1
|
Kovachka S, Panosetti M, Grimaldi B, Azoulay S, Di Giorgio A, Duca M. Small molecule approaches to targeting RNA. Nat Rev Chem 2024; 8:120-135. [PMID: 38278932 DOI: 10.1038/s41570-023-00569-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/28/2024]
Abstract
The development of innovative methodologies to identify RNA binders has attracted enormous attention in chemical biology and drug discovery. Although antibiotics targeting bacterial ribosomal RNA have been on the market for decades, the renewed interest in RNA targeting reflects the need to better understand complex intracellular processes involving RNA. In this context, small molecules are privileged tools used to explore the biological functions of RNA and to validate RNAs as therapeutic targets, and they eventually are to become new drugs. Despite recent progress, the rational design of specific RNA binders requires a better understanding of the interactions which occur with the RNA target to reach the desired biological response. In this Review, we discuss the challenges to approaching this underexplored chemical space, together with recent strategies to bind, interact and affect biologically relevant RNAs.
Collapse
Affiliation(s)
- Sandra Kovachka
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice, Nice, France
| | - Marc Panosetti
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice, Nice, France
- Molecular Medicine Research Line, Istituto Italiano di Tecnologia (IIT), Genoa, Italy
| | - Benedetto Grimaldi
- Molecular Medicine Research Line, Istituto Italiano di Tecnologia (IIT), Genoa, Italy
| | - Stéphane Azoulay
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice, Nice, France
| | - Audrey Di Giorgio
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice, Nice, France
| | - Maria Duca
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice, Nice, France.
| |
Collapse
|
2
|
Takashima Y, Murata A, Iida K, Sugai A, Hagiwara M, Nakatani K. Method for Identifying Sequence Motifs in Pre-miRNAs for Small-Molecule Binding. ACS Chem Biol 2022; 17:2817-2827. [PMID: 36150699 PMCID: PMC9594041 DOI: 10.1021/acschembio.2c00452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Non-coding RNAs are emerging targets for drug development because they are involved in various cellular processes. However, there are a few reliable design strategies for small molecules that can target RNAs. This paper reports a simple and efficient method to comprehensively analyze RNA motifs that can be bound by a specific small molecule. The method involves Dicer-mediated pre-miRNA cleavage and subsequent analysis of the reaction products by high-throughput sequencing. A pre-miRNA mutant library containing a randomized region at the Dicer cleavage site was used as the substrate for the reaction. Sequencing analysis of the products of the reaction carried out in the presence or absence of a synthetic small molecule identified the pre-miRNA mutants whose Dicer-mediated cleavage was significantly altered by the addition of the small molecule. The binding of the small molecule to the identified pre-miRNA mutants was confirmed by surface plasmon resonance, demonstrating the feasibility of our method.
Collapse
Affiliation(s)
- Yusuke Takashima
- Department
of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific
and Industrial Research), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Asako Murata
- Department
of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific
and Industrial Research), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan,
| | - Kei Iida
- Medical
Research Support Center, Kyoto University
Graduate School of Medicine, Konoecho Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ayako Sugai
- Department
of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific
and Industrial Research), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Masatoshi Hagiwara
- Department
of Anatomy and Developmental Biology, Kyoto
University Graduate School of Medicine, Konoecho Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuhiko Nakatani
- Department
of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific
and Industrial Research), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan,
| |
Collapse
|
3
|
Su ML, Chen ZP, Ye BB, Chen HR, Yuan R, Li P, Liang WB. Three-in-One System Based on Multi-Path Nucleic Acid Amplification for Bioanalysis of Pre-miRNA/miRNA and Dicer Activity. Anal Chem 2022; 94:8258-8266. [PMID: 35640096 DOI: 10.1021/acs.analchem.2c00432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Today, a lot of attention is being paid to the pre-miRNAs/miRNAs or activity of Dicer due to their important functions in various physiological processes. Especially, the intrinsic relationship among these associated targets is of significant importance for more in-depth research on the mechanism of disease formation and early diagnosis. Herein, a strategy for simultaneous bioanalysis of miRNAs/pre-miRNAs and Dicer enzyme based on the self-designed multi-path nucleic acid amplification technology was proposed. Typically, in the presence of pre-miRNA-155, it can hybridize with Helper to generate a structure with two new toeholds, one of which could react with H1, H2, and H3, performing a modified CHA reaction with obvious fluorescence responses of FAM, and another of which could hybridize with H4, H5, and H6 to construct the [H4-H5-H6]n DNA nanosphere with obvious fluorescence responses of Cy5. Similarly, miRNA-155 could just hybridize with H1, H2, and H3 to generate the same modified CHA reaction with obvious fluorescence responses of FAM. Due to the successful multi-path nucleic acid amplification, the proposed bioanalysis strategy could be successfully employed for miRNA-155 and pre-miRNA-155 analysis in the range from 500 pM to 100 nM and 1 to 300 nM, respectively. The proposed strategy could be applied to explore another inter-related nucleic acid relationship also, providing great potential in bioanalysis of various nucleic acids.
Collapse
Affiliation(s)
- Ming-Li Su
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Zhao-Peng Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Bei-Bei Ye
- Department of Maxillofacial and Ear Nose and Throat Oncology Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin 300020, PR China
| | - Hao-Ran Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ping Li
- Department of Maxillofacial and Ear Nose and Throat Oncology Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin 300020, PR China
| | - Wen-Bin Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
4
|
Furuzono T, Murata A, Okuda S, Mizutani K, Adachi T, Nakatani K. Speeding drug discovery targeting RNAs: An iterative "RNA selection-compounds screening cycle" for exploring RNA-small molecule pairs. Bioorg Med Chem 2021; 36:116070. [PMID: 33773376 DOI: 10.1016/j.bmc.2021.116070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/30/2021] [Accepted: 02/05/2021] [Indexed: 12/30/2022]
Abstract
RNA is an emerging target of next-generation drug development. Recently, new small molecules targeting RNAs were discovered by several pharmaceutical companies. Methods have been reported to identify small molecules targeting a specific RNA sequence and structural motif, however, because of diverse sequence and structural motifs potentially present in the druggable functional RNAs, large sets of structure-activity relationships (SARs) information of small molecule - RNA interactions will be required for the acceleration and efficient startup of the discovery programs toward unprecedented RNA targets. Here we describe our iterative RNA selection and compounds screening to accumulate rich information about small molecules - RNA interaction. The RNAs that selectively bind to the initial molecular target, compound 1 from our in-house chemical library (JT-library), was isolated using in vitro selection technique from a hairpin-structured RNA library mimicking precursor microRNA (pre-miRNA). Then, we engineered pre-let-7f-2 to create its mutant that can bind to compound 1 by embedding the in vitro selected RNA motif for compound 1 in the hairpin loop region. The obtained mutant pre-let-7f-2-loop-mt was used as a target for screening 316 analogs of compound 1. A surface plasmon resonance (SPR) -based screening was performed against pre-let-7f-2-loop-mt-immobilized sensor surface and we obtained four compounds that can bind to the RNA. Among these four compounds, three compounds showed higher affinity to pre-let-7f-2-loop-mt than the parental compound 1, which suggests the feasibility of our strategy for gathering the SAR information on small molecule - RNA interactions. We demonstrated only one cycle of RNA selection and compounds screening in the present study, but can continue this cycle with the selected molecule to gain new RNAs and even new RNA motifs and gather much SAR information with improved accuracy.
Collapse
Affiliation(s)
- Tomoko Furuzono
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan; Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco INC., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Asako Murata
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| | - Satoshi Okuda
- Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco INC., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Kenji Mizutani
- Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco INC., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Tsuyoshi Adachi
- Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco INC., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan.
| |
Collapse
|