1
|
Belelli D, Lambert JJ, Wan MLY, Monteiro AR, Nutt DJ, Swinny JD. From bugs to brain: unravelling the GABA signalling networks in the brain-gut-microbiome axis. Brain 2025; 148:1479-1506. [PMID: 39716883 PMCID: PMC12074267 DOI: 10.1093/brain/awae413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/21/2024] [Accepted: 12/01/2024] [Indexed: 12/25/2024] Open
Abstract
Convergent data across species paint a compelling picture of the critical role of the gut and its resident microbiota in several brain functions and disorders. The chemicals mediating communication along these sophisticated highways of the brain-gut-microbiome (BGM) axis include both microbiota metabolites and classical neurotransmitters. Amongst the latter, GABA is fundamental to brain function, mediating most neuronal inhibition. Until recently, GABA's role and specific molecular targets in the periphery within the BGM axis had received limited attention. Yet, GABA is produced by neuronal and non-neuronal elements of the BGM, and recently, GABA-modulating bacteria have been identified as key players in GABAergic gut systems, indicating that GABA-mediated signalling is likely to transcend physiological boundaries and species. We review the available evidence to better understand how GABA facilitates the integration of molecularly and functionally disparate systems to bring about overall homeostasis and how GABA perturbations within the BGM axis can give rise to multi-system medical disorders, thereby magnifying the disease burden and the challenges for patient care. Analysis of transcriptomic databases revealed significant overlaps between GABAAR subunits expressed in the human brain and gut. However, in the gut, there are notable expression profiles for a select number of subunits that have received limited attention to date but could be functionally relevant for BGM axis homeostasis. GABAergic signalling, via different receptor subtypes, directly regulates BGM homeostasis by modulating the excitability of neurons within brain centres responsible for gastrointestinal (GI) function in a sex-dependent manner, potentially revealing mechanisms underlying the greater prevalence of GI disturbances in females. Apart from such top-down regulation of the BGM axis, a diverse group of cell types, including enteric neurons, glia, enteroendocrine cells, immune cells and bacteria, integrate peripheral GABA signals to influence brain functions and potentially contribute to brain disorders. We propose several priorities for this field, including the exploitation of available technologies to functionally dissect components of these GABA pathways within the BGM, with a focus on GI and brain-behaviour-disease. Furthermore, in silico ligand-receptor docking analyses using relevant bacterial metabolomic datasets, coupled with advances in knowledge of GABAAR 3D structures, could uncover new ligands with novel therapeutic potential. Finally, targeted design of dietary interventions is imperative to advancing their therapeutic potential to support GABA homeostasis across the BGM axis.
Collapse
Affiliation(s)
- Delia Belelli
- GABA Labs (Research) Ltd., Hemel Hempstead HP2 5HD, UK
- Division of Neuroscience, School of Medicine, Medical Sciences Institute, Dundee University, Dundee DD1 5HL, UK
- School of Medicine, Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Jeremy J Lambert
- Division of Neuroscience, School of Medicine, Medical Sciences Institute, Dundee University, Dundee DD1 5HL, UK
| | - Murphy Lam Yim Wan
- School of Medicine, Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Ana Rita Monteiro
- School of Medicine, Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - David J Nutt
- GABA Labs (Research) Ltd., Hemel Hempstead HP2 5HD, UK
- Division of Psychiatry, Department of Brain Sciences, Imperial College London, London W12 0NN, UK
| | - Jerome D Swinny
- School of Medicine, Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| |
Collapse
|
2
|
Dewey CW. Poop for thought: Can fecal microbiome transplantation improve cognitive function in aging dogs? Open Vet J 2025; 15:556-564. [PMID: 40201831 PMCID: PMC11974304 DOI: 10.5455/ovj.2025.v15.i2.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/20/2025] [Indexed: 04/10/2025] Open
Abstract
Canine cognitive dysfunction (CCD) is the dog version of human Alzheimer's disease (AD), and it has strikingly similar pathological features to those of this neurodegenerative disorder. The gastrointestinal system is in constant communication with the brain via several conduits collectively termed the gut-brain axis. The microbial population of the gut, referred to as the microbiota, has a profound effect on the interactions that occur along this communication route. Recent evidence suggests that dysbiosis, an abnormal gastrointestinal microbial population, is linked to cognitive impairment in rodent AD models and human AD. There is also evidence from rodent AD models that correcting dysbiosis by transferring fecal material from healthy donors to the gastrointestinal tracts of cognitively impaired recipients [fecal microbiome transplantation (FMT)] reverses AD-associated brain pathology and improves cognitive function. Although limited, some clinical reports have described the improvement of cognitive function with FMT in human AD. The goals of this review article are to provide an overview of the mechanisms involved in dysbiosis- associated cognitive decline and the role of FMT in therapy for such decline. The potential role of FMT in CCD is also discussed.
Collapse
|
3
|
Ren Y, Chen G, Hong Y, Wang Q, Lan B, Huang Z. Novel Insight into the Modulatory Effect of Traditional Chinese Medicine on Cerebral Ischemia-Reperfusion Injury by Targeting Gut Microbiota: A Review. Drug Des Devel Ther 2025; 19:185-200. [PMID: 39810832 PMCID: PMC11731027 DOI: 10.2147/dddt.s500505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/21/2024] [Indexed: 01/16/2025] Open
Abstract
Cerebral ischemia-reperfusion injury (CIRI) is clinically characterized by high rates of morbidity, disability, mortality, and recurrence as well as high economic burden. The clinical manifestations of CIRI are often accompanied by gastrointestinal symptoms such as intestinal bacterial dysbiosis and gastrointestinal bleeding. Gut microbiota plays an important role in the pathogenesis of CIRI, and its potential biological effects have received extensive attention. The gut microbiota not only affects intestinal barrier function but also regulates gastrointestinal immunity and host homeostasis. Traditional Chinese medicine (TCM), a multi-component and multi-targeted drug, has shown remarkable effects and few adverse reactions in the prevention and treatment of CIRI. Notably, the effect of TCM on CIRI by regulating gut microbiota and maintaining gastrointestinal homeostasis has gradually become a hot topic. This review summarizes the functional role of the gut microbiota in the development and progression of CIRI and the therapeutic effects of TCM on CIRI by improving gut microbiota dysbiosis, affecting gut microbiota metabolism, and maintaining host immunity. The active ingredients of TCM used for the treatment of CIRI in relevant studies were saponins, triterpenoids, phenolics, and alkaloids. In addition, the clinical effects of TCM used to treat CIRI were briefly discussed. This review established the clinical significance and development prospects of TCM-based CIRI treatments and provided the necessary theoretical support for the further development of TCM resources for the treatment of CIRI.
Collapse
Affiliation(s)
- Yisong Ren
- Department of Critical Care Medicine, Chengdu Pidu District Hospital of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611731, People’s Republic of China
| | - Gang Chen
- Department of Critical Care Medicine, Chengdu Pidu District Hospital of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611731, People’s Republic of China
| | - Ying Hong
- Department of Critical Care Medicine, Chengdu Pidu District Hospital of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611731, People’s Republic of China
| | - Qianying Wang
- Department of Critical Care Medicine, Chengdu Pidu District Hospital of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611731, People’s Republic of China
| | - Bo Lan
- Department of Critical Care Medicine, Chengdu Pidu District Hospital of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611731, People’s Republic of China
| | - Zhaozhao Huang
- Department of Critical Care Medicine, Chengdu Pidu District Hospital of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611731, People’s Republic of China
| |
Collapse
|
4
|
Ramkumar D, Marty A, Ramkumar J, Rosencranz H, Vedantham R, Goldman M, Meyer E, Steinmetz J, Weckle A, Bloedorn K, Rosier C. Food for thought: Making the case for food produced via regenerative agriculture in the battle against non-communicable chronic diseases (NCDs). One Health 2024; 18:100734. [PMID: 38711478 PMCID: PMC11070632 DOI: 10.1016/j.onehlt.2024.100734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024] Open
Abstract
Non-communicable diseases (NCDs) pose a global health challenge, leading to substantial morbidity, mortality, and economic strain. Our review underscores the escalating incidence of NCDs worldwide and highlights the potential of regenerative agriculture (RA) products in mitigating these diseases. We also explore the efficacy of dietary interventions in NCD management and prevention, emphasizing the superiority of plant-based diets over those high in processed foods and red meat. Examining the role of the gut microbiome in various diseases, including liver disorders, allergies, metabolic syndrome, inflammatory bowel disease, and colon cancer, we find compelling evidence implicating its influence on disease development. Notably, dietary modifications can positively affect the gut microbiome, fostering a symbiotic relationship with the host and making this a critical strategy in disease prevention and treatment. Investigating agricultural practices, we identify parallels between soil/plant and human microbiome studies, suggesting a crucial link between soil health, plant- and animal-derived food quality, and human well-being. Conventional/Industrial agriculture (IA) practices, characterized in part by use of chemical inputs, have adverse effects on soil microbiome diversity, food quality, and ecosystems. In contrast, RA prioritizes soil health through natural processes, and includes avoiding synthetic inputs, crop rotation, and integrating livestock. Emerging evidence suggests that food from RA systems surpasses IA-produced food in quality and nutritional value. Recognizing the interconnection between human, plant, and soil microbiomes, promoting RA-produced foods emerges as a strategy to improve human health and environmental sustainability. By mitigating climate change impacts through carbon sequestration and water cycling, RA offers dual benefits for human and planetary health and well-being. Emphasizing the pivotal role of diet and agricultural practices in combating NCDs and addressing environmental concerns, the adoption of regional RA systems becomes imperative. Increasing RA integration into local food systems can enhance food quality, availability, and affordability while safeguarding human health and the planet's future.
Collapse
Affiliation(s)
- Davendra Ramkumar
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, 506 South Matthews Ave, Urbana, IL 61801, USA
- Illinois Water Resources Center, University of Illinois Urbana Champaign, Natural Resources Building 615 E. Peabody Dr Champaign, IL 61820, USA
| | - Aileen Marty
- Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Japhia Ramkumar
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, 506 South Matthews Ave, Urbana, IL 61801, USA
- Illinois Water Resources Center, University of Illinois Urbana Champaign, Natural Resources Building 615 E. Peabody Dr Champaign, IL 61820, USA
| | - Holly Rosencranz
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, 506 South Matthews Ave, Urbana, IL 61801, USA
- Illinois Water Resources Center, University of Illinois Urbana Champaign, Natural Resources Building 615 E. Peabody Dr Champaign, IL 61820, USA
| | - Radhika Vedantham
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, 506 South Matthews Ave, Urbana, IL 61801, USA
- Illinois Water Resources Center, University of Illinois Urbana Champaign, Natural Resources Building 615 E. Peabody Dr Champaign, IL 61820, USA
| | - Modan Goldman
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, 506 South Matthews Ave, Urbana, IL 61801, USA
- Illinois Water Resources Center, University of Illinois Urbana Champaign, Natural Resources Building 615 E. Peabody Dr Champaign, IL 61820, USA
| | - Erin Meyer
- Basil's Harvest, 227 W Monroe St, Suite 2100, Chicago, IL 60606, USA
| | - Jasia Steinmetz
- University of Wisconsin – Stevens Point 202 College of Professional Studies, Stevens Point, WI 54481-3897, USA
| | - Amy Weckle
- Illinois Water Resources Center, University of Illinois Urbana Champaign, Natural Resources Building 615 E. Peabody Dr Champaign, IL 61820, USA
| | - Kelly Bloedorn
- Basil's Harvest, 227 W Monroe St, Suite 2100, Chicago, IL 60606, USA
| | - Carl Rosier
- Basil's Harvest, 227 W Monroe St, Suite 2100, Chicago, IL 60606, USA
| |
Collapse
|
5
|
Sengupta S, Pabbaraja S, Mehta G. Natural products from the human microbiome: an emergent frontier in organic synthesis and drug discovery. Org Biomol Chem 2024; 22:4006-4030. [PMID: 38669195 DOI: 10.1039/d4ob00236a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Often referred to as the "second genome", the human microbiome is at the epicenter of complex inter-habitat biochemical networks like the "gut-brain axis", which has emerged as a significant determinant of cognition, overall health and well-being, as well as resistance to antibiotics and susceptibility to diseases. As part of a broader understanding of the nexus between the human microbiome, diseases and microbial interactions, whether encoded secondary metabolites (natural products) play crucial signalling roles has been the subject of intense scrutiny in the recent past. A major focus of these activities involves harvesting the genomic potential of the human microbiome via bioinformatics guided genome mining and culturomics. Through these efforts, an impressive number of structurally intriguing antibiotics, with enhanced chemical diversity vis-à-vis conventional antibiotics have been isolated from human commensal bacteria, thereby generating considerable interest in their total synthesis and expanding their therapeutic space for drug discovery. These developments augur well for the discovery of new drugs and antibiotics, particularly in the context of challenges posed by mycobacterial resistance and emerging new diseases. The current landscape of various synthetic campaigns and drug discovery initiatives on antibacterial natural products from the human microbiome is captured in this review with an intent to stimulate further activities in this interdisciplinary arena among the new generation.
Collapse
Affiliation(s)
- Saumitra Sengupta
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India.
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Srihari Pabbaraja
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Goverdhan Mehta
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India.
| |
Collapse
|
6
|
Miri S, Yeo J, Abubaker S, Hammami R. Neuromicrobiology, an emerging neurometabolic facet of the gut microbiome? Front Microbiol 2023; 14:1098412. [PMID: 36733917 PMCID: PMC9886687 DOI: 10.3389/fmicb.2023.1098412] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
The concept of the gut microbiome is emerging as a metabolic interactome influenced by diet, xenobiotics, genetics, and other environmental factors that affect the host's absorption of nutrients, metabolism, and immune system. Beyond nutrient digestion and production, the gut microbiome also functions as personalized polypharmacy, where bioactive metabolites that our microbes excrete or conjugate may reach systemic circulation and impact all organs, including the brain. Appreciable evidence shows that gut microbiota produce diverse neuroactive metabolites, particularly neurotransmitters (and their precursors), stimulating the local nervous system (i.e., enteric and vagus nerves) and affecting brain function and cognition. Several studies have demonstrated correlations between the gut microbiome and the central nervous system sparking an exciting new research field, neuromicrobiology. Microbiome-targeted interventions are seen as promising adjunctive treatments (pre-, pro-, post-, and synbiotics), but the mechanisms underlying host-microbiome interactions have yet to be established, thus preventing informed evidence-based therapeutic applications. In this paper, we review the current state of knowledge for each of the major classes of microbial neuroactive metabolites, emphasizing their biological effects on the microbiome, gut environment, and brain. Also, we discuss the biosynthesis, absorption, and transport of gut microbiota-derived neuroactive metabolites to the brain and their implication in mental disorders.
Collapse
Affiliation(s)
- Saba Miri
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - JuDong Yeo
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Sarah Abubaker
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Riadh Hammami
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
7
|
Applications of Probiotic-Based Multi-Components to Human, Animal and Ecosystem Health: Concepts, Methodologies, and Action Mechanisms. Microorganisms 2022; 10:microorganisms10091700. [PMID: 36144301 PMCID: PMC9502345 DOI: 10.3390/microorganisms10091700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/12/2022] [Accepted: 08/20/2022] [Indexed: 02/05/2023] Open
Abstract
Probiotics and related preparations, including synbiotics and postbiotics, are living and non-living microbial-based multi-components, which are now among the most popular bioactive agents. Such interests mainly arise from the wide range and numerous beneficial effects of their use for various hosts. The current minireview article attempts to provide an overview and discuss in a holistic way the concepts, methodologies, action mechanisms, and applications of probiotic-based multi-components in human, animal, plant, soil, and environment health. Probiotic-based multi-component preparations refer to a mixture of bioactive agents, containing probiotics or postbiotics as main functional ingredients, and prebiotics, protectants, stabilizers, encapsulating agents, and other compounds as additional constituents. Analyzing, characterizing, and monitoring over time the traceability, performance, and stability of such multi-component ingredients require relevant and sensitive analytical tools and methodologies. Two innovative profiling and monitoring methods, the thermophysical fingerprinting thermogravimetry-differential scanning calorimetry technique (TGA-DSC) of the whole multi-component powder preparations, and the Advanced Testing for Genetic Composition (ATGC) strain analysis up to the subspecies level, are presented, illustrated, and discussed in this review to respond to those requirements. Finally, the paper deals with some selected applications of probiotic-based multi-components to human, animal, plant, soil and environment health, while mentioning their possible action mechanisms.
Collapse
|
8
|
Abstract
Trillions of microorganisms, including bacteria, archaea, fungi, and viruses, live in or on the human body. Microbe-microbe and microbe-host interactions are often influenced by diffusible and microbe-associated small molecules. Over the past few years, it has become evident that these interactions have a substantial impact on human health and disease. In this Perspective, we summarize the research involving the discovery of methanogenic and non-methanogenic archaea associated with the human body. In particular, we emphasize the importance of some archaeal metabolites in mediating intra- and interspecies interactions in the ecological environment of the human body. A deep understanding of the archaeal metabolites as well as their biological functions may reveal in more detail whether and how archaea are involved in maintaining human health and/or causing certain diseases.
Collapse
Affiliation(s)
- Mingwei Cai
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Xiaoyu Tang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|