Chromatogr A 2025; 1743:465688. [PMID: 39837185 DOI: 10.1016/j.chroma.2025.465688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/23/2025]
Abstract
This study was conducted to investigate possible differences in the interactions of some selected steroids based on their distribution coefficients with cholesterol- or ergosterol-rich liposomes. Structurally cholesterol and ergosterol have very close resemblance to each other and generally it is thought that they behave in a similar manner. In this work we will show that this is not the case. Liposome electrokinetic chromatography (LEKC) was selected as the methodology for estimating the interactions between the steroids and the liposomes and for calculating the distribution coefficients. Apart from the distribution coefficients, the interactions were also studied with a response surface methodology and exploratory regression analysis. Both graphical and statistical analysis confirmed that there is an obvious difference in the interactions between the studies steroids and the cholesterol- or ergosterol-rich liposomes, and even a minute change in the sterol content had a significant impact on the interactions. The study demonstrates the flexibility and efficacy of LEKC for studying analyte-lipid membrane interactions, and for investigating taylor-made liposome systems.
Collapse
Affiliation(s)
- Dumidu Perera
- Department of Chemistry, Faculty of Science, POB 55 (A.I. Virtasen aukio 1), 00014 University of Helsinki, Helsinki, Finland
| | - Valeriia Lishchuk
- Department of Chemistry, Faculty of Science, POB 55 (A.I. Virtasen aukio 1), 00014 University of Helsinki, Helsinki, Finland
| | - Amin Hedayati Moghaddam
- Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Juha Mylläri
- Department of Computer Science, Faculty of Science, POB 68 (Pietari Kalmin katu 5), 00014 University of Helsinki, Helsinki, Finland
| | - Susanne K Wiedmer
- Department of Chemistry, Faculty of Science, POB 55 (A.I. Virtasen aukio 1), 00014 University of Helsinki, Helsinki, Finland.
| |
Collapse
|
4
|
Yin H, Yang K, Lou Y, Zhao Y. Investigating the causal relationship between the plasma lipidome and cholangiocarcinoma mediated by immune cells: a mediation Mendelian randomization study. Sci Rep 2025; 15:5807. [PMID: 39962308 PMCID: PMC11832772 DOI: 10.1038/s41598-025-90140-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/11/2025] [Indexed: 02/20/2025] Open
Abstract
The plasma lipidome and immune cells are instrumental in shaping the health profile of an organism, and their influence on diseases is profound. However, the intricate interactions between cholangiocarcinoma (CCA) and these physiological components have yet to be comprehensively explored. Employing Mendelian randomization (MR), our study delved into the causal links among immune cells, the lipidome, and CCA. The research design meticulously considered both the direct associations and the mediating roles of immune cells within the complex interplay between the lipidome and CCA. Our analysis uncovered significant correlations between the levels of Sphingomyelin (d34:1), Phosphatidylcholine (0-16:0, 22:5) and Sterol ester (27:1/16:0) and CCA. Moreover, we have pinpointed various immune cells that play a mediating role in the impact of the lipidome on CCA. For example, Sphingomyelin (d34:1) can impact CCA through the IgD on IgD+ CD38- unswitched memory (unsw mem) B cell (B cell panel), IgD on unsw mem (B cell panel) and Naive CD4+ %CD4+ (maturation stages of T cell). The proportion of mediating effects further sheds light on the intricate interplay among the lipidome, immune cells, and their cumulative influence on CCA. Our study illuminates the intricate relationship among the lipidome, immune cells, and CCA. These findings suggest that the lipidome could serve as a promising and potentially effective therapeutic target in the treatment of CCA.
Collapse
Affiliation(s)
- Heng Yin
- Department of Hepatology, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Keli Yang
- Department of Hepatology, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yan Lou
- Department of Hepatology, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yaling Zhao
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
5
|
Kolokouris D, Kalenderoglou IE, Duncan AL, Corey RA, Sansom MSP, Kolocouris A. The Role of Cholesterol in M2 Clustering and Viral Budding Explained. J Chem Theory Comput 2025; 21:912-932. [PMID: 39494590 PMCID: PMC11780748 DOI: 10.1021/acs.jctc.4c01026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
The influenza A M2 homotetrameric channel consists of four transmembrane (TM) and four amphipathic helices (AHs). This viral proton channel is suggested to form clusters in the catenoid budding neck areas in raft-like domains of the plasma membrane, resulting in cell membrane scission and viral release. The channel clustering environment is rich in cholesterol. Previous experiments have shown that cholesterol significantly contributes to lipid bilayer undulations in viral buds. However, a clear explanation of membrane curvature from the distribution of cholesterol around the M2TM-AH clusters is lacking. Using coarse-grained molecular dynamics simulations of M2TM-AH in bilayers, we observed that M2 channels form specific, C2-symmetric, clusters with conical shapes driven by the attraction of their AHs. We showed that cholesterol stabilized the formation of M2 channel clusters by filling and bridging the conical gap between M2 channels at specific sites in the N-termini of adjacent channels or via the C-terminal region of TM and AHs, with the latter sites displaying a longer interaction time and higher stability. The potential of mean force calculations showed that when cholesterols occupy the identified interfacial binding sites between two M2 channels, the dimer is stabilized by 11 kJ/mol. This translates to the cholesterol-bound dimer being populated by almost 2 orders of magnitude compared to a dimer lacking cholesterol. We demonstrated that the cholesterol-bridged M2 channels can exert a lateral force on the surrounding membrane to induce the necessary negative Gaussian curvature profile, which permits spontaneous scission of the catenoid membrane neck and leads to viral buds and scission.
Collapse
Affiliation(s)
- Dimitrios Kolokouris
- Laboratory
of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department
of Pharmacy, National and Kapodistrian University
of Athens, Panepistimiopolis
Zografou, Athens 15771, Greece
- Department
of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K.
| | - Iris E. Kalenderoglou
- Laboratory
of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department
of Pharmacy, National and Kapodistrian University
of Athens, Panepistimiopolis
Zografou, Athens 15771, Greece
- Department
of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K.
| | - Anna L. Duncan
- Department
of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K.
| | - Robin A. Corey
- School of
Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, U.K.
| | - Mark S. P. Sansom
- Department
of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K.
| | - Antonios Kolocouris
- Laboratory
of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department
of Pharmacy, National and Kapodistrian University
of Athens, Panepistimiopolis
Zografou, Athens 15771, Greece
| |
Collapse
|
6
|
Mashanov GI, Molloy JE. Single molecule dynamics in a virtual cell combining a 3-dimensional matrix model with random walks. Sci Rep 2024; 14:20032. [PMID: 39198682 PMCID: PMC11358523 DOI: 10.1038/s41598-024-70925-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024] Open
Abstract
Recent advances in light microscopy have enabled single molecules to be imaged and tracked within living cells and this approach is impacting our understanding of cell biology. Computer modeling and simulation are important adjuncts to the experimental cycle since they aid interpretation of experimental results and help refine, test and generate hypotheses. Object-oriented computer modeling is particularly well-suited for simulating random, thermal, movements of individual molecules as they interact with other molecules and subcellular structures, but current models are often limited to idealized systems consisting of unit volumes or planar surfaces. Here, a simulation tool is described that combines a 3-dimensional, voxelated, representation of the cell consisting of subcellular structures (e.g. nucleus, endoplasmic reticulum, cytoskeleton, vesicles, and filopodia) combined with numerical floating-point precision simulation of thousands of individual molecules moving and interacting within the 3-dimensional space. Simulations produce realistic time-series video sequences comprising single fluorophore intensities and realistic background noise which can be directly compared to experimental fluorescence video microscopy data sets.
Collapse
Affiliation(s)
| | - Justin E Molloy
- The Francis Crick Institute, London, NW1 1AT, UK
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
7
|
Kashnik AS, Baranov DS, Dzuba SA. Spatial Arrangement of the Drug Ibuprofen in a Model Membrane in the Presence of Lipid Rafts. J Phys Chem B 2024; 128:3652-3661. [PMID: 38576273 DOI: 10.1021/acs.jpcb.4c01507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Many pharmaceutical drugs are known to interact with lipid membranes through nonspecific molecular interactions, which affect their therapeutic effect. Ibuprofen is a nonsteroidal anti-inflammatory drug (NSAID) and one of the most commonly prescribed. In the presence of cholesterol, lipid bilayers can separate into nanoscale liquid-disordered and liquid-ordered structures, the latter known as lipid rafts. Here, we study spin-labeled ibuprofen (ibuprofen-SL) in the model membrane consisting of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and cholesterol in the molar ratio of (0.5-0.5xchol)/(0.5-0.5xchol)/xchol. Electron paramagnetic resonance (EPR) spectroscopy is employed, along with its pulsed version of double electron-electron resonance (DEER, also known as PELDOR). The data obtained indicate lateral lipid-mediated clustering of ibuprofen-SL molecules with a local surface density noticeably larger than that expected for random lateral distribution. In the absence of cholesterol, the data can be interpreted as indicating alternating clustering in two opposing leaflets of the bilayer. In the presence of cholesterol, for xchol ≥ 20 mol %, the results show that ibuprofen-SL molecules have a quasi-regular lateral distribution, with a "superlattice" parameter of ∼3.0 nm. This regularity can be explained by the entrapment of ibuprofen-SL molecules by lipid rafts known to exist in this system with the additional assumption that lipid rafts have a nanoscale substructure.
Collapse
Affiliation(s)
- Anna S Kashnik
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Denis S Baranov
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Sergei A Dzuba
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
8
|
Zamora-Prieto RM, Maldonado-Serrano JF, González-Calderón W. The life of the cell membrane: A paradigmatic reading from Deleuze and Guattari. Heliyon 2023; 9:e21924. [PMID: 38045203 PMCID: PMC10692771 DOI: 10.1016/j.heliyon.2023.e21924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/12/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023] Open
Abstract
While the Fluid Mosaic model (FMM) is widely accepted as an account of the cell membrane's structure-function, its inability to explain certain phenomena has led to the lipid rafts hypothesis (nanodomains) that spontaneous spatiotemporal enriched zones of sphingolipids-cholesterol-protein exist within the membrane. In this text, we propose a novel approach that conceives the cell membrane as a living entity. The questions regarding the FMM revolve around the fact that, although these molecular components are present in many cell types, the membrane does not react in the same way to every external agent; for example, a virus evokes a particular response: why is there some marked specificity of virus (or toxin) attack on one (or some) of these cell types and not to other cell types that nevertheless have a similar membrane protein constitution? The crucial question, to explain this selectivity, would be what determines the specificity of attack on some cells and not others? While FMN assumes a dynamism between macrostates at the intramolecular, intermolecular, and/or collective levels in the membrane, the approach of the lipid raft model presupposes a much greater and more complex dynamics of microstates (even nano-states) of these molecular components. In other words, it implies higher and instantaneous mobility as assemblages ("intentional") and thus, of the membrane itself (as a collective), in response to changes in the internal and external physicochemical environment over a broad spatiotemporal scale. This suggests a mechanism of membrane adaptation in the face of evolutionary constraints. In this text, we propose a paradigmatic approach, from Deleuze-Guattari's philosophy: to conceive the cell membrane as living and not as a mere molecular conglomerate with particular functions and mechanical processes between molecules. For this, we employ the functional concepts of territory and machinic assemblage, whence the vitality of the membrane would allow us to postulate instantaneous updates, within wider spatiotemporal scales in its composition in contrast with the model that dominates as a more plausible explanation nowadays, that does not include smaller spatiotemporal events. If we resort to the concept of territory and its different media components, we could offer a more plausible explanation of the vigorous dynamism in the composition of the cell membrane since it would allow more subtle and complex differentiations between media and thus make visible the constant and instant changes. We propose that the model of nanodomains, understood as a process of dynamic territorialization, offers a more complex and subtle explanation of the instantaneous changes in the cell membrane's composition. This approach expands the explanatory framework for cellular phenomena and reveals their spatiotemporal complexity in accordance with other research.
Collapse
Affiliation(s)
- Rafael Maria Zamora-Prieto
- Facultad de Ciencias de la Salud, Universidad Autónoma de Bucaramanga - UNAB, Bucaramanga, 681003, Colombia
| | | | - William González-Calderón
- Departamento de Ciencias Básicas, Universidad Autónoma de Bucaramanga - UNAB, Bucaramanga, 681003, Colombia
| |
Collapse
|
9
|
Marques-da-Silva D, Lagoa R. Rafting on the Evidence for Lipid Raft-like Domains as Hubs Triggering Environmental Toxicants' Cellular Effects. Molecules 2023; 28:6598. [PMID: 37764374 PMCID: PMC10536579 DOI: 10.3390/molecules28186598] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The plasma membrane lipid rafts are cholesterol- and sphingolipid-enriched domains that allow regularly distributed, sub-micro-sized structures englobing proteins to compartmentalize cellular processes. These membrane domains can be highly heterogeneous and dynamic, functioning as signal transduction platforms that amplify the local concentrations and signaling of individual components. Moreover, they participate in cell signaling routes that are known to be important targets of environmental toxicants affecting cell redox status and calcium homeostasis, immune regulation, and hormonal functions. In this work, the evidence that plasma membrane raft-like domains operate as hubs for toxicants' cellular actions is discussed, and suggestions for future research are provided. Several studies address the insertion of pesticides and other organic pollutants into membranes, their accumulation in lipid rafts, or lipid rafts' disruption by polychlorinated biphenyls (PCBs), benzo[a]pyrene (B[a]P), and even metals/metalloids. In hepatocytes, macrophages, or neurons, B[a]P, airborne particulate matter, and other toxicants caused rafts' protein and lipid remodeling, oxidative changes, or amyloidogenesis. Different studies investigated the role of the invaginated lipid rafts present in endothelial cells in mediating the vascular inflammatory effects of PCBs. Furthermore, in vitro and in vivo data strongly implicate raft-localized NADPH oxidases, the aryl hydrocarbon receptor, caveolin-1, and protein kinases in the toxic mechanisms of occupational and environmental chemicals.
Collapse
Affiliation(s)
- Dorinda Marques-da-Silva
- LSRE—Laboratory of Separation and Reaction Engineering and LCM—Laboratory of Catalysis and Materials, School of Management and Technology, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal
| | - Ricardo Lagoa
- LSRE—Laboratory of Separation and Reaction Engineering and LCM—Laboratory of Catalysis and Materials, School of Management and Technology, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal
| |
Collapse
|
10
|
Zhukov A, Popov V. Eukaryotic Cell Membranes: Structure, Composition, Research Methods and Computational Modelling. Int J Mol Sci 2023; 24:11226. [PMID: 37446404 DOI: 10.3390/ijms241311226] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
This paper deals with the problems encountered in the study of eukaryotic cell membranes. A discussion on the structure and composition of membranes, lateral heterogeneity of membranes, lipid raft formation, and involvement of actin and cytoskeleton networks in the maintenance of membrane structure is included. Modern methods for the study of membranes and their constituent domains are discussed. Various simplified models of biomembranes and lipid rafts are presented. Computer modelling is considered as one of the most important methods. This is stated that from the study of the plasma membrane structure, it is desirable to proceed to the diverse membranes of all organelles of the cell. The qualitative composition and molar content of individual classes of polar lipids, free sterols and proteins in each of these membranes must be considered. A program to create an open access electronic database including results obtained from the membrane modelling of individual cell organelles and the key sites of the membranes, as well as models of individual molecules composing the membranes, has been proposed.
Collapse
Affiliation(s)
- Anatoly Zhukov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| | - Valery Popov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| |
Collapse
|
11
|
Santamaria A, Batchu KC, Fragneto G, Laux V, Haertlein M, Darwish TA, Russell RA, Zaccai NR, Guzmán E, Maestro A. Investigation on the relationship between lipid composition and structure in model membranes composed of extracted natural phospholipids. J Colloid Interface Sci 2023; 637:55-66. [PMID: 36682118 DOI: 10.1016/j.jcis.2023.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/09/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
HYPOTHESIS Unravelling the structural diversity of cellular membranes is a paramount challenge in life sciences. In particular, lipid composition affects the membrane collective behaviour, and its interactions with other biological molecules. EXPERIMENTS Here, the relationship between membrane composition and resultant structural features was investigated by surface pressure-area isotherms, Brewster angle microscopy and neutron reflectometry on in vitro membrane models of the mammalian plasma and endoplasmic-reticulum-Golgi intermediate compartment membranes in the form of Langmuir monolayers. Natural extracted yeast lipids were used because, unlike synthetic lipids, the acyl chain saturation pattern of yeast and mammalian lipids are similar. FINDINGS The structure of the model membranes, orthogonal to the plane of the membrane, as well as their lateral packing, were found to depend strongly on their specific composition, with cholesterol having a major influence on the in-plane morphology, yielding a coexistence of liquid-order and liquid-disorder phases.
Collapse
Affiliation(s)
- Andreas Santamaria
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France; Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Krishna C Batchu
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France
| | - Giovanna Fragneto
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France; École doctorale de Physique, Université Grenoble Alpes, 38400 Saint-Martin-d'Héres, France
| | - Valérie Laux
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France
| | - Michael Haertlein
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France
| | - Tamim A Darwish
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Lucas Heights 2232, NSW, Australia
| | - Robert A Russell
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Lucas Heights 2232, NSW, Australia
| | - Nathan R Zaccai
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB22 7QQ, United Kingdom
| | - Eduardo Guzmán
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
| | - Armando Maestro
- Centro de Fı́sica de Materiales (CSIC, UPV/EHU) - Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain.
| |
Collapse
|
12
|
Kusumi A, Tsunoyama TA, Tang B, Hirosawa KM, Morone N, Fujiwara TK, Suzuki KGN. Cholesterol- and actin-centered view of the plasma membrane: updating the Singer-Nicolson fluid mosaic model to commemorate its 50th anniversary †. Mol Biol Cell 2023; 34:pl1. [PMID: 37039596 PMCID: PMC10162409 DOI: 10.1091/mbc.e20-12-0809] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/07/2022] [Accepted: 02/07/2023] [Indexed: 04/12/2023] Open
Abstract
Two very polarized views exist for understanding the cellular plasma membrane (PM). For some, it is the simple fluid described by the original Singer-Nicolson fluid mosaic model. For others, due to the presence of thousands of molecular species that extensively interact with each other, the PM forms various clusters and domains that are constantly changing and therefore, no simple rules exist that can explain the structure and molecular dynamics of the PM. In this article, we propose that viewing the PM from its two predominant components, cholesterol and actin filaments, provides an excellent and transparent perspective of PM organization, dynamics, and mechanisms for its functions. We focus on the actin-induced membrane compartmentalization and lipid raft domains coexisting in the PM and how they interact with each other to perform PM functions. This view provides an important update of the fluid mosaic model.
Collapse
Affiliation(s)
- Akihiro Kusumi
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa 904-0495, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Taka A. Tsunoyama
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa 904-0495, Japan
| | - Bo Tang
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa 904-0495, Japan
| | - Koichiro M. Hirosawa
- Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Nobuhiro Morone
- MRC Toxicology Unit, University of Cambridge, Cambridge CB2 1QR, UK
| | - Takahiro K. Fujiwara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Kenichi G. N. Suzuki
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
- Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
13
|
Pergolizzi J, Varrassi G, Coleman M, Breve F, Christo DK, Christo PJ, Moussa C. The Sigma Enigma: A Narrative Review of Sigma Receptors. Cureus 2023; 15:e35756. [PMID: 37020478 PMCID: PMC10069457 DOI: 10.7759/cureus.35756] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/04/2023] [Indexed: 03/07/2023] Open
Abstract
The sigma-1 and sigma-2 receptors were first discovered in the 1960s and were thought to be a form of opioid receptors initially. Over time, more was gradually learned about these receptors, which are actually protein chaperones, and many of their unique or unusual properties can contribute to a range of important new therapeutic applications. These sigma receptors translocate in the body and regulate calcium homeostasis and mitochondrial bioenergetics and they also have neuroprotective effects. The ligands to which these sigma receptors respond are several and dissimilar, including neurosteroids, neuroleptics, and cocaine. There is controversy as to their endogenous ligands. Sigma receptors are also involved in the complex processes of cholesterol homeostasis and protein folding. While previous work on this topic has been limited, research has been conducted in multiple disease states, such as addiction, aging. Alzheimer's disease, cancer, psychiatric disorders, pain and neuropathic pain, Parkinson's disease, and others. There is currently increasing interest in sigma-1 and sigma-2 receptors as they provide potential therapeutic targets for many disease indications.
Collapse
|
14
|
Bengoechea-Alonso MT, Aldaalis A, Ericsson J. Loss of the Fbw7 tumor suppressor rewires cholesterol metabolism in cancer cells leading to activation of the PI3K-AKT signalling axis. Front Oncol 2022; 12:990672. [PMID: 36176395 PMCID: PMC9513553 DOI: 10.3389/fonc.2022.990672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
The sterol regulatory-element binding proteins (SREBPs) are transcription factors controlling cholesterol and fatty acid synthesis and metabolism. There are three SREBP proteins, SREBP1a, SREBP1c and SREBP2, with SREBP1a being the strongest transcription factor. The expression of SREBP1a is restricted to rapidly proliferating cells, including cancer cells. The SREBP proteins are translated as large, inactive precursors bound to the endoplasmic reticulum (ER) membranes. These precursors undergo a two-step cleavage process that releases the amino terminal domains of the proteins, which translocate to the nucleus and function as transcription factors. The nuclear forms of the SREBPs are rapidly degraded by the ubiquitin-proteasome system in a manner dependent on the Fbw7 ubiquitin ligase. Consequently, inactivation of Fbw7 results in the stabilization of active SREBP1 and SREBP2 and enhanced expression of target genes. We report that the inactivation of Fbw7 in cancer cells blocks the proteolytic maturation of SREBP2. The same is true in cells expressing a cancer-specific loss-of-function Fbw7 protein. Interestingly, the activation of SREBP2 is restored in response to cholesterol depletion, suggesting that Fbw7-deficient cells accumulate cholesterol. Importantly, inactivation of SREBP1 in Fbw7-deficient cells also restores the cholesterol-dependent regulation of SREBP2, suggesting that the stabilization of active SREBP1 molecules could be responsible for the blunted activation of SREBP2 in Fbw7-deficient cancer cells. We suggest that this could be an important negative feedback loop in cancer cells with Fbw7 loss-of-function mutations to protect these cells from the accumulation of toxic levels of cholesterol and/or cholesterol metabolites. Surprisingly, we also found that the inactivation of Fbw7 resulted in the activation of AKT. Importantly, the activation of AKT was dependent on SREBP1 and on the accumulation of cholesterol. Thus, we suggest that the loss of Fbw7 rewires lipid metabolism in cancer cells to support cell proliferation and survival.
Collapse
Affiliation(s)
- Maria T. Bengoechea-Alonso
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Arwa Aldaalis
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Johan Ericsson
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
- *Correspondence: Johan Ericsson,
| |
Collapse
|
15
|
Hartel JC, Merz N, Grösch S. How sphingolipids affect T cells in the resolution of inflammation. Front Pharmacol 2022; 13:1002915. [PMID: 36176439 PMCID: PMC9513432 DOI: 10.3389/fphar.2022.1002915] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
The concept of proper resolution of inflammation rather than counteracting it, gained a lot of attention in the past few years. Re-assembly of tissue and cell homeostasis as well as establishment of adaptive immunity after inflammatory processes are the key events of resolution. Neutrophiles and macrophages are well described as promotors of resolution, but the role of T cells is poorly reviewed. It is also broadly known that sphingolipids and their imbalance influence membrane fluidity and cell signalling pathways resulting in inflammation associated diseases like inflammatory bowel disease (IBD), atherosclerosis or diabetes. In this review we highlight the role of sphingolipids in T cells in the context of resolution of inflammation to create an insight into new possible therapeutical approaches.
Collapse
Affiliation(s)
- Jennifer Christina Hartel
- Institute of Clinical Pharmacology, Goethe-University Frankfurt. Frankfurt am Main, Frankfurt, Germany
- Department of Life Sciences, Goethe-University Frankfurt, Frankfurt, Germany
| | - Nadine Merz
- Institute of Clinical Pharmacology, Goethe-University Frankfurt. Frankfurt am Main, Frankfurt, Germany
| | - Sabine Grösch
- Institute of Clinical Pharmacology, Goethe-University Frankfurt. Frankfurt am Main, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
- *Correspondence: Sabine Grösch,
| |
Collapse
|
16
|
HHcy Induces Pyroptosis and Atherosclerosis via the Lipid Raft-Mediated NOX-ROS-NLRP3 Inflammasome Pathway in apoE -/- Mice. Cells 2022; 11:cells11152438. [PMID: 35954287 PMCID: PMC9368640 DOI: 10.3390/cells11152438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022] Open
Abstract
Lipid rafts play important roles in signal transduction, particularly in responses to inflammatory processes. The current study aimed to identify whether lipid raft-mediated inflammation contributes to hyperhomocysteinemia (HHcy)-accelerated atherosclerosis (AS), and to investigate the underlying mechanisms. THP-1-derived macrophages were used for in vitro experiments. ApoE−/− mice were fed a high-fat diet for 12 weeks to establish an AS model, and a high-fat plus high-methionine diet was used to induce HHcy. We found that homocysteine (Hcy) increased the expression of p22phox and p67phox and promoted their recruitment into lipid rafts (indicating the assembly of the NOX complex), thereby increasing ROS generation and NOX activity, NLRP3 inflammasome activation, and pyroptosis. Mechanistically, Hcy activated the NOX-ROS-NLRP3 inflammasome pathway and induced pyroptosis by increasing the expression of acid sphingomyelinase (ASM) to promote the formation of lipid raft clustering. Importantly, lipid raft-mediated pyroptosis was confirmed in HHcy mice, and HHcy-promoted macrophage recruitment in atherosclerotic lesions and HHcy-aggravated AS were blocked by the lipid raft disruptor methyl-β-cyclodextrin. The study findings indicate that Hcy promotes lipid raft clustering via the upregulation of ASM, which mediates the assembly of the NOX complex, causing an increase in ROS generation, NLRP3 inflammasome activation, and pyroptosis, and contributes to HHcy-induced AS.
Collapse
|
17
|
Yu PW, Fu PF, Zeng L, Qi YL, Li XQ, Wang Q, Yang GY, Li HW, Wang J, Chu BB, Wang MD. EGCG Restricts PRRSV Proliferation by Disturbing Lipid Metabolism. Microbiol Spectr 2022; 10:e0227621. [PMID: 35404086 PMCID: PMC9045245 DOI: 10.1128/spectrum.02276-21] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/20/2022] [Indexed: 12/30/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infection leads to late-term reproductive failure and respiratory illness that affect the global swine industry. Epigallocatechin gallate (EGCG) is a polyphenolic compound from green tea that exerts antiviral activity against diverse viruses. This study aimed to report an uncharacterized mechanism of how EGCG restricted PRRSV proliferation. EGCG showed no significant effects on cell viability, cell cycle progression, and apoptosis in porcine alveolar macrophages and MARC-145 cells. The treatment of cells with EGCG attenuated the replication of both highly pathogenic and less pathogenic PRRSV in vitro. The viral life cycle analysis demonstrated that EGCG affected PRRSV replication and assembly, but not viral attachment, entry, or release. Interestingly, EGCG treatment abrogated the increased lipid droplets formation and lipid content induced by PRRSV infection. We further demonstrated that EGCG blocked PRRSV-stimulated expression of the key enzymes in lipid synthesis. In addition, EGCG attenuated PRRSV-induced autophagy that is critical for PRRSV proliferation. The supplementation of oleic acid restored PRRSV replication and assembly under EGCG treatment. Together, our results support that EGCG inhibits PRRSV proliferation through disturbing lipid metabolism. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) is an enveloped single-positive-stranded RNA virus that causes acute respiratory distress in piglets and reproductive failure in sows, resulting in huge economic losses to the global swine industry. Several lines of evidence have suggested the crucial roles of lipids in PRRSV proliferation. Our previous report demonstrated that PRRSV activated lipophagy to facilitate viral replication through downregulating the expression of N-Myc downstream-regulated gene 1. The manipulation of lipid metabolism may be a new perspective to prevent PRRSV spread. In the present study, we reported that epigallocatechin-3-gallate (EGCG), the major component of green tea catechins, significantly attenuated PRRSV infection through inhibiting lipid synthesis and autophagy. Given that natural products derived from plants have helped in the prevention and treatment of various infectious diseases, EGCG has a great potential to serve as a safe and environmentally friendly natural compound to treat PRRSV infection.
Collapse
Affiliation(s)
- Peng-Wei Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, People’s Republic of China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan Province, People’s Republic of China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan Province, People’s Republic of China
| | - Peng-Fei Fu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, People’s Republic of China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan Province, People’s Republic of China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan Province, People’s Republic of China
| | - Lei Zeng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, People’s Republic of China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan Province, People’s Republic of China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan Province, People’s Republic of China
| | - Yan-Li Qi
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, People’s Republic of China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan Province, People’s Republic of China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan Province, People’s Republic of China
| | - Xiu-Qing Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, People’s Republic of China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan Province, People’s Republic of China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan Province, People’s Republic of China
| | - Qi Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, People’s Republic of China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan Province, People’s Republic of China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan Province, People’s Republic of China
| | - Guo-Yu Yang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan Province, People’s Republic of China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan Province, People’s Republic of China
| | - Hua-Wei Li
- School of Food and Bioengineering, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan Province, People’s Republic of China
| | - Jiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, People’s Republic of China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan Province, People’s Republic of China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan Province, People’s Republic of China
| | - Bei-Bei Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, People’s Republic of China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan Province, People’s Republic of China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan Province, People’s Republic of China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, Henan Province, People’s Republic of China
| | - Meng-Di Wang
- School of Food and Bioengineering, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan Province, People’s Republic of China
| |
Collapse
|
18
|
Kato T, Lim B, Cheng Y, Pham AT, Maynard J, Moreau D, Poblador-Bahamonde AI, Sakai N, Matile S. Cyclic Thiosulfonates for Thiol-Mediated Uptake: Cascade Exchangers, Transporters, Inhibitors. JACS AU 2022; 2:839-852. [PMID: 35557769 PMCID: PMC9088311 DOI: 10.1021/jacsau.1c00573] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 05/16/2023]
Abstract
Thiol-mediated uptake is emerging as a powerful method to penetrate cells. Cyclic oligochalcogenides (COCs) have been identified as privileged scaffolds to enable and inhibit thiol-mediated uptake because they can act as dynamic covalent cascade exchangers, i.e., every exchange produces a new, covalently tethered exchanger. In this study, our focus is on the essentially unexplored COCs of higher oxidation levels. Quantitative characterization of the underlying dynamic covalent exchange cascades reveals that the initial ring opening of cyclic thiosulfonates (CTOs) proceeds at a high speed even at a low pH. The released sulfinates exchange with disulfides in aprotic but much less in protic environments. Hydrophobic domains were thus introduced to direct CTOs into hydrophobic pockets to enhance their reactivity. Equipped with such directing groups, fluorescently labeled CTOs entered the cytosol of living cells more efficiently than the popular asparagusic acid. Added as competitive agents, CTOs inhibit the uptake of various COC transporters and SARS-CoV-2 lentivectors. Orthogonal trends found with different transporters support the existence of multiple cellular partners to account for the diverse expressions of thiol-mediated uptake. Dominant self-inhibition and high activity of dimers imply selective and synergistic exchange in hydrophobic pockets as distinguishing characteristics of thiol-mediated uptake with CTOs. The best CTO dimers with hydrophobic directing groups inhibit the cellular entry of SARS-CoV-2 lentivectors with an IC50 significantly lower than the previous best CTO, below the 10 μM threshold and better than ebselen. Taken together, these results identify CTOs as an intriguing motif for use in cytosolic delivery, as inhibitors of lentivector entry, and for the evolution of dynamic covalent networks in the broadest sense, with reactivity-based selectivity of cascade exchange emerging as a distinguishing characteristic that deserves further attention.
Collapse
|
19
|
Barakat J, Squires TM. Curvature-Mediated Forces on Elastic Inclusions in Fluid Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1099-1105. [PMID: 35015555 PMCID: PMC8793860 DOI: 10.1021/acs.langmuir.1c02709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Heterogeneous fluid interfaces often include two-dimensional solid domains that mechanically respond to changes in interfacial curvature. While this response is well-characterized for rigid inclusions, the influence of solid-like elasticity remains essentially unexplored. Here, we show that an initially flat, elastic inclusion embedded in a curved, fluid interface will exhibit qualitatively distinct behavior depending on its size and stiffness. Small, stiff inclusions are limited by bending and experience forces directed up gradients of Gaussian curvature, in keeping with prior findings for rigid discoids. By contrast, larger and softer inclusions are driven down gradients of squared Gaussian curvature in order to minimize the elastic penalty for stretching. Our calculations of the force on a solid inclusion are shown to collapse onto a universal curve spanning the bending- and stretching-limited regimes. From these results, we make predictions for the curvature-directed motion of deformable solids embedded within a model interface of variable Gaussian curvature.
Collapse
|
20
|
Abstract
The ability of cholesterol to uncoil (i.e., condense) the acyl chains of phospholipids has been known for a century. Despite extensive studies of the interactions between cholesterol and phospholipids, a molecular-level understanding of this uncoiling phenomenon has remained elusive. Equally unclear has been whether cholesterol's two different faces (i.e., its relatively smooth α face and its relatively rough β face) contribute to its condensing power. Because cholesterol's condensing effect is believed to play a major role in controlling the fluidity, structure, and functioning of all animal cell membranes, its biological importance cannot be overstated. This Perspective focuses on experimental evidence that addresses (i) the credibility of a popular "umbrella" mechanism that has been used to account for cholesterol's condensing effect, (ii) the credibility of an alternate "template" mechanism, (iii) the importance of cholesterol two-faced character with respect to its condensing power, and (iv) the viability of a surface occupancy model.
Collapse
|
21
|
Farfan-Morales CN, Cordero-Rivera CD, Reyes-Ruiz JM, Hurtado-Monzón AM, Osuna-Ramos JF, González-González AM, De Jesús-González LA, Palacios-Rápalo SN, Del Ángel RM. Anti-flavivirus Properties of Lipid-Lowering Drugs. Front Physiol 2021; 12:749770. [PMID: 34690817 PMCID: PMC8529048 DOI: 10.3389/fphys.2021.749770] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
Although Flaviviruses such as dengue (DENV) and zika (ZIKV) virus are important human pathogens, an effective vaccine or antiviral treatment against them is not available. Hence, the search for new strategies to control flavivirus infections is essential. Several studies have shown that the host lipid metabolism could be an antiviral target because cholesterol and other lipids are required during the replicative cycle of different Flaviviridae family members. FDA-approved drugs with hypolipidemic effects could be an alternative for treating flavivirus infections. However, a better understanding of the regulation between host lipid metabolism and signaling pathways triggered during these infections is required. The metabolic pathways related to lipid metabolism modified during DENV and ZIKV infection are analyzed in this review. Additionally, the role of lipid-lowering drugs as safe host-targeted antivirals is discussed.
Collapse
Affiliation(s)
- Carlos Noe Farfan-Morales
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Carlos Daniel Cordero-Rivera
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - José Manuel Reyes-Ruiz
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional "Adolfo Ruiz Cortines," Instituto Mexicano del Seguro Social, Heroica Veracruz, Mexico
| | - Arianna M Hurtado-Monzón
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Juan Fidel Osuna-Ramos
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Arely M González-González
- Laboratorio de Ingeniería Tisular y Medicina Traslacional, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Luis Adrián De Jesús-González
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Selvin Noé Palacios-Rápalo
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Rosa María Del Ángel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| |
Collapse
|
22
|
Abstract
Membrane proteins (MPs) play essential roles in numerous cellular processes. Because around 70% of the currently marketed drugs target MPs, a detailed understanding of their structure, binding properties, and functional dynamics in a physiologically relevant environment is crucial for a more detailed understanding of this important protein class. We here summarize the benefits of using lipid nanodiscs for NMR structural investigations and provide a detailed overview of the currently used lipid nanodisc systems as well as their applications in solution-state NMR. Despite the increasing use of other structural methods for the structure determination of MPs in lipid nanodiscs, solution NMR turns out to be a versatile tool to probe a wide range of MP features, ranging from the structure determination of small to medium-sized MPs to probing ligand and partner protein binding as well as functionally relevant dynamical signatures in a lipid nanodisc setting. We will expand on these topics by discussing recent NMR studies with lipid nanodiscs and work out a key workflow for optimizing the nanodisc incorporation of an MP for subsequent NMR investigations. With this, we hope to provide a comprehensive background to enable an informed assessment of the applicability of lipid nanodiscs for NMR studies of a particular MP of interest.
Collapse
Affiliation(s)
- Umut Günsel
- Bavarian NMR Center (BNMRZ) at the Department of Chemistry, Technical University of Munich, Ernst-Otto-Fischer-Strasse 2, 85748 Garching, Germany
| | - Franz Hagn
- Bavarian NMR Center (BNMRZ) at the Department of Chemistry, Technical University of Munich, Ernst-Otto-Fischer-Strasse 2, 85748 Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| |
Collapse
|
23
|
Mussap M, Fanos V. Could metabolomics drive the fate of COVID-19 pandemic? A narrative review on lights and shadows. Clin Chem Lab Med 2021; 59:1891-1905. [PMID: 34332518 DOI: 10.1515/cclm-2021-0414] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023]
Abstract
Human Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) infection activates a complex interaction host/virus, leading to the reprogramming of the host metabolism aimed at the energy supply for viral replication. Alterations of the host metabolic homeostasis strongly influence the immune response to SARS-CoV-2, forming the basis of a wide range of outcomes, from the asymptomatic infection to the onset of COVID-19 and up to life-threatening acute respiratory distress syndrome, vascular dysfunction, multiple organ failure, and death. Deciphering the molecular mechanisms associated with the individual susceptibility to SARS-CoV-2 infection calls for a system biology approach; this strategy can address multiple goals, including which patients will respond effectively to the therapeutic treatment. The power of metabolomics lies in the ability to recognize endogenous and exogenous metabolites within a biological sample, measuring their concentration, and identifying perturbations of biochemical pathways associated with qualitative and quantitative metabolic changes. Over the last year, a limited number of metabolomics- and lipidomics-based clinical studies in COVID-19 patients have been published and are discussed in this review. Remarkable alterations in the lipid and amino acid metabolism depict the molecular phenotype of subjects infected by SARS-CoV-2; notably, structural and functional data on the lipids-virus interaction may open new perspectives on targeted therapeutic interventions. Several limitations affect most metabolomics-based studies, slowing the routine application of metabolomics. However, moving metabolomics from bench to bedside cannot imply the mere determination of a given metabolite panel; rather, slotting metabolomics into clinical practice requires the conversion of metabolic patient-specific data into actionable clinical applications.
Collapse
Affiliation(s)
- Michele Mussap
- Laboratory Medicine, Department of Surgical Sciences, School of Medicine, University of Cagliari, Monserrato, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, School of Medicine, University of Cagliari, Monserrato, Italy
| |
Collapse
|
24
|
Yang J, Jin J, Li S. Role of polyunsaturated phospholipids in liquid-ordered and liquid-disordered phases. RSC Adv 2021; 11:27115-27120. [PMID: 35480686 PMCID: PMC9037819 DOI: 10.1039/d1ra02692e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/30/2021] [Indexed: 11/21/2022] Open
Abstract
Polyunsaturated phospholipids play a strong repulsive role in the liquid-disordered phase but a weak role in the liquid-ordered phase.
Collapse
Affiliation(s)
- Jing Yang
- College of Education, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Jianyu Jin
- College of Education, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Shiben Li
- Department of Physics, Wenzhou University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|