1
|
Kumar H, Kuehm OP, Aboushawareb SAE, Rafiei A, Easton NM, Bearne SL. An Active-Site Bro̷nsted Acid-Base Catalyst Destabilizes Mandelate Racemase and Related Subgroup Enzymes: Implications for Catalysis. Biochemistry 2025; 64:666-677. [PMID: 39835335 DOI: 10.1021/acs.biochem.4c00572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Enzymes of the enolase superfamily (ENS) are mechanistically diverse, yet share a common partial reaction, i.e., the metal-assisted, Bro̷nsted base-catalyzed abstraction of the α-proton from a carboxylate substrate to form an enol(ate) intermediate. Although the catalytic machinery responsible for the initial deprotonation reaction has been conserved, divergent evolution has led to numerous ENS members that catalyze different overall reactions. Using differential scanning calorimetry, we examined the contribution of the Bro̷nsted acid-base catalysts to the thermostability (Tm) of four members of the mandelate racemase (MR)-subgroup of the ENS: MR, d-tartrate dehydratase, l-talarate/galactarate dehydratase, and l-fuconate dehydratase. Each enzyme contains an active-site Lys (part of a KxK motif) and His, which act as Bro̷nsted acid-base catalysts. The KxK → KxM substitutions increased the thermostability in all four enzymes with the effect being most prominent for MR (ΔTm = +8.6 °C). The KxK → MxK substitutions decreased the thermostability in all four enzymes, and the His → Asn substitution had a significant stabilizing effect only on MR. Thus, the active sites of MR-subgroup enzymes are destabilized by the Lys Bro̷nsted acid-base catalyst, suggesting that the destabilization energy may be used to drive a conformational change of the enzyme to yield a catalytically competent protonation state upon substrate binding.
Collapse
Affiliation(s)
- Himank Kumar
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Oliver P Kuehm
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Sarah A E Aboushawareb
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Atieh Rafiei
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Nicole M Easton
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Stephen L Bearne
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Chemistry, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
2
|
McGary LC, Fetter CM, Gu M, Hamilton MC, Kumar H, Kuehm OP, Douglas CD, Bearne SL. Interrogating l-fuconate dehydratase with tartronate and 3-hydroxypyruvate reveals subtle differences within the mandelate racemase-subgroup of the enolase superfamily. Arch Biochem Biophys 2024; 754:109924. [PMID: 38354877 DOI: 10.1016/j.abb.2024.109924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
Enzymes of the enolase superfamily share a conserved structure and a common partial reaction (i.e., metal-assisted, Brønsted base-catalyzed enol(ate) formation). The architectures of the enolization apparatus at the active sites of the mandelate racemase (MR)-subgroup members MR and l-fuconate dehydratase (FucD) are almost indistinguishable at the structural level. Tartronate and 3-hydroxypyruvate (3-HP) recognize the enolization apparatus and can be used to interrogate the active sites for differences that may not be apparent from structural data. We report a circular dichroism-based assay of FucD activity that monitors the change in ellipticity at 216 nm (Δ[Θ]S-P = 8985 ± 87 deg cm2 mol-1) accompanying the conversion of l-fuconate to 2-keto-3-deoxy-l-fuconate. Tartronate was a linear mixed-type inhibitor of FucD (Ki = 8.4 ± 0.7 mM, αKi = 63 ± 11 mM), binding 18-fold weaker than l-fuconate, compared with 2-fold weaker binding of tartronate by MR relative to mandelate. 3-HP irreversibly inactivated FucD (kinact/KI = 0.018 ± 0.002 M-1s-1) with an efficiency that was ∼4.6 × 103-fold less than that observed with MR. The inactivation arose predominantly from modifications at multiple sites and Tris-HCl, but not l-fuconate, afforded protection against inactivation. Similar to the reaction of 3-HP with MR, 3-HP modified the Brønsted base catalyst (Lys 220) at the active site of FucD, which was facilitated by the Brønsted acid catalyst His 351. Thus, the interactions of tartronate and 3-HP with MR and FucD revealed differences in binding affinity and reactivity that differentiated between the enzymes' enolization apparatuses.
Collapse
Affiliation(s)
- Laura C McGary
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Christopher M Fetter
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Minglu Gu
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Meghan C Hamilton
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Himank Kumar
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Oliver P Kuehm
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Colin D Douglas
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Stephen L Bearne
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada; Department of Chemistry, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
3
|
Knox HL, Allen KN. Expanding the viewpoint: Leveraging sequence information in enzymology. Curr Opin Chem Biol 2023; 72:102246. [PMID: 36599282 PMCID: PMC10251232 DOI: 10.1016/j.cbpa.2022.102246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 01/04/2023]
Abstract
The use of protein sequence to inform enzymology in terms of structure, mechanism, and function has burgeoned over the past two decades. Referred to as genomic enzymology, the utilization of bioinformatic tools such as sequence similarity networks and phylogenetic analyses has allowed the identification of new substrates and metabolites, novel pathways, and unexpected reaction mechanisms. The holistic examination of superfamilies can yield insight into the origins and paths of evolution of enzymes and the range of their substrates and mechanisms. Herein, we highlight advances in the use of genomic enzymology to address problems which the in-depth analyses of a single enzyme alone could not enable.
Collapse
Affiliation(s)
- Hayley L Knox
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA, 02215-2521, USA
| | - Karen N Allen
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA, 02215-2521, USA.
| |
Collapse
|
4
|
Su H, Jin L, Li M, Paré PW. Low temperature modifies seedling leaf anatomy and gene expression in Hypericum perforatum. FRONTIERS IN PLANT SCIENCE 2022; 13:1020857. [PMID: 36237502 PMCID: PMC9552896 DOI: 10.3389/fpls.2022.1020857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Hypericum perforatum, commonly known as St John's wort, is a perennial herb that produces the anti-depression compounds hypericin (Hyp) and hyperforin. While cool temperatures increase plant growth, Hyp accumulation as well as changes transcript profiles, alterations in leaf structure and genes expression specifically related to Hyp biosynthesis are still unresolved. Here, leaf micro- and ultra-structure is examined, and candidate genes encoding for photosynthesis, energy metabolism and Hyp biosynthesis are reported based on transcriptomic data collected from H. perforatum seedlings grown at 15 and 22°C. Plants grown at a cooler temperature exhibited changes in macro- and micro-leaf anatomy including thicker leaves, an increased number of secretory cell, chloroplasts, mitochondria, starch grains, thylakoid grana, osmiophilic granules and hemispherical droplets. Moreover, genes encoding for photosynthesis (64-genes) and energy (35-genes) as well as Hyp biosynthesis (29-genes) were differentially regulated with an altered growing temperature. The anatomical changes and genes expression are consistent with the plant's ability to accumulate enhanced Hyp levels at low temperatures.
Collapse
Affiliation(s)
- Hongyan Su
- State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Ling Jin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Mengfei Li
- State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Paul W. Paré
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbuck, TX, United States
| |
Collapse
|
5
|
Abstract
Many enzymes that show a large specificity in binding the enzymatic transition state with a higher affinity than the substrate utilize substrate binding energy to drive protein conformational changes to form caged substrate complexes. These protein cages provide strong stabilization of enzymatic transition states. Using part of the substrate binding energy to drive the protein conformational change avoids a similar strong stabilization of the Michaelis complex and irreversible ligand binding. A seminal step in the development of modern enzyme catalysts was the evolution of enzymes that couple substrate binding to a conformational change. These include enzymes that function in glycolysis (triosephosphate isomerase), the biosynthesis of lipids (glycerol phosphate dehydrogenase), the hexose monophosphate shunt (6-phosphogluconate dehydrogenase), and the mevalonate pathway (isopentenyl diphosphate isomerase), catalyze the final step in the biosynthesis of pyrimidine nucleotides (orotidine monophosphate decarboxylase), and regulate the cellular levels of adenine nucleotides (adenylate kinase). The evolution of enzymes that undergo ligand-driven conformational changes to form active protein-substrate cages is proposed to proceed by selection of variants, in which the selected side chain substitutions destabilize a second protein conformer that shows compensating enhanced binding interactions with the substrate. The advantages inherent to enzymes that incorporate a conformational change into the catalytic cycle provide a strong driving force for the evolution of flexible protein folds such as the TIM barrel. The appearance of these folds represented a watershed event in enzyme evolution that enabled the rapid propagation of enzyme activities within enzyme superfamilies.
Collapse
Affiliation(s)
- John P Richard
- Department of Chemistry, University at Buffalo, the State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
6
|
Nagar M, Hayden JA, Sagey E, Worthen G, Park M, Sharma AN, Fetter CM, Kuehm OP, Bearne SL. Altering the binding determinant on the interdigitating loop of mandelate racemase shifts specificity towards that of d-tartrate dehydratase. Arch Biochem Biophys 2022; 718:109119. [DOI: 10.1016/j.abb.2022.109119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/02/2022]
|