1
|
Lemen D, Rokita SE. Polar Interactions between Substrate and Flavin Control Iodotyrosine Deiodinase Function. Biochemistry 2024; 63:2380-2389. [PMID: 39213510 PMCID: PMC11408085 DOI: 10.1021/acs.biochem.4c00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Flavin cofactors offer a wide range of chemical mechanisms to support a great diversity in catalytic function. As a corollary, such diversity necessitates careful control within each flavoprotein to limit its function to an appropriate subset of possible reactions and substrates. This task falls to the protein environment surrounding the flavin in most enzymes. For iodotyrosine deiodinase that catalyzes a reductive dehalogenation of halotyrosines, substrates can dictate the chemistry available to the flavin. Their ability to stabilize the necessary one-electron reduced semiquinone form of flavin strictly depends on a direct coordination between the flavin and α-ammonium and carboxylate groups of its substrates. While perturbations to the carboxylate group do not significantly affect binding to the resting oxidized form of the deiodinase, dehalogenation (kcat/Km) is suppressed by over 2000-fold. Lack of the α-ammonium group abolishes detectable binding and dehalogenation. Substitution of the ammonium group with a hydroxyl group does not restore measurable binding but does support dehalogenation with an efficiency greater than those of the carboxylate derivatives. Consistent with these observations, the flavin semiquinone does not accumulate during redox titration in the presence of inert substrate analogues lacking either the α-ammonium or carboxylate groups. As a complement, a nitroreductase activity based on hydride transfer is revealed for the appropriate substrates with perturbations to their zwitterion.
Collapse
Affiliation(s)
- Daniel Lemen
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Steven E Rokita
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
2
|
Russo S, Rozeboom HJ, Wijma HJ, Poelarends GJ, Fraaije MW. Biochemical, kinetic, and structural characterization of a Bacillus tequilensis nitroreductase. FEBS J 2024; 291:3889-3903. [PMID: 38946302 DOI: 10.1111/febs.17210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/17/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
Nitroreductases (NRs) are NAD(P)H-dependent flavoenzymes that reduce nitro aromatic compounds to their corresponding arylamines via the nitroso and hydroxylamine intermediates. Because of their broad substrate scope and versatility, NRs have found application in multiple fields such as biocatalysis, bioremediation, cell-imaging and prodrug activation. However, only a limited number of members of the broad NR superfamily (> 24 000 sequences) have been experimentally characterized. Within this group of enzymes, only few are capable of amine synthesis, which is a fundamental chemical transformation for the pharmaceutical, agricultural, and textile industries. Herein, we provide a comprehensive description of a recently discovered NR from Bacillus tequilensis, named BtNR. This enzyme has previously been demonstrated to have the capability to fully convert nitro aromatic and heterocyclic compounds to their respective primary amines. In this study, we determined its biochemical, kinetic and structural properties, including its apparent melting temperature (Tm) of 59 °C, broad pH activity range (from pH 3 to 10) and a notably low redox potential (-236 ± 1 mV) in comparison to other well-known NRs. We also determined its steady-state and pre-steady-state kinetic parameters, which are consistent with other NRs. Additionally, we elucidated the crystal structure of BtNR, which resembles the well-characterized Escherichia coli oxygen-insensitive NAD(P)H nitroreductase (NfsB), and investigated the substrate binding in its active site through docking and molecular dynamics studies with four nitro aromatic substrates. Guided by these structural analyses, we probed the functional roles of active site residues by site-directed mutagenesis. Our findings provide valuable insights into the biochemical and structural properties of BtNR, as well as its potential applications in biotechnology.
Collapse
Affiliation(s)
- Sara Russo
- Molecular Enzymology Group, University of Groningen, The Netherlands
- Department of Chemical and Pharmaceutical Biology, University of Groningen, The Netherlands
| | | | - Hein J Wijma
- Molecular Enzymology Group, University of Groningen, The Netherlands
| | - Gerrit J Poelarends
- Department of Chemical and Pharmaceutical Biology, University of Groningen, The Netherlands
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, The Netherlands
| |
Collapse
|
3
|
Valiauga B, Bagdžiūnas G, Sharrock AV, Ackerley DF, Čėnas N. The Catalysis Mechanism of E. coli Nitroreductase A, a Candidate for Gene-Directed Prodrug Therapy: Potentiometric and Substrate Specificity Studies. Int J Mol Sci 2024; 25:4413. [PMID: 38673999 PMCID: PMC11049802 DOI: 10.3390/ijms25084413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
E. coli nitroreductase A (NfsA) is a candidate for gene-directed prodrug cancer therapy using bioreductively activated nitroaromatic compounds (ArNO2). In this work, we determined the standard redox potential of FMN of NfsA to be -215 ± 5 mV at pH 7.0. FMN semiquinone was not formed during 5-deazaflavin-sensitized NfsA photoreduction. This determines the two-electron character of the reduction of ArNO2 and quinones (Q). In parallel, we characterized the oxidant specificity of NfsA with an emphasis on its structure. Except for negative outliers nitracrine and SN-36506, the reactivity of ArNO2 increases with their electron affinity (single-electron reduction potential, E17) and is unaffected by their lipophilicity and Van der Waals volume up to 386 Å. The reactivity of quinoidal oxidants is not clearly dependent on E17, but 2-hydroxy-1,4-naphthoquinones were identified as positive outliers and a number of compounds with diverse structures as negative outliers. 2-Hydroxy-1,4-naphthoquinones are characterized by the most positive reaction activation entropy and the negative outlier tetramethyl-1,4-benzoquinone by the most negative. Computer modelling data showed that the formation of H bonds with Arg15, Arg133, and Ser40, plays a major role in the binding of oxidants to reduced NfsA, while the role of the π-π interaction of their aromatic structures is less significant. Typically, the calculated hydride-transfer distances during ArNO2 reduction are smallwer than for Q. This explains the lower reactivity of quinones. Another factor that slows down the reduction is the presence of positively charged aliphatic substituents.
Collapse
Affiliation(s)
- Benjaminas Valiauga
- Institute of Biochemistry of Life Sciences Center of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (B.V.); (G.B.)
| | - Gintautas Bagdžiūnas
- Institute of Biochemistry of Life Sciences Center of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (B.V.); (G.B.)
| | - Abigail V. Sharrock
- School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington 6140, New Zealand; (A.V.S.); (D.F.A.)
| | - David F. Ackerley
- School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington 6140, New Zealand; (A.V.S.); (D.F.A.)
| | - Narimantas Čėnas
- Institute of Biochemistry of Life Sciences Center of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (B.V.); (G.B.)
| |
Collapse
|
4
|
Zhang L, King E, Black WB, Heckmann CM, Wolder A, Cui Y, Nicklen F, Siegel JB, Luo R, Paul CE, Li H. Directed evolution of phosphite dehydrogenase to cycle noncanonical redox cofactors via universal growth selection platform. Nat Commun 2022; 13:5021. [PMID: 36028482 PMCID: PMC9418148 DOI: 10.1038/s41467-022-32727-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/13/2022] [Indexed: 11/09/2022] Open
Abstract
Noncanonical redox cofactors are attractive low-cost alternatives to nicotinamide adenine dinucleotide (phosphate) (NAD(P)+) in biotransformation. However, engineering enzymes to utilize them is challenging. Here, we present a high-throughput directed evolution platform which couples cell growth to the in vivo cycling of a noncanonical cofactor, nicotinamide mononucleotide (NMN+). We achieve this by engineering the life-essential glutathione reductase in Escherichia coli to exclusively rely on the reduced NMN+ (NMNH). Using this system, we develop a phosphite dehydrogenase (PTDH) to cycle NMN+ with ~147-fold improved catalytic efficiency, which translates to an industrially viable total turnover number of ~45,000 in cell-free biotransformation without requiring high cofactor concentrations. Moreover, the PTDH variants also exhibit improved activity with another structurally deviant noncanonical cofactor, 1-benzylnicotinamide (BNA+), showcasing their broad applications. Structural modeling prediction reveals a general design principle where the mutations and the smaller, noncanonical cofactors together mimic the steric interactions of the larger, natural cofactors NAD(P)+.
Collapse
Affiliation(s)
- Linyue Zhang
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA, 92697, USA
| | - Edward King
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, 92697, USA
| | - William B Black
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA, 92697, USA
| | - Christian M Heckmann
- Biocatalysis, Department of Biotechnology, Delft University of Technology, 2629 HZ, Delft, Netherlands
| | - Allison Wolder
- Biocatalysis, Department of Biotechnology, Delft University of Technology, 2629 HZ, Delft, Netherlands
| | - Youtian Cui
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Francis Nicklen
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA, 92697, USA
| | - Justin B Siegel
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
- Department of Biochemistry and Molecular Medicine, University of California, Davis, 2700 Stockton Boulevard, Suite 2102, Sacramento, CA, 95817, USA
- Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA, 95616, USA
| | - Ray Luo
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA, 92697, USA
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, 92697, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, 92697, USA
- Department Materials Science and Engineering, University of California Irvine, Irvine, CA, 92697, USA
| | - Caroline E Paul
- Biocatalysis, Department of Biotechnology, Delft University of Technology, 2629 HZ, Delft, Netherlands
| | - Han Li
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA, 92697, USA.
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|