1
|
Anso I, Zouhir S, Sana TG, Krasteva PV. Structural basis for synthase activation and cellulose modification in the E. coli Type II Bcs secretion system. Nat Commun 2024; 15:8799. [PMID: 39394223 PMCID: PMC11470070 DOI: 10.1038/s41467-024-53113-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/24/2024] [Indexed: 10/13/2024] Open
Abstract
Bacterial cellulosic polymers constitute a prevalent class of biofilm matrix exopolysaccharides that are synthesized by several types of bacterial cellulose secretion (Bcs) systems, which include conserved cyclic diguanylate (c-di-GMP)-dependent cellulose synthase modules together with diverse accessory subunits. In E. coli, the biogenesis of phosphoethanolamine (pEtN)-modified cellulose relies on the BcsRQABEFG macrocomplex, encompassing inner-membrane and cytosolic subunits, and an outer membrane porin, BcsC. Here, we use cryogenic electron microscopy to shed light on the molecular mechanisms of BcsA-dependent recruitment and stabilization of a trimeric BcsG pEtN-transferase for polymer modification, and a dimeric BcsF-dependent recruitment of an otherwise cytosolic BcsE2R2Q2 regulatory complex. We further demonstrate that BcsE, a secondary c-di-GMP sensor, can remain dinucleotide-bound and retain the essential-for-secretion BcsRQ partners onto the synthase even in the absence of direct c-di-GMP-synthase complexation, likely lowering the threshold for c-di-GMP-dependent synthase activation. Such activation-by-proxy mechanism could allow Bcs secretion system activity even in the absence of substantial intracellular c-di-GMP increase, and is reminiscent of other widespread synthase-dependent polysaccharide secretion systems where dinucleotide sensing and/or synthase stabilization are carried out by key co-polymerase subunits.
Collapse
Affiliation(s)
- Itxaso Anso
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600, Pessac, France
- Structural Biology of Biofilms Group, European Institute of Chemistry and Biology (IECB), 2 Rue Robert Escarpit, Pessac, F-33600, France
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Samira Zouhir
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600, Pessac, France
- Structural Biology of Biofilms Group, European Institute of Chemistry and Biology (IECB), 2 Rue Robert Escarpit, Pessac, F-33600, France
- Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), CNRS UMR8113, ENS Paris-Saclay, Université Paris-Saclay, Gif-sur-Yvette, F-91190, France
| | - Thibault Géry Sana
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600, Pessac, France
- Structural Biology of Biofilms Group, European Institute of Chemistry and Biology (IECB), 2 Rue Robert Escarpit, Pessac, F-33600, France
| | - Petya Violinova Krasteva
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600, Pessac, France.
- Structural Biology of Biofilms Group, European Institute of Chemistry and Biology (IECB), 2 Rue Robert Escarpit, Pessac, F-33600, France.
| |
Collapse
|
2
|
Adams CE, Spicer SK, Gaddy JA, Townsend SD. Synthesis of a Phosphoethanolamine Cellulose Mimetic and Evaluation of Its Unanticipated Biofilm Modulating Properties. ACS Infect Dis 2024; 10:3245-3255. [PMID: 39105738 PMCID: PMC11406534 DOI: 10.1021/acsinfecdis.4c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
When coordinating and adhering to a surface, microorganisms produce a biofilm matrix consisting of extracellular DNA, lipids, proteins, and polysaccharides that are intrinsic to the survival of bacterial communities. Indeed, bacteria produce a variety of structurally diverse polysaccharides that play integral roles in the emergence and maintenance of biofilms by providing structural rigidity, adhesion, and protection from environmental stressors. While the roles that polysaccharides play in biofilm dynamics have been described for several bacterial species, the difficulty in isolating homogeneous material has resulted in few structures being elucidated. Recently, Cegelski and co-workers discovered that uropathogenic Escherichia coli (UPEC) secrete a chemically modified cellulose called phosphoethanolamine cellulose (pEtN cellulose) that plays a vital role in biofilm assembly. However, limited chemical tools exist to further examine the functional role of this polysaccharide across bacterial species. To address this critical need, we hypothesized that we could design and synthesize an unnatural glycopolymer to mimic the structure of pEtN cellulose. Herein, we describe the synthesis and evaluation of a pEtN cellulose glycomimetic which was generated using ring-opening metathesis polymerization. Surprisingly, the synthetic polymers behave counter to native pEtN cellulose in that the synthetic polymers repress biofilm formation in E. coli laboratory strain 11775T and UPEC strain 700415 with longer glycopolymers displaying greater repression. To evaluate the mechanism of action, changes in biofilm and cell morphology were visualized using high resolution field-emission gun scanning electron microscopy which further revealed changes in cell surface appendages. Our results suggest synthetic pEtN cellulose glycopolymers act as an antiadhesive and inhibit biofilm formation across E. coli strains, highlighting a potential new inroad to the development of bioinspired, biofilm-modulating materials.
Collapse
Affiliation(s)
- C Elizabeth Adams
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Sabrina K Spicer
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jennifer A Gaddy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Veterans Affairs, Tennessee Valley Healthcare Systems, Nashville, Tennessee 37212, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Steven D Townsend
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
3
|
Verma P, Ho R, Chambers SA, Cegelski L, Zimmer J. Insights into phosphoethanolamine cellulose synthesis and secretion across the Gram-negative cell envelope. Nat Commun 2024; 15:7798. [PMID: 39242554 PMCID: PMC11379886 DOI: 10.1038/s41467-024-51838-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/15/2024] [Indexed: 09/09/2024] Open
Abstract
Phosphoethanolamine (pEtN) cellulose is a naturally occurring modified cellulose produced by several Enterobacteriaceae. The minimal components of the E. coli cellulose synthase complex include the catalytically active BcsA enzyme, a hexameric semicircle of the periplasmic BcsB protein, and the outer membrane (OM)-integrated BcsC subunit containing periplasmic tetratricopeptide repeats (TPR). Additional subunits include BcsG, a membrane-anchored periplasmic pEtN transferase associated with BcsA, and BcsZ, a periplasmic cellulase of unknown biological function. While cellulose synthesis and translocation by BcsA are well described, little is known about its pEtN modification and translocation across the cell envelope. We show that the N-terminal cytosolic domain of BcsA positions three BcsG copies near the nascent cellulose polymer. Further, the semicircle's terminal BcsB subunit tethers the N-terminus of a single BcsC protein in a trans-envelope secretion system. BcsC's TPR motifs bind a putative cello-oligosaccharide near the entrance to its OM pore. Additionally, we show that only the hydrolytic activity of BcsZ but not the subunit itself is necessary for cellulose secretion, suggesting a secretion mechanism based on enzymatic removal of translocation incompetent cellulose. Lastly, protein engineering introduces cellulose pEtN modification in orthogonal cellulose biosynthetic systems. These findings advance our understanding of pEtN cellulose modification and secretion.
Collapse
Affiliation(s)
- Preeti Verma
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ruoya Ho
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | | | - Lynette Cegelski
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| | - Jochen Zimmer
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
4
|
Verma P, Ho R, Chambers SA, Cegelski L, Zimmer J. Molecular insights into phosphoethanolamine cellulose formation and secretion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588173. [PMID: 38645035 PMCID: PMC11030229 DOI: 10.1101/2024.04.04.588173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Phosphoethanolamine (pEtN) cellulose is a naturally occurring modified cellulose produced by several Enterobacteriaceae. The minimal components of the E. coli cellulose synthase complex include the catalytically active BcsA enzyme, an associated periplasmic semicircle of hexameric BcsB, as well as the outer membrane (OM)-integrated BcsC subunit containing periplasmic tetratricopeptide repeats (TPR). Additional subunits include BcsG, a membrane-anchored periplasmic pEtN transferase associated with BcsA, and BcsZ, a conserved periplasmic cellulase of unknown biological function. While events underlying the synthesis and translocation of cellulose by BcsA are well described, little is known about its pEtN modification and translocation across the cell envelope. We show that the N-terminal cytosolic domain of BcsA positions three copies of BcsG near the nascent cellulose polymer. Further, the terminal subunit of the BcsB semicircle tethers the N-terminus of a single BcsC protein to establish a trans-envelope secretion system. BcsC's TPR motifs bind a putative cello-oligosaccharide near the entrance to its OM pore. Additionally, we show that only the hydrolytic activity of BcsZ but not the subunit itself is necessary for cellulose secretion, suggesting a secretion mechanism based on enzymatic removal of mislocalized cellulose. Lastly, we introduce pEtN modification of cellulose in orthogonal cellulose biosynthetic systems by protein engineering.
Collapse
Affiliation(s)
- Preeti Verma
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Ruoya Ho
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | | | - Lynette Cegelski
- Department of Chemistry, Stanford University, Stanford, CA 94305, United States
| | - Jochen Zimmer
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Howard Hughes Medical Institute
| |
Collapse
|
5
|
Burnett AJN, Rodriguez E, Constable S, Lowrance B, Fish M, Weadge JT. WssI from the Gram-Negative Bacterial Cellulose Synthase is an O-acetyltransferase that Acts on Cello-oligomers with Several Acetyl Donor Substrates. J Biol Chem 2023:104849. [PMID: 37224964 PMCID: PMC10302187 DOI: 10.1016/j.jbc.2023.104849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023] Open
Abstract
In microbial biofilms, bacterial cells are encased in a self-produced matrix of polymers (e.g., exopolysaccharides) that enable surface adherence and protect against environmental stressors. For example, the wrinkly spreader phenotype of Pseudomonas fluorescens colonizes food/water sources and human tissue to form robust biofilms that can spread across surfaces. This biofilm largely consists of bacterial cellulose produced by the cellulose synthase proteins encoded by the wss operon, which also occurs in other species, including pathogenic Achromobacter species. Although phenotypic mutant analysis of the wssFGHI genes has previously shown that they are responsible for acetylation of bacterial cellulose, their specific roles remain unknown and distinct from the recently identified cellulose phosphoethanolamine modification found in other species. Here we have purified the C-terminal soluble form of WssI from P. fluorescens and A. insuavis and demonstrated acetyl-esterase activity with chromogenic substrates. The kinetic parameters (kcat/KM values of 13 and 8.0 M-1∙ s-1, respectively) indicate that these enzymes are up to four times more catalytically efficient than the closest characterized homolog, AlgJ from the alginate synthase. Unlike AlgJ and its cognate alginate polymer, WssI also demonstrated acetyltransferase activity onto cellulose oligomers (e.g., cellotetraose to cellohexaose) with multiple acetyl-donor substrates (pNP-Ac, MU-Ac and acetyl-CoA). Finally, a high-throughput screen identified three low micromolar WssI inhibitors that may be useful for chemically interrogating cellulose acetylation and biofilm formation.
Collapse
Affiliation(s)
| | - Emily Rodriguez
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Shirley Constable
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Brian Lowrance
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Michael Fish
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Joel T Weadge
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada.
| |
Collapse
|