1
|
Peng BL, Ran T, Chen X, Ding JC, Wang ZR, Li WJ, Liu W. A CARM1 Inhibitor Potently Suppresses Breast Cancer Both In Vitro and In Vivo. J Med Chem 2024; 67:7921-7934. [PMID: 38713486 PMCID: PMC11129188 DOI: 10.1021/acs.jmedchem.3c02315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/22/2024] [Accepted: 04/25/2024] [Indexed: 05/08/2024]
Abstract
CARM1, belonging to the protein arginine methyltransferase (PRMT) family, is intricately associated with the progression of cancer and is viewed as a promising target for both cancer diagnosis and therapy. However, the number of specific and potent CARM1 inhibitors is limited. We herein discovered a CARM1 inhibitor, iCARM1, that showed better specificity and activity toward CARM1 compared to the known CARM1 inhibitors, EZM2302 and TP-064. Similar to CARM1 knockdown, iCARM1 suppressed the expression of oncogenic estrogen/ERα-target genes, whereas activated type I interferon (IFN) and IFN-induced genes (ISGs) in breast cancer cells. Consequently, iCARM1 potently suppressed breast cancer cell growth both in vitro and in vivo. The combination of iCARM1 with either endocrine therapy drugs or etoposide demonstrated synergistic effects in inhibiting the growth of breast tumors. In summary, targeting CARM1 by iCARM1 effectively suppresses breast tumor growth, offering a promising therapeutic approach for managing breast cancers in clinical settings.
Collapse
Affiliation(s)
- Bing-ling Peng
- Fujian
Provincial Key Laboratory of Innovative Drug Target Research, School
of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- State
Key Laboratory of Cellular Stress Biology, School of Pharmaceutical
Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Xiang
An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty
of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Ting Ran
- Bioland
Laboratory (Guangzhou Regenerative Medicine and Health - Guangdong
Laboratory), KaiYuan
Road, Guangzhou, Guangdong 510530, China
| | - Xue Chen
- Fujian
Provincial Key Laboratory of Innovative Drug Target Research, School
of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- State
Key Laboratory of Cellular Stress Biology, School of Pharmaceutical
Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Xiang
An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty
of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Jian-cheng Ding
- Fujian
Provincial Key Laboratory of Innovative Drug Target Research, School
of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- State
Key Laboratory of Cellular Stress Biology, School of Pharmaceutical
Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Xiang
An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty
of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Zi-rui Wang
- Fujian
Provincial Key Laboratory of Innovative Drug Target Research, School
of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- State
Key Laboratory of Cellular Stress Biology, School of Pharmaceutical
Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Wen-juan Li
- Fujian
Provincial Key Laboratory of Innovative Drug Target Research, School
of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- State
Key Laboratory of Cellular Stress Biology, School of Pharmaceutical
Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Xiang
An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty
of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Wen Liu
- Fujian
Provincial Key Laboratory of Innovative Drug Target Research, School
of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- State
Key Laboratory of Cellular Stress Biology, School of Pharmaceutical
Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Xiang
An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty
of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
| |
Collapse
|
2
|
Malkawi AK, Ohlund L, Rahman AMA, Sleno L, Siaj M. Co-stimulatory pathway competitive assay development using Liquid chromatography-tandem mass spectrometry (LC-MS/MS). J Pharm Biomed Anal 2024; 242:116034. [PMID: 38422671 DOI: 10.1016/j.jpba.2024.116034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 03/02/2024]
Abstract
T-cells play a significant role in the development of autoimmune diseases. The CD28-B7 costimulatory pathway is crucial for activating T-cells, and blocking this pathway is essential for treating autoimmune diseases. Therapeutic antibodies and fusion proteins that target costimulatory molecules like CD80, CD86, CTLA-4, and CD28 have been developed to explore the costimulation process and as targeted treatments. To advance our understanding of costimulation in autoimmunity and the inhibition of the costimulatory pathway, it is crucial to have an accurate, precise, and direct method for detecting and quantifying the soluble form of these molecules in body fluids and various biological systems. Herein, we developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for quantifying the four costimulatory proteins depending on the signature peptides derived from the soluble isoform of these proteins in multiple reaction monitoring (MRM) mode. The method was validated using the US FDA guidelines. The LOQ was determined as ∼0.5 nM for the four analytes, with quantification extended to 20 nM with a correlation coefficient of R2>0.998. The developed MRM method was used to analyze on-bead digested protein mixtures to establish a competitive assay for the CD28-B7 costimulatory pathway using CTLA4-Ig (Abatacept ™) as an FDA-approved drug for rheumatoid arthritis. The IC50 was determined to be 2.99 and 159.8 nM for sCD80 and sCD86, respectively. A straightforward MRM-based competitive assay will advance the knowledge about the costimulatory role in autoimmunity and the autoimmune therapeutic drug discovery, with the need for broad application on different in vitro and in vivo models to discover new targeted inhibitors.
Collapse
Affiliation(s)
- Abeer K Malkawi
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada
| | - Leanne Ohlund
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada
| | - Anas M Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genome Medicine, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh, Saudi Arabia; Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Department of Chemistry, Memorial University of Newfoundland, St. John's, NL AIC 5S7, Canada
| | - Lekha Sleno
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada
| | - Mohamed Siaj
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada.
| |
Collapse
|