1
|
Zhao Y, Li C, Zhou S, Xu Z, Huang X, Wen L. Hydrogen gas inhalation prior to high-intensity training reduces attenuation of nitric oxide bioavailability in male rugby players. PeerJ 2024; 12:e18503. [PMID: 39703911 PMCID: PMC11657200 DOI: 10.7717/peerj.18503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/18/2024] [Indexed: 12/21/2024] Open
Abstract
Background Inhalation of hydrogen gas (H2) as an antioxidant supplement may alleviate exercise-induced oxidative damage and protect post-exercise hydrogen peroxide signaling, which may help mediate beneficial exercise adaptation. The aims of this study were to determine the effects of H2 inhalation on plasma nitric oxide (NO) level and its synthesis precursor in professional athletes. Methods A randomized, placebo-controlled, double-blind, crossover trial was conducted with professional male rugby players for 3 weeks. Participants underwent 1 week of H2 supplementation and 1 week of placebo treatment prior to daily sessions of high-intensity exercise training, separated by 1 week of low-intensity training as a washout. Results Two-way (supplementation and time) repeated-measures analyses of variance showed that NO, L-arginine, and tetrahydrobiopterin levels in the H2 inhalation group were significantly higher than those in the placebo group after exercise (D6) and remained higher after 24 h of rest (D7). Levels of hydroxydeoxyguanosine and interleukin 6 were lower in the H2 inhalation week than in the placebo week on D6 and D7. In addition, total antioxidant levels were significantly higher with H2 inhalation than with placebo. Significance These results suggest that H2 inhalation helps to maintain NO signaling after exercise and to alleviate inflammation and oxidative stress induced by high-intensity exercise training in professional athletes.
Collapse
Affiliation(s)
- Yuqi Zhao
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
- School of Social Sports and Health Sciences, Tianjin University of Sport, Tianjin, China
| | - Chaoqun Li
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Shi Zhou
- Faculty of Health, Southern Cross University, Lismore, Australia
| | - Zhiguang Xu
- School of Social Sports and Health Sciences, Tianjin University of Sport, Tianjin, China
| | - Xin Huang
- School of Social Sports and Health Sciences, Tianjin University of Sport, Tianjin, China
| | - Li Wen
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China
- School of Social Sports and Health Sciences, Tianjin University of Sport, Tianjin, China
| |
Collapse
|
2
|
Jiang T, Wan G, Zhang H, Gyawali YP, Underbakke ES, Feng C. Mapping the Intersubunit Interdomain FMN-Heme Interactions in Neuronal Nitric Oxide Synthase by Targeted Quantitative Cross-Linking Mass Spectrometry. Biochemistry 2024; 63:1395-1411. [PMID: 38747545 PMCID: PMC11893013 DOI: 10.1021/acs.biochem.4c00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Nitric oxide synthase (NOS) in mammals is a family of multidomain proteins in which interdomain electron transfer (IET) is controlled by domain-domain interactions. Calmodulin (CaM) binds to the canonical CaM-binding site in the linker region between the FMN and heme domains of NOS and allows tethered FMN domain motions, enabling an intersubunit FMN-heme IET in the output state for NO production. Our previous cross-linking mass spectrometric (XL MS) results demonstrated site-specific protein dynamics in the CaM-responsive regions of rat neuronal NOS (nNOS) reductase construct, a monomeric protein [Jiang et al., Biochemistry, 2023, 62, 2232-2237]. In this work, we have extended our combined approach of XL MS structural mapping and AlphaFold structural prediction to examine the homodimeric nNOS oxygenase/FMN (oxyFMN) construct, an established model of the NOS output state. We employed parallel reaction monitoring (PRM) based quantitative XL MS (qXL MS) to assess the CaM-induced changes in interdomain dynamics and interactions. Intersubunit cross-links were identified by mapping the cross-links onto top AlphaFold structural models, which was complemented by comparing their relative abundances in the cross-linked dimeric and monomeric bands. Furthermore, contrasting the CaM-free and CaM-bound nNOS samples shows that CaM enables the formation of the intersubunit FMN-heme docking complex and that CaM binding induces extensive, allosteric conformational changes across the NOS regions. Moreover, the observed cross-links sites specifically respond to changes in ionic strength. This indicates that interdomain salt bridges are responsible for stabilizing and orienting the output state for efficient FMN-heme IET. Taken together, our targeted qXL MS results have revealed that CaM and ionic strength modulate specific dynamic changes in the CaM/FMN/heme complexes, particularly in the context of intersubunit interdomain FMN-heme interactions.
Collapse
Affiliation(s)
- Ting Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Guanghua Wan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Haikun Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Yadav Prasad Gyawali
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Eric S Underbakke
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Changjian Feng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
3
|
De Simone G, di Masi A, Sbardella D, Ascenzi P, Coletta M. Nitric Oxide Binding Geometry in Heme-Proteins: Relevance for Signal Transduction. Antioxidants (Basel) 2024; 13:666. [PMID: 38929104 PMCID: PMC11201058 DOI: 10.3390/antiox13060666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Nitric oxide (NO) synthesis, signaling, and scavenging is associated to relevant physiological and pathological events. In all tissues and organs, NO levels and related functions are regulated at different levels, with heme proteins playing pivotal roles. Here, we focus on the structural changes related to the different binding modes of NO to heme-Fe(II), as well as the modulatory effects of this diatomic messenger on heme-protein functions. Specifically, the ability of heme proteins to bind NO at either the distal or proximal side of the heme and the transient interchanging of the binding site is reported. This sheds light on the regulation of O2 supply to tissues with high metabolic activity, such as the retina, where a precise regulation of blood flow is necessary to meet the demand of nutrients.
Collapse
Affiliation(s)
- Giovanna De Simone
- Dipartimento di Scienze, Università degli Studi Roma Tre, 00146 Rome, Italy; (G.D.S.); (A.d.M.)
| | - Alessandra di Masi
- Dipartimento di Scienze, Università degli Studi Roma Tre, 00146 Rome, Italy; (G.D.S.); (A.d.M.)
- Centro Linceo Interdisciplinare “Beniamino Segre”, Accademia dei Lincei, 00165 Rome, Italy
| | | | - Paolo Ascenzi
- Dipartimento di Scienze, Università degli Studi Roma Tre, 00146 Rome, Italy; (G.D.S.); (A.d.M.)
- Accademia Nazionale dei Lincei, 00165 Rome, Italy
| | | |
Collapse
|
4
|
Wan Y, Li R, Yao K, Peng C, Wang W, Li N, Wang X. Bioelectro-barriers prevent nitrate leaching into groundwater via nitrogen retention. WATER RESEARCH 2024; 249:120988. [PMID: 38070341 DOI: 10.1016/j.watres.2023.120988] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Groundwater, the main freshwater resource for humans, has been widely contaminated with nitrate from fertilizers. Here, we report a new and chemical-free strategy to prevent nitrate leaching from soil based on the enrichment of electroactive bacteria, mainly of the genus Geobacter, with bioelectro-barriers, which leads to a nearly 100 % interception of nitrate and partly conserves reactive nitrogen in the form of weakly mobile ammonium by dissimilatory nitrate reduction to ammonium (DNRA). G. sulfurreducens was recognized to efficiently secrete nitrite reductase (NrfA) for rapid DNRA because it lacks nitrate reductase, which inhibits DNRA by competing with nitrite and producing toxic intracellular nitric oxide. With an increase in G. sulfurreducens abundance, near-zero nitrate leaching and 3-fold greater N retention was achieved. Periodic application of weak electricity to the bioelectro-barrier ensured the dominance of G. sulfurreducens in the microbial community and therefore its ability to consistently prevent nitrate leaching. The ability of G. sulfurreducens to intercept nitrate was further demonstrated in more diverse agricultural soils, providing a novel way to prevent nitrate leaching and conserve bioavailable nitrogen in the soil, which has broader implications for both sustainable agriculture and groundwater protection.
Collapse
Affiliation(s)
- Yuxuan Wan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China; School of Civil Engineering, Guangzhou University, No. 230 West Waihuan Road, Panyu District, Guangzhou 510006, China
| | - Ruixiang Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Kexin Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Chenchen Peng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Wei Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
5
|
Zhang WX, Huang J, Tian XY, Liu YH, Jia MQ, Wang W, Jin CY, Song J, Zhang SY. A review of progress in o-aminobenzamide-based HDAC inhibitors with dual targeting capabilities for cancer therapy. Eur J Med Chem 2023; 259:115673. [PMID: 37487305 DOI: 10.1016/j.ejmech.2023.115673] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
Histone deacetylases, as a new class of anticancer targets, could maintain homeostasis by catalyzing histone deacetylation and play important roles in regulating the expression of target genes. Due to the fact that simultaneous intervention with dual tumor related targets could improve treatment effects, researches on innovative design of dual-target drugs are underway. HDAC is known as a "sensitizer" for the synergistic effects with other anticancer-target drugs because of its flexible structure design. The synergistic effects of HDAC inhibitor and other target inhibitors usually show enhanced inhibitory effects on tumor cells, and also provide new strategies to overcome multidrug resistance. Many research groups have reported that simultaneously inhibiting HDAC and other targets, such as tubulin, EGFR, could enhance the therapeutic effects. The o-aminobenzamide group is often used as a ZBG group in the design of HDAC inhibitors with potent antitumor effects. Given the prolonged inhibitory effects and reduced toxic side effects of HDAC inhibitors using o-aminobenzamide as the ZBG group, the o-aminobenzamide group is expected to become a more promising alternative to hydroxamic acid. In fact, o-aminobenzamide-based dual inhibitors of HDAC with different chemical structures have been extensively prepared and reported with synergistic and enhanced anti-tumor effects. In this work, we first time reviewed the rational design, molecular docking, inhibitory activities and potential application of o-aminobenzamide-based HDAC inhibitors with dual targeting capabilities in cancer therapy, which might provide a reference for developing new and more effective anticancer drugs.
Collapse
Affiliation(s)
- Wei-Xin Zhang
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Jiao Huang
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Xin-Yi Tian
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yun-He Liu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Mei-Qi Jia
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wang Wang
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, 471934, China
| | - Cheng-Yun Jin
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Jian Song
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Sai-Yang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
6
|
Andrabi SM, Sharma NS, Karan A, Shahriar SMS, Cordon B, Ma B, Xie J. Nitric Oxide: Physiological Functions, Delivery, and Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303259. [PMID: 37632708 PMCID: PMC10602574 DOI: 10.1002/advs.202303259] [Citation(s) in RCA: 156] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Indexed: 08/28/2023]
Abstract
Nitric oxide (NO) is a gaseous molecule that has a central role in signaling pathways involved in numerous physiological processes (e.g., vasodilation, neurotransmission, inflammation, apoptosis, and tumor growth). Due to its gaseous form, NO has a short half-life, and its physiology role is concentration dependent, often restricting its function to a target site. Providing NO from an external source is beneficial in promoting cellular functions and treatment of different pathological conditions. Hence, the multifaceted role of NO in physiology and pathology has garnered massive interest in developing strategies to deliver exogenous NO for the treatment of various regenerative and biomedical complexities. NO-releasing platforms or donors capable of delivering NO in a controlled and sustained manner to target tissues or organs have advanced in the past few decades. This review article discusses in detail the generation of NO via the enzymatic functions of NO synthase as well as from NO donors and the multiple biological and pathological processes that NO modulates. The methods for incorporating of NO donors into diverse biomaterials including physical, chemical, or supramolecular techniques are summarized. Then, these NO-releasing platforms are highlighted in terms of advancing treatment strategies for various medical problems.
Collapse
Affiliation(s)
- Syed Muntazir Andrabi
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Navatha Shree Sharma
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Anik Karan
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - S. M. Shatil Shahriar
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Brent Cordon
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Bing Ma
- Cell Therapy Manufacturing FacilityMedStar Georgetown University HospitalWashington, DC2007USA
| | - Jingwei Xie
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Department of Mechanical and Materials EngineeringCollege of EngineeringUniversity of Nebraska LincolnLincolnNE68588USA
| |
Collapse
|
7
|
Williams MT, Yee E, Larson GW, Apiche EA, Rama Damodaran A, Bhagi-Damodaran A. Metalloprotein enabled redox signal transduction in microbes. Curr Opin Chem Biol 2023; 76:102331. [PMID: 37311385 PMCID: PMC10524656 DOI: 10.1016/j.cbpa.2023.102331] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 06/15/2023]
Abstract
Microbes utilize numerous metal cofactor-containing proteins to recognize and respond to constantly fluctuating redox stresses in their environment. Gaining an understanding of how these metalloproteins sense redox events, and how they communicate such information downstream to DNA to modulate microbial metabolism, is a topic of great interest to both chemists and biologists. In this article, we review recently characterized examples of metalloprotein sensors, focusing on the coordination and oxidation state of the metals involved, how these metals are able to recognize redox stimuli, and how the signal is transmitted beyond the metal center. We discuss specific examples of iron, nickel, and manganese-based microbial sensors, and identify gaps in knowledge in the field of metalloprotein-based signal transduction pathways.
Collapse
Affiliation(s)
- Murphi T Williams
- Department of Chemistry, University of Minnesota Twin Cities, 207 Pleasant St. SE, Minneapolis MN 55414, USA
| | - Eaindra Yee
- Department of Chemistry, University of Minnesota Twin Cities, 207 Pleasant St. SE, Minneapolis MN 55414, USA
| | - Grant W Larson
- Department of Chemistry, University of Minnesota Twin Cities, 207 Pleasant St. SE, Minneapolis MN 55414, USA
| | - Elizabeth A Apiche
- Department of Chemistry, University of Minnesota Twin Cities, 207 Pleasant St. SE, Minneapolis MN 55414, USA
| | - Anoop Rama Damodaran
- Department of Chemistry, University of Minnesota Twin Cities, 207 Pleasant St. SE, Minneapolis MN 55414, USA
| | - Ambika Bhagi-Damodaran
- Department of Chemistry, University of Minnesota Twin Cities, 207 Pleasant St. SE, Minneapolis MN 55414, USA.
| |
Collapse
|
8
|
Bahadoran Z, Mirmiran P, Kashfi K, Ghasemi A. Vascular nitric oxide resistance in type 2 diabetes. Cell Death Dis 2023; 14:410. [PMID: 37433795 PMCID: PMC10336063 DOI: 10.1038/s41419-023-05935-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023]
Abstract
Vascular nitric oxide (NO•) resistance, manifested by an impaired vasodilator function of NO• in both the macro- and microvessels, is a common state in type 2 diabetes (T2D) associated with developing cardiovascular events and death. Here, we summarize experimental and human evidence of vascular NO• resistance in T2D and discuss its underlying mechanisms. Human studies indicate a ~ 13-94% decrease in the endothelium (ET)-dependent vascular smooth muscle (VSM) relaxation and a 6-42% reduced response to NO• donors, i.e., sodium nitroprusside (SNP) and glyceryl trinitrate (GTN), in patients with T2D. A decreased vascular NO• production, NO• inactivation, and impaired responsiveness of VSM to NO• [occurred due to quenching NO• activity, desensitization of its receptor soluble guanylate cyclase (sGC), and/or impairment of its downstream pathway, cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG)] are the known mechanisms underlying the vascular NO• resistance in T2D. Hyperglycemia-induced overproduction of reactive oxygen species (ROS) and vascular insulin resistance are key players in this state. Therefore, upregulating vascular NO• availability, re-sensitizing or bypassing the non-responsive pathways to NO•, and targeting key vascular sources of ROS production may be clinically relevant pharmacological approaches to circumvent T2D-induced vascular NO• resistance.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Department of Clinical Nutrition, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
D'Aniello S. Evolution: NO signaling at the stem of animal life. Curr Biol 2022; 32:R530-R532. [PMID: 35671729 DOI: 10.1016/j.cub.2022.04.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Nitric oxide (NO), an ancient gaseous signaling molecule, regulates several physiological processes across the kingdoms. A new study describes how NO controls collective cell contractions in the closest animal relatives, the choanoflagellates, to switch from feeding to swimming away.
Collapse
Affiliation(s)
- Salvatore D'Aniello
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy.
| |
Collapse
|
10
|
Omidkhah N, Ghodsi R. NO-HDAC dual inhibitors. Eur J Med Chem 2021; 227:113934. [PMID: 34700268 DOI: 10.1016/j.ejmech.2021.113934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/08/2021] [Accepted: 10/17/2021] [Indexed: 12/11/2022]
Abstract
HDAC inhibitors and NO donors have both demonstrated independently broad therapeutic potential in a variety of diseases. Borretto et al. presented the topic of NO-HDAC dual inhibitors for the first time in 2013 as an attractive new topic. Here we collected the general structure of all synthesized NO-HDAC dual inhibitors, lead compounds, synthesis methods and biological features of the most potent dual NO-HDAC inhibitor in each category with the intention of assisting in the synthesis and optimization of new drug-like compounds for diverse diseases. Based on studies done so far, NO-HDAC dual inhibitors have displayed satisfactory results against wound healing (3), heart hypertrophy (3), inflammatory, cardiovascular, neuromuscular illnesses (11a-11e) and cancer (6a-6o, 9a-9d, 10a-10d, 16 and 17). NO-HDAC dual inhibitors can have high therapeutic potential for various diseases due to their new properties, NO properties, HDAC inhibitor properties and also due to the effects of NO on HDAC enzymes.
Collapse
Affiliation(s)
- Negar Omidkhah
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Razieh Ghodsi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Abstract
Radicals in biology, once thought to all be bad actors, are now known to play a central role in many enzymatic reactions. Of the known radical-based enzymes, ribonucleotide reductases (RNRs) are pre-eminent as they are essential in the biology of all organisms by providing the building blocks and controlling the fidelity of DNA replication and repair. Intense examination of RNRs has led to the development of new tools and a guiding framework for the study of radicals in biology, pointing the way to future frontiers in radical enzymology.
Collapse
Affiliation(s)
- JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 20139 USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 20139 USA
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138 USA
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138 USA
| |
Collapse
|