1
|
Tran M, Stanger L, Narendra S, Holinstat M, Holman TR. Investigating the catalytic efficiency of C22-Fatty acids with LOX human isozymes and the platelet response of the C22-oxylipin products. Arch Biochem Biophys 2023; 747:109742. [PMID: 37696384 PMCID: PMC10821779 DOI: 10.1016/j.abb.2023.109742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023]
Abstract
Polyunsaturated fatty acids (PUFAs) have been extensively studied for their health benefits because they can be oxidized by lipoxygenases to form bioactive oxylipins. In this study, we investigated the impact of double bond placement on the kinetic properties and product profiles of human platelet 12-lipoxygenase (h12-LOX), human reticulocyte 15-lipoxygenase-1 (h15-LOX-1), and human endothelial 15-lipoxygenase-2 (h15-LOX-2) by using 22-carbon (C22) fatty acid substrates with differing double bond content. With respect to kcat/KM values, the loss of Δ4 and Δ19 led to an 18-fold loss of kinetic activity for h12-LOX, no change in kinetic capability for h15-LOX-1, but a 24-fold loss for h15-LOX-2 for both C22-FAs. With respect to the product profiles, h12-LOX produced mainly 14-oxylipins. For h15-LOX-1, the 14-oxylipin production increased with the loss of either Δ4 and Δ19, however, the 17-oxylipin became the major species upon loss of both Δ4 and Δ19. h15-LOX-2 produced mostly the 17-oxylipin products throughout the fatty acid series. This study also investigated the effects of various 17-oxylipins on platelet activation. The results revealed that both 17(S)-hydroxy-4Z,7Z,10Z,13Z,15E,19Z-DHA (17-HDHA) and 17-hydroxy-4Z,7Z,10Z,13Z,15E-DPAn6 (17-HDPAn6) demonstrated anti-aggregation properties with thrombin or collagen stimulation. 17-hydroxy-7Z,10Z,13Z,15E,19Z-DPAn3 (17-HDPAn3) exhibited agonistic properties, and 17-hydroxy-7Z,10Z,13Z,15E-DTA (17-HDTA) showed biphasic effects, inhibiting collagen-induced aggregation at lower concentrationsbut promoting aggregation at higher concentrations. Both 17-hydroxy-13Z,15E,19Z-DTrA (17-HDTrA), and 17-hydroxy-13Z,15E-DDiA (17-HDDiA) induced platelet aggregation. In summary, the number and placement of the double bonds affect platelet activation, with the general trend being that more double bonds generally inhibit aggregation, while less double bonds promote aggregation. These findings provide insights into the potential role of specific fatty acids and their metabolizing LOX isozymes with respect to cardiovascular health.
Collapse
Affiliation(s)
- Michelle Tran
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Livia Stanger
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Srihari Narendra
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Michael Holinstat
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Theodore R Holman
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|
2
|
Rao Z, Brunner E, Giszas B, Iyer-Bierhoff A, Gerstmeier J, Börner F, Jordan PM, Pace S, Meyer KPL, Hofstetter RK, Merk D, Paulenz C, Heinzel T, Grunert PC, Stallmach A, Serhan CN, Werner M, Werz O. Glucocorticoids regulate lipid mediator networks by reciprocal modulation of 15-lipoxygenase isoforms affecting inflammation resolution. Proc Natl Acad Sci U S A 2023; 120:e2302070120. [PMID: 37603745 PMCID: PMC10469032 DOI: 10.1073/pnas.2302070120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/11/2023] [Indexed: 08/23/2023] Open
Abstract
Glucocorticoids (GC) are potent anti-inflammatory agents, broadly used to treat acute and chronic inflammatory diseases, e.g., critically ill COVID-19 patients or patients with chronic inflammatory bowel diseases. GC not only limit inflammation but also promote its resolution although the underlying mechanisms are obscure. Here, we reveal reciprocal regulation of 15-lipoxygenase (LOX) isoform expression in human monocyte/macrophage lineages by GC with respective consequences for the biosynthesis of specialized proresolving mediators (SPM) and their 15-LOX-derived monohydroxylated precursors (mono-15-OH). Dexamethasone robustly up-regulated pre-mRNA, mRNA, and protein levels of ALOX15B/15-LOX-2 in blood monocyte-derived macrophage (MDM) phenotypes, causing elevated SPM and mono-15-OH production in inflammatory cell types. In sharp contrast, dexamethasone blocked ALOX15/15-LOX-1 expression and impaired SPM formation in proresolving M2-MDM. These dexamethasone actions were mimicked by prednisolone and hydrocortisone but not by progesterone, and they were counteracted by the GC receptor (GR) antagonist RU486. Chromatin immunoprecipitation (ChIP) assays revealed robust GR recruitment to a putative enhancer region within intron 3 of the ALOX15B gene but not to the transcription start site. Knockdown of 15-LOX-2 in M1-MDM abolished GC-induced SPM formation and mono-15-OH production. Finally, ALOX15B/15-LOX-2 upregulation was evident in human monocytes from patients with GC-treated COVID-19 or patients with IBD. Our findings may explain the proresolving GC actions and offer opportunities for optimizing GC pharmacotherapy and proresolving mediator production.
Collapse
Affiliation(s)
- Zhigang Rao
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, JenaD-07743, Germany
| | - Elena Brunner
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, JenaD-07743, Germany
| | - Benjamin Giszas
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena07747, Germany
| | - Aishwarya Iyer-Bierhoff
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University of Jena, Jena07745, Germany
| | - Jana Gerstmeier
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, JenaD-07743, Germany
| | - Friedemann Börner
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, JenaD-07743, Germany
| | - Paul M. Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, JenaD-07743, Germany
| | - Simona Pace
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, JenaD-07743, Germany
| | - Katharina P. L. Meyer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, JenaD-07743, Germany
| | - Robert K. Hofstetter
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, JenaD-07743, Germany
| | - Daniel Merk
- Department of Pharmacy, Ludwig-Maximilian-Universität München, Munich81377, Germany
| | | | - Thorsten Heinzel
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University of Jena, Jena07745, Germany
| | - Philip C. Grunert
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena07747, Germany
| | - Andreas Stallmach
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena07747, Germany
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA02115
- Harvard Medical School, Boston, MA02115
| | - Markus Werner
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, JenaD-07743, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, JenaD-07743, Germany
| |
Collapse
|
3
|
Perazza LR, Gower AC, Brown-Borg HM, Pajevic PD, Thompson LV. Protectin DX as a therapeutic strategy against frailty in mice. GeroScience 2023; 45:2601-2627. [PMID: 37059838 PMCID: PMC10651819 DOI: 10.1007/s11357-023-00789-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/31/2023] [Indexed: 04/16/2023] Open
Abstract
Frailty in aging is driven by the dysregulation of multiple biological pathways. Protectin DX (PDX) is a docosahexaenoic acid (DHA)-derived molecule that alleviates many chronic inflammatory disorders, but its potential effects on frailty remain unknown. Our goal is to identify age-related impairments in metabolic systems and to evaluate the therapeutic potential of PDX on frailty, physical performance, and health parameters. A set of 22-month-old C57BL/6 male and female mice were assigned to vehicle (Old) or PDX daily gavage treatment for 9 weeks, whereas 6-month-old (Adult) mice received only vehicle. Forelimb and hindlimb strength, endurance, voluntary wheel activity and walking speed determined physical performance and were combined with a frailty index score and body weight loss to determine frailty status. Our data shows that old vehicle-treated mice from both sexes had body weight loss paralleling visceromegaly, and Old females also had impaired insulin clearance as compared to the Adult group. Aging was associated with physical performance decline together with higher odds of frailty development. There was also age-driven mesangial expansion and glomerular hypertrophy as well as bone mineral density loss. All of the in vivo and in vitro impairments observed with aging co-occurred with upregulation of inflammatory pathways and Myc signaling as well as downregulation of genes related to adipogenesis and oxidative phosphorylation in liver. PDX attenuated the age-driven physical performance (strength, exhaustion, walking speed) decline, promoted robustness, prevented bone losses and partially reversed changes in hepatic expression of Myc targets and metabolic genes. In conclusion, our data provides evidence of the beneficial therapeutic effect of PDX against features of frailty in mice. Further studies are warranted to investigate the mechanisms of action and the potential for human translation.
Collapse
Affiliation(s)
- Laís R Perazza
- Department of Physical Therapy, Boston University, Boston, MA, USA.
| | - Adam C Gower
- Clinical and Translational Science Institute, Boston University, Boston, MA, USA
| | - Holly M Brown-Borg
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Paola Divieti Pajevic
- Department of Translational Dental Medicine, Goldman School of Dental Medicine, Boston University, Boston, MA, USA
| | | |
Collapse
|
4
|
Stanger L, Holinstat M. Bioactive lipid regulation of platelet function, hemostasis, and thrombosis. Pharmacol Ther 2023; 246:108420. [PMID: 37100208 PMCID: PMC11143998 DOI: 10.1016/j.pharmthera.2023.108420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2023]
Abstract
Platelets are small, anucleate cells in the blood that play a crucial role in the hemostatic response but are also implicated in the pathophysiology of cardiovascular disease. It is widely appreciated that polyunsaturated fatty acids (PUFAs) play an integral role in the function and regulation of platelets. PUFAs are substrates for oxygenase enzymes cyclooxygenase-1 (COX-1), 5-lipoxygenase (5-LOX), 12-lipoxygenase (12-LOX) and 15-lipoxygenase (15-LOX). These enzymes generate oxidized lipids (oxylipins) that exhibit either pro- or anti-thrombotic effects. Although the effects of certain oxylipins, such as thromboxanes and prostaglandins, have been studied for decades, only one oxylipin has been therapeutically targeted to treat cardiovascular disease. In addition to the well-known oxylipins, newer oxylipins that demonstrate activity in the platelet have been discovered, further highlighting the expansive list of bioactive lipids that can be used to develop novel therapeutics. This review outlines the known oxylipins, their activity in the platelet, and current therapeutics that target oxylipin signaling.
Collapse
Affiliation(s)
- Livia Stanger
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Michael Holinstat
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States of America; Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, United States of America.
| |
Collapse
|
5
|
Maltais R, Sancéau JY, Poirier D, Marette A. A Concise, Gram-Scale Total Synthesis of Protectin DX and Related Labeled Versions via a Key Stereoselective Reduction of Enediyne. J Org Chem 2023. [PMID: 37172290 DOI: 10.1021/acs.joc.3c00360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We report a gram-scale total synthesis of protectin DX (PDX) following a convergent synthetic route (24 steps) from l-malic acid. This novel synthetic strategy is based on the assembly of three main building blocks using a Sonogashira coupling reaction (blocks A and B) and Wittig olefination (block C) to provide the 22-carbon backbone of PDX. A key stereoselective reduction of enediyne leads to a central E,Z,E-trienic system of PDX and also gives access to its labeled versions (D and T).
Collapse
Affiliation(s)
- René Maltais
- Organic Synthesis Service, Medicinal Chemistry Platform, CHU de Québec Research Center-Université Laval, Québec, QC, Canada G1V 4G2
| | - Jean-Yves Sancéau
- Organic Synthesis Service, Medicinal Chemistry Platform, CHU de Québec Research Center-Université Laval, Québec, QC, Canada G1V 4G2
| | - Donald Poirier
- Organic Synthesis Service, Medicinal Chemistry Platform, CHU de Québec Research Center-Université Laval, Québec, QC, Canada G1V 4G2
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada G1V 0A6
| | - André Marette
- Department of Medicine, Québec Heart and Lung Institute, Laval Hospital, Québec, QC, Canada G1V 4G5
| |
Collapse
|
6
|
Lv Y, Chen D, Tian X, Xiao J, Xu C, Du L, Li J, Zhou S, Chen Y, Zhuang R, Gong Y, Ying B, Gao-Smith F, Jin S, Gao Y. Protectin conjugates in tissue regeneration 1 alleviates sepsis-induced acute lung injury by inhibiting ferroptosis. J Transl Med 2023; 21:293. [PMID: 37121999 PMCID: PMC10150510 DOI: 10.1186/s12967-023-04111-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/08/2023] [Indexed: 05/02/2023] Open
Abstract
BACKGROUND Acute lung injury (ALI) is a common and serious complication of sepsis with high mortality. Ferroptosis, categorized as programmed cell death, contributes to the development of lung injury. Protectin conjugates in tissue regeneration 1 (PCTR1) is an endogenous lipid mediator that exerts protective effects against multiorgan injury. However, the role of PCTR1 in the ferroptosis of sepsis-related ALI remains unknown. METHODS A pulmonary epithelial cell line and a mouse model of ALI stimulated with lipopolysaccharide (LPS) were established in vitro and in vivo. Ferroptosis biomarkers, including ferrous (Fe2+), glutathione (GSH), malondialdehyde (MDA) and 4-Hydroxynonenal (4-HNE), were assessed by relevant assay kits. Glutathione peroxidase 4 (GPX4) and prostaglandin-endoperoxide synthase 2 (PTGS2) protein levels were determined by western blotting. Lipid peroxides were examined by fluorescence microscopy and flow cytometry. Cell viability was determined by a CCK-8 assay kit. The ultrastructure of mitochondria was observed with transmission electron microscopy. Morphology and inflammatory cytokine levels predicted the severity of lung injury. Afterward, related inhibitors were used to explore the potential mechanism by which PCTR1 regulates ferroptosis. RESULTS PCTR1 treatment protected mice from LPS-induced lung injury, which was consistent with the effect of the ferroptosis inhibitor ferrostatin-1. PCTR1 treatment decreased Fe2+, PTGS2 and lipid reactive oxygen species (ROS) contents, increased GSH and GPX4 levels and ameliorated mitochondrial ultrastructural injury. Administration of LPS or the ferroptosis agonist RSL3 resulted in reduced cell viability, which was rescued by PCTR1. Mechanistically, inhibition of the PCTR1 receptor lipoxin A4 (ALX), protein kinase A (PKA) and transcription factor cAMP-response element binding protein (CREB) partly decreased PCTR1 upregulated GPX4 expression and a CREB inhibitor blocked the effects ofPCTR1 on ferroptosis inhibition and lung protection. CONCLUSION This study suggests that PCTR1 suppresses LPS-induced ferroptosis via the ALX/PKA/CREB signaling pathway, which may offer promising therapeutic prospects in sepsis-related ALI.
Collapse
Affiliation(s)
- Ya Lv
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Deming Chen
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Xinyi Tian
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Ji Xiao
- Department of Anesthesiology, Hunan Cancer Hospital, No. 283, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Congcong Xu
- Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Linan Du
- Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Jiacong Li
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Siyu Zhou
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuxiang Chen
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rong Zhuang
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuqiang Gong
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Binyu Ying
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fang Gao-Smith
- Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China.
- Birmingham Acute Care Research Center, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.
| | - Shengwei Jin
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China.
| | - Ye Gao
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China.
| |
Collapse
|
7
|
Yamagata K. Docosahexaenoic acid inhibits ischemic stroke to reduce vascular dementia and Alzheimer’s disease. Prostaglandins Other Lipid Mediat 2023; 167:106733. [PMID: 37028469 DOI: 10.1016/j.prostaglandins.2023.106733] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/17/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023]
Abstract
Stroke and dementia are global leading causes of neurological disability and death. The pathology of these diseases is interrelated and they share common, modifiable risk factors. It is suggested that docosahexaenoic acid (DHA) prevents neurological and vascular disorders induced by ischemic stroke and also prevent dementia. The purpose of this study was to review the potential preventative role of DHA against ischemic stroke-induced vascular dementia and Alzheimer's disease. In this review, I analyzed studies on stroke-induced dementia from the PubMed, ScienceDirect, and Web of Science databases as well as studies on the effects of DHA on stroke-induced dementia. As per the results of interventional studies, DHA intake can potentially ameliorate dementia and cognitive function. In particular, DHA derived from foods such as fish oil enters the blood and then migrates to the brain by binding to fatty acid binding protein 5 that is present in cerebral vascular endothelial cells. At this point, the esterified form of DHA produced by lysophosphatidylcholine is preferentially absorbed into the brain instead of free DHA. DHA accumulates in nerve cell membrane and is involved in the prevention of dementia. The antioxidative and anti-inflammatory properties of DHA and DHA metabolites as well as their ability to decrease amyloid beta (Aβ) 42 production were implicated in the improvement of cognitive function. The antioxidant effect of DHA, the inhibition of neuronal cell death by Aβ peptide, improvement in learning ability, and enhancement of synaptic plasticity may contribute to the prevention of dementia induced by ischemic stroke.
Collapse
|
8
|
Yamaguchi A, van Hoorebeke C, Tourdot BE, Perry S, Lee G, Rhoads N, Rickenberg A, Green A, Sorrentino J, Yeung J, Freedman JC, Holman TR, Holinstat M. Fatty acids negatively regulate platelet function through formation of noncanonical 15-lipoxygenase-derived eicosanoids. Pharmacol Res Perspect 2023; 11:e01056. [PMID: 36708179 PMCID: PMC9883682 DOI: 10.1002/prp2.1056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/29/2023] Open
Abstract
The antiplatelet effect of polyunsaturated fatty acids is primarily attributed to its metabolism to bioactive metabolites by oxygenases, such as lipoxygenases (LOX). Platelets have demonstrated the ability to generate 15-LOX-derived metabolites (15-oxylipins); however, whether 15-LOX is in the platelet or is required for the formation of 15-oxylipins remains unclear. This study seeks to elucidate whether 15-LOX is required for the formation of 15-oxylipins in the platelet and determine their mechanistic effects on platelet reactivity. In this study, 15-HETrE, 15-HETE, and 15-HEPE attenuated collagen-induced platelet aggregation, and 15-HETrE inhibited platelet aggregation induced by different agonists. The observed anti-aggregatory effect was due to the inhibition of intracellular signaling including αIIbβ3 and protein kinase C activities, calcium mobilization, and granule secretion. While 15-HETrE inhibited platelets partially through activation of peroxisome proliferator-activated receptor β (PPARβ), 15-HETE also inhibited platelets partially through activation of PPARα. 15-HETrE, 15-HETE, or 15-HEPE inhibited 12-LOX in vitro, with arachidonic acid as the substrate. Additionally, a 15-oxylipin-dependent attenuation of 12-HETE level was observed in platelets following ex vivo treatment with 15-HETrE, 15-HETE, or 15-HEPE. Platelets treated with DGLA formed 15-HETrE and collagen-induced platelet aggregation was attenuated only in the presence of ML355 or aspirin, but not in the presence of 15-LOX-1 or 15-LOX-2 inhibitors. Expression of 15-LOX-1, but not 15-LOX-2, was decreased in leukocyte-depleted platelets compared to non-depleted platelets. Taken together, these findings suggest that 15-oxylipins regulate platelet reactivity; however, platelet expression of 15-LOX-1 is low, suggesting that 15-oxylipins may be formed in the platelet through a 15-LOX-independent pathway.
Collapse
Affiliation(s)
- Adriana Yamaguchi
- Department of PharmacologyUniversity of MichiganAnn ArborMichiganUSA
| | | | | | - Steven C. Perry
- Department of Chemistry and BiochemistryUniversity of California Santa CruzSanta CruzCaliforniaUSA
| | - Grace Lee
- Department of PharmacologyUniversity of MichiganAnn ArborMichiganUSA
| | - Nicole Rhoads
- Department of PharmacologyUniversity of MichiganAnn ArborMichiganUSA
| | - Andrew Rickenberg
- Department of PharmacologyUniversity of MichiganAnn ArborMichiganUSA
| | - Abigail R. Green
- Department of Chemistry and BiochemistryUniversity of California Santa CruzSanta CruzCaliforniaUSA
| | - James Sorrentino
- Department of Chemistry and BiochemistryUniversity of California Santa CruzSanta CruzCaliforniaUSA
| | - Jennifer Yeung
- Department of PharmacologyUniversity of MichiganAnn ArborMichiganUSA
| | - J. Cody Freedman
- Department of Chemistry and BiochemistryUniversity of California Santa CruzSanta CruzCaliforniaUSA
| | - Theodore R. Holman
- Department of Chemistry and BiochemistryUniversity of California Santa CruzSanta CruzCaliforniaUSA
| | - Michael Holinstat
- Department of PharmacologyUniversity of MichiganAnn ArborMichiganUSA
- Department of Internal Medicine, Division of Cardiovascular MedicineUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
9
|
Tran M, Signorelli RL, Yamaguchi A, Chen E, Holinstat M, Iavarone AT, Offenbacher AR, Holman T. Biochemical and hydrogen-deuterium exchange studies of the single nucleotide polymorphism Y649C in human platelet 12-lipoxygenase linked to a bleeding disorder. Arch Biochem Biophys 2023; 733:109472. [PMID: 36442529 PMCID: PMC9888433 DOI: 10.1016/j.abb.2022.109472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Human platelet 12-lipoxygenase (h12-LOX) is responsible for the formation of oxylipin products that play an important role in platelet aggregation. Single nucleotide polymorphisms (SNPs) of h12-LOX have been implicated in several diseases. In this study, we investigate the structural, dynamical, and functional impact of a h12-LOX SNP that generates a tyrosine-to-cysteine mutation at a buried site (Y649C h12-LOX) and was previously ascribed with reduced levels of 12(S)-hydroxyeicosatetraenoic acid (12S-HETE) production in isolated platelets. Herein, in vitro Michaelis-Menten kinetics show reduced catalytic rates for Y649C compared to WT h12-LOX at physiological or lower temperatures. Both proteins exhibited similar melting temperatures, metal content, and oligomerization state. Liposome binding for both proteins was also dependent upon the presence of calcium, temperature, and liposome composition; however, the Y649C variant was found to have lowered binding capacity to liposomes compared to WT at physiological temperatures. Further, hydrogen-deuterium exchange mass spectrometry (HDX-MS) experiments revealed a regional defined enhancement in the peptide mobility caused by the mutation. This increased instability for the mutation stemmed from a change in an interaction with an arched helix that lines the substrate binding site, located ≥15 Å from the mutation site. Finally, differential scanning calorimetry demonstrated a reduced protein (un)folding enthalpy, consistent with the HDX results. Taken together, these results demonstrate remarkable similarity between the mutant and WT h12-LOX, and yet, subtle changes in activity, membrane affinity and protein stability may be responsible for the significant physiological changes that the Y649C SNP manifests in platelet biology.
Collapse
Affiliation(s)
- Michelle Tran
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | | | - Adriana Yamaguchi
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Eefie Chen
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Michael Holinstat
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Anthony T. Iavarone
- QB3/Chemistry Mass Spectrometry Facility, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Adam R. Offenbacher
- Department of Chemistry, East Carolina University, Greenville, NC, 27858, USA,Corresponding author. (A.R. Offenbacher)
| | - Theodore Holman
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, 95064, USA,Corresponding author. (T. Holman)
| |
Collapse
|
10
|
Vidar Hansen T, Serhan CN. Protectins: Their biosynthesis, metabolism and structure-functions. Biochem Pharmacol 2022; 206:115330. [PMID: 36341938 PMCID: PMC9838224 DOI: 10.1016/j.bcp.2022.115330] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 01/17/2023]
Abstract
Several lipoxygenase enzymes and cyclooxygenase-2 stereoselectively convert the polyunsaturated fatty acids arachidonic acid, eicosapentaenoic acid, docosahexaenoic acid, and n-3 docosapentaenoic acid into numerous oxygenated products. Biosynthetic pathway studies have shown, during the resolution phase of acute inflammation, that distinct families of endogenous products are formed. These products were named specialized pro-resolving mediators, given their specialized functions in the inflammation-resolution circuit, enhancing the return of inflamed and injured tissue to homeostasis. The lipoxins, resolvins, protectins and maresins, together with the sulfido-conjugates of the resolvins, protectins and maresins, constitute the four individual families of these local mediators. When administrated in vivo in a wide range of human disease models, the specialized pro-resolving mediators display potent bioactions. The detailed and individual biosynthetic steps constituting the biochemical pathways, the metabolism, recent reports on structure-function studies and pharmacodynamic data of the protectins, are presented herein. Emphasis is on the structure-function results on the recent members of the sulfido conjugated protectins and further metabolism of protectin D1. Moreover, the members of the individual families of specialized pro-resolving mediators and their biosynthetic precursor are presented. Today 43 specialized pro-resolving mediators possessing pro-resolution and anti-inflammatory bioactions are reported and confirmed, constituting a basis for resolution pharmacology. This emerging biomedical field provides a new approach for drug discovery, that is also discussed.
Collapse
Affiliation(s)
- Trond Vidar Hansen
- Department of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway.
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Hale Building for Transformative Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, United States.
| |
Collapse
|
11
|
van Hoorebeke C, Yang K, Mussetter SJ, Koch G, Rutz N, Lokey RS, Crews P, Holman TR. Reevaluation of a Bicyclic Pyrazoline as a Selective 15-Lipoxygenase V-Type Activator Possessing Fatty Acid Specificity. ACS OMEGA 2022; 7:43169-43179. [PMID: 36467910 PMCID: PMC9713885 DOI: 10.1021/acsomega.2c05877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/04/2022] [Indexed: 06/17/2023]
Abstract
Regulation of lipoxygenase (LOX) activity is of great interest due to the involvement of the various LOX isoforms in the inflammatory process and hence many diseases. The bulk of investigations have centered around the discovery and design of inhibitors. However, the emerging understanding of the role of h15-LOX-1 in the resolution of inflammation provides a rationale for the development of activators as well. Bicyclic pyrazolines are known bioactive molecules that have been shown to display antibiotic and anti-inflammatory activities. In the current work, we reevaluated a previously discovered bicyclic pyrazoline h15-LOX-1 activator, PKUMDL_MH_1001 (written as 1 for this publication), and determined that it is inactive against other human LOX isozymes, h5-LOX, h12-LOX, and h15-LOX-2. Analytical characterization of 1 obtained in the final synthesis step identified it as a mixture of cis- and trans-diastereomers: cis-1 (12%) and trans-1 (88%); and kinetic analysis indicated similar potency between the two. Using compound 1 as the cis-trans mixture, h15-LOX-1 catalysis with arachidonic acid (AA) (AC50 = 7.8 +/- 1 μM, A max = 240%) and linoleic acid (AC50 = 5.3 +/- 0.7 μM, A max = 98%) was activated, but not with docosahexaenoic acid (DHA) or mono-oxylipins. Steady-state kinetics demonstrate V-type activation for 1, with a β value of 2.2 +/- 0.4 and an K x of 16 +/- 1 μM. Finally, it is demonstrated that the mechanism of activation for 1 is likely not due to decreasing substrate inhibition, as was postulated previously. 1 also did not affect the activity of the h15-LOX-1 selective inhibitor, ML351, nor did 1 affect the activity of allosteric effectors, such as 12S-hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid (12S-HETE) and 14S-hydroperoxy-4Z,7Z,10Z,12E,16Z,19Z-docosahexaenoic acid (14S-HpDHA). These data confirm that 1 binds to a distinct activation binding site, as previously postulated. Future work should be aimed at the development of selective activators that are capable of activating h15-LOX-1 catalysis with DHA, thus enhancing the production of DHA-derived pro-resolution biomolecules.
Collapse
Affiliation(s)
- Christopher van Hoorebeke
- Department of Chemistry and
Biochemistry, University of California Santa
Cruz, Santa Cruz, California 95064, United States
| | - Kevin Yang
- Department of Chemistry and
Biochemistry, University of California Santa
Cruz, Santa Cruz, California 95064, United States
| | - Samuel J. Mussetter
- Department of Chemistry and
Biochemistry, University of California Santa
Cruz, Santa Cruz, California 95064, United States
| | - Grant Koch
- Department of Chemistry and
Biochemistry, University of California Santa
Cruz, Santa Cruz, California 95064, United States
| | - Natalie Rutz
- Department of Chemistry and
Biochemistry, University of California Santa
Cruz, Santa Cruz, California 95064, United States
| | - R. Scott Lokey
- Department of Chemistry and
Biochemistry, University of California Santa
Cruz, Santa Cruz, California 95064, United States
| | - Phillip Crews
- Department of Chemistry and
Biochemistry, University of California Santa
Cruz, Santa Cruz, California 95064, United States
| | - Theodore R. Holman
- Department of Chemistry and
Biochemistry, University of California Santa
Cruz, Santa Cruz, California 95064, United States
| |
Collapse
|
12
|
Benatzy Y, Palmer MA, Brüne B. Arachidonate 15-lipoxygenase type B: Regulation, function, and its role in pathophysiology. Front Pharmacol 2022; 13:1042420. [PMID: 36438817 PMCID: PMC9682198 DOI: 10.3389/fphar.2022.1042420] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/26/2022] [Indexed: 10/30/2023] Open
Abstract
As a lipoxygenase (LOX), arachidonate 15-lipoxygenase type B (ALOX15B) peroxidizes polyenoic fatty acids (PUFAs) including arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and linoleic acid (LA) to their corresponding fatty acid hydroperoxides. Distinctive to ALOX15B, fatty acid oxygenation occurs with positional specificity, catalyzed by the non-heme iron containing active site, and in addition to free PUFAs, membrane-esterified fatty acids serve as substrates for ALOX15B. Like other LOX enzymes, ALOX15B is linked to the formation of specialized pro-resolving lipid mediators (SPMs), and altered expression is apparent in various inflammatory diseases such as asthma, psoriasis, and atherosclerosis. In primary human macrophages, ALOX15B expression is associated with cellular cholesterol homeostasis and is induced by hypoxia. Like in inflammation, the role of ALOX15B in cancer is inconclusive. In prostate and breast carcinomas, ALOX15B is attributed a tumor-suppressive role, whereas in colorectal cancer, ALOX15B expression is associated with a poorer prognosis. As the biological function of ALOX15B remains an open question, this review aims to provide a comprehensive overview of the current state of research related to ALOX15B.
Collapse
Affiliation(s)
- Yvonne Benatzy
- Faculty of Medicine, Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
| | - Megan A. Palmer
- Faculty of Medicine, Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
| |
Collapse
|
13
|
Paik B, Tong L. Topical Omega-3 Fatty Acids Eyedrops in the Treatment of Dry Eye and Ocular Surface Disease: A Systematic Review. Int J Mol Sci 2022; 23:13156. [PMID: 36361942 PMCID: PMC9654205 DOI: 10.3390/ijms232113156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/16/2022] [Accepted: 10/26/2022] [Indexed: 11/20/2023] Open
Abstract
Dry eye is a common inflammatory condition of the ocular surface. While oral omega-3 supplementation for its treatment has been extensively studied, recent large-scale studies have cast doubt on their efficacy. However, efficacy of topical omega-3 has yet to be reviewed. We performed a systematic search of PubMed, Embase, and Cochrane databases for all studies evaluating topical omega-3 in dry eye. Five human and five animal studies were included. Of the five human studies, two were on dry eye disease (DED), one was on contact lens discomfort, and two were on patients undergoing corneal collagen crosslinking. In humans, there is promising evidence for improved ocular surface staining and tear break-up time compared to controls, equivocal evidence for improvements to ocular surface symptoms and meibomian gland dysfunction, and no effect on increasing tear production. Data from animal models largely agree with these findings, and further reveal decreased inflammatory cytokines and monocyte infiltration. Our review suggests that topical omega-3 is a promising treatment for dry eye, but also points to the paucity of evidence in this field. Further trials in humans are required to characterize effects of topical omega-3 and optimize its dosage.
Collapse
Affiliation(s)
- Benjamin Paik
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Louis Tong
- Department of Cornea and External Eye Disease, Singapore National Eye Center, Singapore 168751, Singapore
- Ocular Surface Research Group, Singapore Eye Research Institute, Singapore 169856, Singapore
- Ophthalmlogy and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
14
|
Enzymatic Formation of Protectin Dx and Its Production by Whole-Cell Reaction Using Recombinant Lipoxygenases. Catalysts 2022. [DOI: 10.3390/catal12101145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In the human body, docosahexaenoic acid (DHA) contained in fish oil is converted to trace amounts of specialized pro-resolving mediators (SPMs) as the principal bioactive metabolites for their pharmacological effects. Protectin Dx (PDX), an SPM, is an important medicinal compound with biological activities such as modulation of endogenous antioxidant systems, inflammation pro-resolving action, and inhibition of influenza virus replication. Although it can be biotechnologically synthesized from DHA, it has not yet been produced quantitatively. Here, we found that 15S-lipoxygenase from Burkholderia thailandensis (BT 15SLOX) converted 10S-hydroxydocosahexaenoic acid (10S-HDHA) to PDX using enzymatic reactions, which was confirmed by LC-MS/MS and NMR analyses. Thus, whole-cell reactions of Escherichia coli cells expressing BT 15SLOX were performed in flasks to produce PDX from lipase-treated DHA-enriched fish oil along with E. coli cells expressing Mus musculus (mouse) 8S-lipoxygenase (MO 8SLOX) that converted DHA to 10S-HDHA. First, 1 mM DHA (DHA-enriched fish oil hydrolysate, DFOH) was obtained from 455 mg/L DHA-enriched fish oil by lipase for 1 h. Second, E. coli cells expressing MO 8SLOX converted 1 mM DHA in DFOH to 0.43 mM 10S-HDHA for 6 h. Finally, E. coli cells expressing BT 15SLOX converted 0.43 mM 10S-HDHA in MO 8SLOX-treated DFOH to 0.30 mM (108 mg/L) PDX for 5 h. Consequently, DHA-enriched fish oil at 455 mg/L was converted to 108 mg/L PDX after a total of 12 h (conversion yield: 24% (w/w); productivity: 4.5 mg/L/h). This study is the first report on the quantitative production of PDX via biotechnological approaches.
Collapse
|
15
|
Hamidzadeh K, Westcott J, Wourms N, Shay AE, Panigrahy A, Martin MJ, Nshimiyimana R, Serhan CN. A newly synthesized 17-epi-NeuroProtectin D1/17-epi-Protectin D1: Authentication and functional regulation of Inflammation-Resolution. Biochem Pharmacol 2022; 203:115181. [PMID: 35850309 PMCID: PMC9398963 DOI: 10.1016/j.bcp.2022.115181] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/15/2022]
Abstract
The production of specialized pro-resolving mediators (SPMs) during the resolution phase in the inflammatory milieu is key to orchestrating the resolution of the acute inflammatory response. 17-epi-neuroprotectin D1/17-epi-protectin D1 (17-epi-NPD1/17-epi-PD1: 10R,17R-dihydroxy-4Z,7Z,11E,13E,15Z,19Z-docosahexaenoic acid) is an SPM of the protectin family, biosynthesized from docosahexaenoic acid (DHA), that exhibits both potent anti-inflammatory and neuroprotective functions. Here, we carried out a new commercial-scale synthesis of 17-epi-NPD1/17-epi-PD1 that enabled the authentication and confirmation of its potent bioactions in vivo and determination of its ability to activate human leukocyte phagocytosis. We provide evidence that this new synthetic 17-epi-NPD1/17-epi-PD1 statistically significantly increases human macrophage uptake of E. coli in vitro and confirm that it limits neutrophilic infiltration in vivo in a murine model of peritonitis. The physical properties of the new synthetic 17-epi-NPD1/17-epi-PD1, namely its ultra-violet absorbance, chromatography, and tandem mass spectrometry fragmentation pattern, matched those of the originally synthesized 17-epi-NPD1/17-epi-PD1. In addition, we verified the structure and complete stereochemical assignment of this new synthetic 17-epi-NPD1/17-epi-PD1 using nuclear magnetic resonance (NMR) spectroscopy. Together, these results authenticate this 17-epi-NPD1/17-epi-PD1 for its structure and potent pro-resolving functions.
Collapse
Affiliation(s)
- Kajal Hamidzadeh
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Ashley E Shay
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Anand Panigrahy
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | - Robert Nshimiyimana
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Kim SE, Lee J, An JU, Kim TH, Oh CW, Ko YJ, Krishnan M, Choi J, Yoon DY, Kim Y, Oh DK. Regioselectivity of an arachidonate 9S-lipoxygenase from Sphingopyxis macrogoltabida that biosynthesizes 9S,15S- and 11S,17S-dihydroxy fatty acids from C20 and C22 polyunsaturated fatty acids. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159091. [PMID: 34902567 DOI: 10.1016/j.bbalip.2021.159091] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/14/2021] [Accepted: 12/04/2021] [Indexed: 12/19/2022]
Abstract
Lipoxygenases (LOXs) biosynthesize lipid mediators (LMs) as human signaling molecules. Among LMs, specialized pro-resolving mediators (SPMs) are involved in the resolution of inflammation and infection in humans. Here, the putative LOX from the bacterium Sphingopyxis macrogoltabida was identified as arachidonate 9S-LOX. The enzyme catalyzed oxygenation at the n-12 position of C20 and C22 polyunsaturated fatty acids (PUFAs) to form 9S- and 11S-hydroperoxy fatty acids, which were reduced to 9S- and 11S-hydroxy fatty acids (HFAs) by cysteine, respectively, and it catalyzed again oxygenation at the n-6 position of HFAs to form 9S,15S- and 11S,17S-DiHFAs, respectively. The regioselective residues of 9S-LOX were determined as lle395 and Val569 based on the amino acid alignment and homology models. The regioselectivity of the I395F variant was changed from the n-12 position on C20 PUFA to the n-6 position to form 15S-HFAs. This may be due to the reduction of the substrate-binding pocket by replacing the smaller Ile with a larger Phe. The V569W variant had a significantly lower second‑oxygenating activity compared to wild-type 9S-LOX because the insertion of the hydroxyl group of the first‑oxygenating products at the active site was seemed to be hindered by substituting a larger Trp for a smaller Val. The compounds, 11S-hydroxydocosapentaenoic acid, 9S,15S-dihydroxyeicosatetraenoic acid, 9S,15S-dihydroxyeicosapentaenoic acid, 11S,17S-hydroxydocosapentaenoic acid, and 11S,17S-dihydroxydocosahexaenoic acid, were newly identified by polarimeter, LC-MS/MS, and NMR. 11S,17S-DiHFAs as SPM isomers biosynthesized from C22 PUFAs showed anti-inflammatory activities in mouse and human cells. Our study contributes may stimulate physiological studies by providing new LMs.
Collapse
Affiliation(s)
- Seong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jin Lee
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jung-Ung An
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Tae-Hun Kim
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Chae-Won Oh
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yoon-Joo Ko
- National Center for Inter-University Research Facilities (NCIRF), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Manigandan Krishnan
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Joonhyeok Choi
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
17
|
Dalli J, Gomez EA, Jouvene CC. Utility of the Specialized Pro-Resolving Mediators as Diagnostic and Prognostic Biomarkers in Disease. Biomolecules 2022; 12:biom12030353. [PMID: 35327544 PMCID: PMC8945731 DOI: 10.3390/biom12030353] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 12/14/2022] Open
Abstract
A precision medicine approach is widely acknowledged to yield more effective therapeutic strategies in the treatment of patients with chronic inflammatory conditions than the prescriptive paradigm currently utilized in the management and treatment of these patients. This is because such an approach will take into consideration relevant factors including the likelihood that a patient will respond to given therapeutics based on their disease phenotype. Unfortunately, the application of this precision medicine paradigm in the daily treatment of patients has been greatly hampered by the lack of robust biomarkers, in particular biomarkers for determining early treatment responsiveness. Lipid mediators are central in the regulation of host immune responses during both the initiation and resolution of inflammation. Amongst lipid mediators, the specialized pro-resolving mediators (SPM) govern immune cells to promote the resolution of inflammation. These autacoids are produced via the stereoselective conversion of essential fatty acids to yield molecules that are dynamically regulated during inflammation and exert potent immunoregulatory activities. Furthermore, there is an increasing appreciation for the role that these mediators play in conveying the biological actions of several anti-inflammatory therapeutics, including statins and aspirin. Identification and quantitation of these mediators has traditionally been achieved using hyphenated mass spectrometric techniques, primarily liquid-chromatography tandem mass spectrometry. Recent advances in the field of chromatography and mass spectrometry have increased both the robustness and the sensitivity of this approach and its potential deployment for routine clinical diagnostics. In the present review, we explore the evidence supporting a role for specific SPM as potential biomarkers for patient stratification in distinct disease settings together with methodologies employed in the identification and quantitation of these autacoids.
Collapse
Affiliation(s)
- Jesmond Dalli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; (E.A.G.); (C.C.J.)
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London EC1M 6BQ, UK
- Correspondence:
| | - Esteban Alberto Gomez
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; (E.A.G.); (C.C.J.)
| | - Charlotte Camille Jouvene
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; (E.A.G.); (C.C.J.)
| |
Collapse
|
18
|
Roberts DE, Benton AM, Fabian-Bayola C, Spuches AM, Offenbacher AR. Thermodynamic and biophysical study of fatty acid effector binding to soybean lipoxygenase: implications for allostery driven by helix α2 dynamics. FEBS Lett 2022; 596:350-359. [PMID: 34997975 DOI: 10.1002/1873-3468.14275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/09/2021] [Accepted: 12/20/2021] [Indexed: 11/10/2022]
Abstract
Previous comparative kinetic isotope effects have inferred an allosteric site for fatty acids and their derivatives that modulates substrate selectivity in 15-lipoxygenases. Hydrogen-deuterium exchange also previously revealed regionally defined enhanced protein flexibility, centred at helix α2 - a gate to the substrate entrance. Direct evidence for allosteric binding and a complete understanding of its mechanism remains elusive. In this study, we examine the binding thermodynamics of the fatty acid mimic, oleyl sulfate (OS), with the monomeric model plant 15-LOX, soybean lipoxygenase (SLO), using isothermal titration calorimetry. Dynamic light scattering and differential scanning calorimetry rule out OS-induced oligomerization or structural changes. These data provide evidence that the fatty acid allosteric regulation of SLO is controlled by the dynamics of helix α2.
Collapse
Affiliation(s)
| | - Amy M Benton
- Department of Chemistry, East Carolina University, Greenville, NC, USA
| | | | - Anne M Spuches
- Department of Chemistry, East Carolina University, Greenville, NC, USA
| | | |
Collapse
|
19
|
Serhan CN, Libreros S, Nshimiyimana R. E-series resolvin metabolome, biosynthesis and critical role of stereochemistry of specialized pro-resolving mediators (SPMs) in inflammation-resolution: Preparing SPMs for long COVID-19, human clinical trials, and targeted precision nutrition. Semin Immunol 2022; 59:101597. [PMID: 35227568 PMCID: PMC8847098 DOI: 10.1016/j.smim.2022.101597] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/07/2022] [Indexed: 01/15/2023]
Abstract
The COVID-19 pandemic has raised international awareness of the importance of rigorous scientific evidence and the havoc caused by uncontrolled excessive inflammation. Here we consider the evidence on whether the specialized pro-resolving mediators (SPMs) are ready to meet this challenge as well as targeted metabololipidomics of the resolution-inflammation metabolomes. Specific stereochemical mechanisms in the biosynthesis of SPMs from omega-3 essential fatty acids give rise to unique local-acting lipid mediators. SPMs possess stereochemically defined potent bioactive structures that are high-affinity ligands for cognate G protein-coupled surface receptors that evoke the cellular responses required for efficient resolution of acute inflammation. The SPMs biosynthesized from the major omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are coined Resolvins (resolution phase interaction products; E series and D-series), Protectins and Maresins (macrophage mediators in resolving inflammation). Their biosynthesis and stereochemical assignments are established and confirmed (>1,441 resolvin publications in PubMed.gov) as well as their functional roles on innate immune cells and adaptive immune cells (both lymphocyte T-cell subsets and B-cells). The resolution of a protective acute inflammatory response is governed mainly by phagocytes that actively clear apoptotic cells, debris, blood clots and pathogens. These resolution phase functions of the acute inflammatory response are enhanced by SPMs, which together prepare the inflammatory loci for homeostasis and stimulate tissue regeneration via activating stem cells and the biosynthesis of novel cys-SPMs (e.g. MCTRs, PCTRs and RCTRs). These cys-SPMs also activate regeneration, are organ protective and stimulate resolution of local inflammation. Herein, we review the biosynthesis and functions of the E-series resolvins, namely resolvin E1 (the first n-3 resolvin identified), resolvin E2, resolvin E3 and resolvin E4 biosynthesized from their precursor eicosapentaenoic acid (EPA), and the critical role of total organic synthesis in confirming SPM complete stereochemistry, establishing their potent functions in resolution of inflammation, and novel structures. The physical properties of each biologically derived SPM, i.e., ultra-violet (UV) absorbance, chromatographic behavior, and tandem mass spectrometry (MS2) fragmentation, were matched to SPMs biosynthesized and prepared by stereospecific total organic synthesis. We briefly review this approach, also used with the endogenous D-series resolvins, protectins and maresins confirming their potent functions in resolution of inflammation, that paves the way for their rigorous evaluation in human tissues and clinical trials. The assignment of complete stereochemistry for each of the E and D series Resolvins, Protectins and Maresins was a critical and required step that enabled human clinical studies as in SPM profiling in COVID-19 infections and experimental animal disease models that also opened the promise of resolution physiology, resolution pharmacology and targeted precision nutrition as new areas for monitoring health and disease mechanisms.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Stephania Libreros
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Robert Nshimiyimana
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|