1
|
Long L, Li X, Huang Z, Yu Z, Yu D, Luo W, Qiao L, Chen Z, Wang ZX. Hypervalent Iodine Promoted Selective [2 + 2 + 1] Cycloaddition of Aromatic Ketones and Methylamines: A One-Pot Access to 1-Pyrrolines. J Org Chem 2024; 89:9958-9971. [PMID: 38981120 DOI: 10.1021/acs.joc.4c00830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Herein, a versatile highly regioselective three-component annulation of simple aromatic ketones and methylamines using a hypervalent iodine reagent for polyarylated 1-pyrrolines has been described in good to excellent yields. Meanwhile, unsymmetrical 1-pyrroline isomers could be realized and synthesized. Such an intriguing one-pot two-step tandem assembly strategy with green conditions and high regioselectivity shows predictable inspiration in related annulation reactions.
Collapse
Affiliation(s)
- Lipeng Long
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Xin Li
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Ziwen Huang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Ziyi Yu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Daohong Yu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Wenjun Luo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Liang Qiao
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Zhengwang Chen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Zhong-Xia Wang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
2
|
Ringenbach S, Yoza R, Jones PA, Du M, Klugh KL, Peterson LW, Colabroy KL. Discovery and characterization of l-DOPA 2,3-dioxygenase from Streptomyces hygroscopicus jingganensis. Arch Biochem Biophys 2024; 755:109967. [PMID: 38556098 DOI: 10.1016/j.abb.2024.109967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
The largest natural reservoir of untapped carbon can be found in the cell-wall strengthening, plant woody-tissue polymer, lignin - a polymer of catechols or 1,2-dihydroxybenzene monomers. The catecholic carbon of lignin could be valorized into feedstocks and natural products by way of catabolic and biosynthetic transformations, including the oxygen-dependent cleavage reaction of extradiol dioxygenase (EDX) enzymes. The EDX l-DOPA 2,3-dioxygenase was first discovered as part of a biosynthetic gene cluster to the natural product antibiotic, lincomycin, and also contributes to the biosyntheses of anthramycin, sibiromycin, tomaymycin, porothramycin and hormaomycin. Using these l-DOPA 2,3-dioxygenases as a starting point, we searched sequence space in order to identify new sources of dioxygenase driven natural product diversity. A "vicinal-oxygen-chelate (VOC) family protein" from Streptomyces hygroscopicus jingganensis was identified using bioinformatic methods and biochemically investigated for dioxygenase activity against a suite of natural and synthetic catechols. Steady-state oxygen consumption assays were used to screen and identify substrates, and a steady-state kinetic model of oxygen consumption was developed to evaluate activity of the S. hygroscopicus jingganensis VOC-family-protein with respect to activity of l-DOPA 2,3-dioxygenases from Streptomyces lincolnensis and Streptomyces sclerotialus. Lastly, these data were integrated with steady-state kinetic methods to observe the formation of the EDX cleavage product with UV-visible spectroscopy. The genomic context and enzymatic activity of the S. hygroscopicus jingganensis VOC family protein are consistent with a l-DOPA 2,3-dioxygenase contained within a cryptic biosynthetic pathway.
Collapse
Affiliation(s)
- Sara Ringenbach
- Department of Chemistry, Muhlenberg College, 2400 Chew St, Allentown, PA, 18104, USA
| | - Riri Yoza
- Department of Chemistry, Muhlenberg College, 2400 Chew St, Allentown, PA, 18104, USA
| | - Paige A Jones
- Department of Chemistry, Muhlenberg College, 2400 Chew St, Allentown, PA, 18104, USA
| | - Muxue Du
- Department of Chemistry, Muhlenberg College, 2400 Chew St, Allentown, PA, 18104, USA
| | - Kameron L Klugh
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN, 38112, USA
| | - Larryn W Peterson
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN, 38112, USA
| | - Keri L Colabroy
- Department of Chemistry, Muhlenberg College, 2400 Chew St, Allentown, PA, 18104, USA.
| |
Collapse
|
3
|
Kabadayı SN, Sadiq NB, Hamayun M, Park NI, Kim HY. Impact of Sodium Silicate Supplemented, IR-Treated Panax Ginseng on Extraction Optimization for Enhanced Anti-Tyrosinase and Antioxidant Activity: A Response Surface Methodology (RSM) Approach. Antioxidants (Basel) 2023; 13:54. [PMID: 38247479 PMCID: PMC10812770 DOI: 10.3390/antiox13010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Ginseng has long been widely used for its therapeutic potential. In our current study, we investigated the impact of abiotic stress induced by infrared (IR) radiations and sodium silicate on the upregulation of antioxidant and anti-tyrosinase levels, as well as the total phenolic and total flavonoid contents of the Korean ginseng (Panax ginseng C.A. Meyer) variety Yeonpoong. The RSM-based design was used to optimize ultrasonic-assisted extraction time (1-3 h) and temperature (40-60 °C) for better anti-tyrosinase activity and improved antioxidant potential. The optimal extraction results were obtained with a one-hour extraction time, at a temperature of 40 °C, and with a 1.0 mM sodium silicate treatment. We recorded maximum anti-tyrosinase (53.69%) and antioxidant (40.39%) activities when RSM conditions were kept at 875.2 mg GAE/100 g TPC, and 3219.58 mg catechin/100 g. When 1.0 mM sodium silicate was added to the media and extracted at 40 °C for 1 h, the highest total ginsenoside content (368.09 mg/g) was recorded, with variations in individual ginsenosides. Ginsenosides Rb1, Rd, and F2 were significantly affected by extraction temperature, while Rb2 and Rc were influenced by the sodium silicate concentration. Moreover, ginsenoside F2 increased with the sodium silicate treatment, while the Rg3-S content decreased. Interestingly, higher temperatures favored greater ginsenoside diversity while sodium silicate impacted PPD-type ginsenosides. It was observed that the actual experimental values closely matched the predicted values, and this agreement was statistically significant at a 95% confidence level. Our findings suggest that the application of IR irradiation in hydroponic systems can help to improve the quality of ginseng sprouts when supplemented with sodium silicate in hydroponic media. Optimized extraction conditions using ultrasonication can be helpful in improving antioxidant and anti-tyrosinase activity.
Collapse
Affiliation(s)
- Seda Nur Kabadayı
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (S.N.K.); (N.B.S.)
| | - Nooruddin Bin Sadiq
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (S.N.K.); (N.B.S.)
- Department of Plant Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Nam-Il Park
- Department of Plant Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
| | - Ho-Youn Kim
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (S.N.K.); (N.B.S.)
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
4
|
Katherine Hatstat A, Kennedy GM, Squires TR, Xhafkollari G, Skyler Cochrane C, Cafiero M, Peterson LW. Synthesis and analysis of novel catecholic ligands as inhibitors of catechol-O-methyltransferase. Bioorg Med Chem Lett 2023; 88:129286. [PMID: 37054761 DOI: 10.1016/j.bmcl.2023.129286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/02/2023] [Accepted: 04/09/2023] [Indexed: 04/15/2023]
Abstract
L-DOPA, a dopamine precursor, is commonly used as a treatment for patients with conditions such as Parkinson's disease. This therapeutic L-DOPA, as well as the dopamine derived from L-DOPA, can be deactivated via metabolism by catechol-O-methyltransferase (COMT). Targeted inhibition of COMT prolongs the effectiveness of L-DOPA and dopamine, resulting in a net increase in pharmacological efficiency of the treatment strategy. Following the completion of a previous ab initio computational analysis of 6-substituted dopamine derivatives, several novel catecholic ligands with a previously unexplored neutral tail functionality were synthesized in good yields and their structures were confirmed. The ability of the catecholic nitriles and 6-substituted dopamine analogues to inhibit COMT was tested. The nitrile derivatives inhibited COMT most effectively, in agreement with our previous computational work. pKa values were used to further examine the factors involved with the inhibition and molecular docking studies were performed to support the ab initio and experimental work. The nitrile derivatives with a nitro substituent show the most promise as inhibitors, confirming that both the neutral tail and the electron withdrawing group are essential on this class of inhibitors.
Collapse
Affiliation(s)
- A Katherine Hatstat
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA 94158, USA; Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA
| | - Grace M Kennedy
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA
| | - Trevor R Squires
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA
| | - Gisela Xhafkollari
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA
| | - C Skyler Cochrane
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA
| | - Mauricio Cafiero
- School of Chemistry, Food and Pharmacy, University of Reading, Wolverhampton, RG6 6AD, UK
| | - Larryn W Peterson
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA.
| |
Collapse
|
5
|
Filippov IP, Novikov MS, Khlebnikov AF, Rostovskii NV. One-Pot Synthesis of Multifunctionalized 1-Pyrrolines from 2-Alkyl-2 H-azirines and Diazocarbonyl Compounds. J Org Chem 2022; 87:8835-8840. [PMID: 35732058 DOI: 10.1021/acs.joc.2c00977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A novel strategy for the synthesis of 1-pyrrolines based on formal [4 + 1] annulation of 2-alkyl-2H-azirines with diazocarbonyl compounds has been developed. This one-pot approach includes the Rh(II)-catalyzed formation of 4-alkyl-2-azabuta-1,3-dienes, followed by the DBU-promoted cyclization, and features a good substrate tolerance. The 1-pyrrolines containing an ester group at the C3 were prepared in a three-step one-pot procedure starting from 5-alkoxyisoxazoles. The cyclization of 2-azabutadienes to 1-pyrrolines most likely proceeds via the 6π electrocyclization of a conjugated NH-azomethine ylide.
Collapse
Affiliation(s)
- Ilya P Filippov
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Mikhail S Novikov
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Alexander F Khlebnikov
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Nikolai V Rostovskii
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| |
Collapse
|