1
|
Garcia CA, Prasad V, Gamblin TC. MIPAR and ImageJ FIJI as Tools for Electron Microscopy Quantification of Amyloid Fibrils. Biochemistry 2025; 64:1907-1915. [PMID: 40197004 DOI: 10.1021/acs.biochem.5c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Measuring of tau filaments is an important method that can provide useful information in the study of tau in vitro. However, methods such as right-angle laser light scattering and Thioflavin T fluorescence assay only provide bulk information on the amount of tau aggregation that is occurring. Electron microscopy (EM) can be used to provide a semiquantitative method on the lengths of individual filaments and provide a length distribution of tau aggregates. The issue with quantifying tau aggregation through EM is that it can be time costly if done manually. Here we explore two different programs, MIPAR and ImageJ FIJI, as methods to automate the quantification of EM grids. Using both programs to measure filaments produced from inducing 2N4R tau with the fatty acid arachidonic acid (ARA), we are able to reliably measure filaments producing similar results from MIPAR and ImageJ, with these methods applicable to other filamentous biological structures.
Collapse
Affiliation(s)
- Charles A Garcia
- Department of Neuroscience, Developmental, and Regenerative Biology, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, Texas 78249, United States
| | - Veena Prasad
- Department of Neuroscience, Developmental, and Regenerative Biology, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, Texas 78249, United States
| | - Truman C Gamblin
- Department of Neuroscience, Developmental, and Regenerative Biology, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, Texas 78249, United States
| |
Collapse
|
2
|
Sun KT, Mok SA. Inducers and modulators of protein aggregation in Alzheimer's disease - Critical tools for understanding the foundations of aggregate structures. Neurotherapeutics 2025; 22:e00512. [PMID: 39755501 PMCID: PMC12047394 DOI: 10.1016/j.neurot.2024.e00512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 01/06/2025] Open
Abstract
Amyloidogenic protein aggregation is a pathological hallmark of Alzheimer's Disease (AD). As such, this critical feature of the disease has been instrumental in guiding research on the mechanistic basis of disease, diagnostic biomarkers and preventative and therapeutic treatments. Here we review identified molecular triggers and modulators of aggregation for two of the proteins associated with AD: amyloid beta and tau. We aim to provide an overview of how specific molecular factors can impact aggregation kinetics and aggregate structure to promote disease. Looking toward the future, we highlight some research areas of focus that would accelerate efforts to effectively target protein aggregation in AD.
Collapse
Affiliation(s)
- Kerry T Sun
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Sue-Ann Mok
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada.
| |
Collapse
|
3
|
Park S, Shin J, Kim K, Kim D, Lee WS, Lee J, Cho I, Park IW, Yoon S, Lee S, Kim HY, Lee JH, Hong KB, Kim Y. Modulation of Amyloid and Tau Aggregation to Alleviate Cognitive Impairment in a Transgenic Mouse Model of Alzheimer's Disease. ACS Pharmacol Transl Sci 2024; 7:2650-2661. [PMID: 39296253 PMCID: PMC11406698 DOI: 10.1021/acsptsci.4c00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 09/21/2024]
Abstract
Aggregation of misfolded amyloid-β (Aβ) and hyperphosphorylated tau proteins to plaques and tangles, respectively, is the major drug target of Alzheimer's disease (AD), as the former is an onset biomarker and the latter is associated with neurodegeneration. Thus, we report a small molecule drug candidate, DN5355, with a dual-targeting function toward aggregates of both Aβ and tau. DN5355 was selected through a series of four screenings assessing 52 chemicals for their functions to inhibit and reverse the aggregation of Aβ and tau by utilizing thioflavin T. When orally administered to AD transgenic mouse model 5XFAD, DN5355 significantly reduced cerebral Aβ plaques and hyperphosphorylated tau tangles. In Y-maze spontaneous alteration and contextual fear conditioning tests, 5XFAD mice showed amelioration of cognitive deficits upon the oral administration of DN5355.
Collapse
Affiliation(s)
- Sohui Park
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, Yonsei University, Incheon 21983, Republic of Korea
| | - Jisu Shin
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, Yonsei University, Incheon 21983, Republic of Korea
| | - Kyeonghwan Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, Yonsei University, Incheon 21983, Republic of Korea
| | - Darong Kim
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (KMEDIhub), 80 Cheombok-ro, Dong-gu, Daegu 41061, Republic of Korea
| | - Won Seok Lee
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (KMEDIhub), 80 Cheombok-ro, Dong-gu, Daegu 41061, Republic of Korea
| | - Jusuk Lee
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (KMEDIhub), 80 Cheombok-ro, Dong-gu, Daegu 41061, Republic of Korea
| | - Illhwan Cho
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, Yonsei University, Incheon 21983, Republic of Korea
| | - In Wook Park
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, Yonsei University, Incheon 21983, Republic of Korea
| | - Soljee Yoon
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, Yonsei University, Incheon 21983, Republic of Korea
- Department of Integrative Biotechnology and Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea
| | - Songmin Lee
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, Yonsei University, Incheon 21983, Republic of Korea
| | - Hye Yun Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, Yonsei University, Incheon 21983, Republic of Korea
| | - Ji Hoon Lee
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (KMEDIhub), 80 Cheombok-ro, Dong-gu, Daegu 41061, Republic of Korea
| | - Ki Bum Hong
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (KMEDIhub), 80 Cheombok-ro, Dong-gu, Daegu 41061, Republic of Korea
| | - YoungSoo Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Science, Yonsei University, Incheon 21983, Republic of Korea
- Department of Integrative Biotechnology and Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
4
|
Carroll EC, Yang H, Jones JG, Oehler A, Charvat AF, Montgomery KM, Yung A, Millbern Z, Vinueza NR, DeGrado WF, Mordes DA, Condello C, Gestwicki JE. Methods for high throughput discovery of fluoroprobes that recognize tau fibril polymorphs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.02.610853. [PMID: 39282355 PMCID: PMC11398390 DOI: 10.1101/2024.09.02.610853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Aggregation of microtubule-associated protein tau (MAPT/tau) into conformationally distinct fibrils underpins neurodegenerative tauopathies. Fluorescent probes (fluoroprobes), such as thioflavin T (ThT), have been essential tools for studying tau aggregation; however, most of them do not discriminate between amyloid fibril conformations (polymorphs). This gap is due, in part, to a lack of high-throughput methods for screening large, diverse chemical collections. Here, we leverage advances in protein adaptive differential scanning fluorimetry (paDSF) to screen the Aurora collection of 300+ fluorescent dyes against multiple synthetic tau fibril polymorphs. This screen, coupled with orthogonal secondary assays, revealed pan-fibril binding chemotypes, as well as fluoroprobes selective for subsets of fibrils. One fluoroprobe recognized tau pathology in ex vivo brain slices from Alzheimer's disease patients. We propose that these scaffolds represent entry points for development of selective fibril ligands and, more broadly, that high throughput, fluorescence-based dye screening is a platform for their discovery.
Collapse
Affiliation(s)
- Emma C Carroll
- Department of Chemistry, San José State University, San José, CA 95192
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158
| | - Hyunjun Yang
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158
- Department of Pharmaceutical Chemistry, University of California San Francisco; San Francisco, CA 94158
| | - Julia G Jones
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158
| | - Abby Oehler
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158
| | - Annemarie F Charvat
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158
| | - Kelly M Montgomery
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158
| | - Anthony Yung
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158
| | - Zoe Millbern
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC 27695
| | - Nelson R Vinueza
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC 27695
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California San Francisco; San Francisco, CA 94158
| | - Daniel A Mordes
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158
- Department of Pathology, University of California San Francisco; San Francisco, CA 94158
| | - Carlo Condello
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158
- Department of Neurology, University of California San Francisco; San Francisco, CA 94158
| | - Jason E Gestwicki
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158
- Department of Pharmaceutical Chemistry, University of California San Francisco; San Francisco, CA 94158
| |
Collapse
|
5
|
Lin D, Gold A, Kaye S, Atkinson JR, Tol M, Sas A, Segal B, Tontonoz P, Zhu J, Gao J. Arachidonic Acid Mobilization and Peroxidation Promote Microglial Dysfunction in Aβ Pathology. J Neurosci 2024; 44:e0202242024. [PMID: 38866484 PMCID: PMC11293449 DOI: 10.1523/jneurosci.0202-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/07/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
Aberrant increase of arachidonic acid (ARA) has long been implicated in the pathology of Alzheimer's disease (AD), while the underlying causal mechanism remains unclear. In this study, we revealed a link between ARA mobilization and microglial dysfunction in Aβ pathology. Lipidomic analysis of primary microglia from AppNL-GF mice showed a marked increase in free ARA and lysophospholipids (LPLs) along with a decrease in ARA-containing phospholipids, suggesting increased ARA release from phospholipids (PLs). To manipulate ARA-containing PLs in microglia, we genetically deleted lysophosphatidylcholine acyltransferase 3 (Lpcat3), the main enzyme catalyzing the incorporation of ARA into PLs. Loss of microglial Lpcat3 reduced the levels of ARA-containing PLs, free ARA and LPLs, leading to a compensatory increase in monounsaturated fatty acid (MUFA)-containing PLs in both male and female App NL-GF mice. Notably, the reduction of ARA in microglia significantly ameliorated oxidative stress and inflammatory responses while enhancing the phagocytosis of Aβ plaques and promoting the compaction of Aβ deposits. Mechanistically, scRNA seq suggested that LPCAT3 deficiency facilitates phagocytosis by facilitating de novo lipid synthesis while protecting microglia from oxidative damage. Collectively, our study reveals a novel mechanistic link between ARA mobilization and microglial dysfunction in AD. Lowering brain ARA levels through pharmacological or dietary interventions may be a potential therapeutic strategy to slow down AD progression.
Collapse
Affiliation(s)
- Da Lin
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| | - Andrew Gold
- Department of Human Sciences, The Ohio State University, Columbus, Ohio 43210
| | - Sarah Kaye
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| | - Jeffrey R Atkinson
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| | - Marcus Tol
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Andrew Sas
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| | - Benjamin Segal
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Jiangjiang Zhu
- Department of Human Sciences, The Ohio State University, Columbus, Ohio 43210
| | - Jie Gao
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210
| |
Collapse
|
6
|
Pounot K, Piersson C, Goring AK, Rosu F, Gabelica V, Weik M, Han S, Fichou Y. Mutations in Tau Protein Promote Aggregation by Favoring Extended Conformations. JACS AU 2024; 4:92-100. [PMID: 38274251 PMCID: PMC10806773 DOI: 10.1021/jacsau.3c00550] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 01/27/2024]
Abstract
Amyloid aggregation of the intrinsically disordered protein (IDP) tau is involved in several diseases, called tauopathies. Some tauopathies can be inherited due to mutations in the gene encoding tau, which might favor the formation of tau amyloid fibrils. This work aims at deciphering the mechanisms through which the disease-associated single-point mutations promote amyloid formation. We combined biochemical and biophysical characterization, notably, small-angle X-ray scattering (SAXS), to study six different FTDP-17 derived mutations. We found that the mutations promote aggregation to different degrees and can modulate tau conformational ensembles, intermolecular interactions, and liquid-liquid phase separation propensity. In particular, we found a good correlation between the aggregation lag time of the mutants and their radii of gyration. We show that mutations disfavor intramolecular protein interactions, which in turn favor extended conformations and promote amyloid aggregation. This work proposes a new connection between the structural features of tau monomers and their propensity to aggregate, providing a novel assay to evaluate the aggregation propensity of IDPs.
Collapse
Affiliation(s)
- Kevin Pounot
- Univ.
Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Clara Piersson
- Univ.
Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, 33600 Pessac, France
| | - Andrew K. Goring
- Department
of Chemistry and Biochemistry, University
of California Los Angeles, Los Angeles, California 90095, United States
| | - Frédéric Rosu
- Univ.
Bordeaux, CNRS, INSERM, IECB, UAR3033, US01, F-33600 Pessac, France
| | - Valérie Gabelica
- Univ.
Bordeaux, CNRS, INSERM, IECB, UAR3033, US01, F-33600 Pessac, France
- Univ.
Bordeaux, CNRS, INSERM, ARNA, UMR5320, U1212, IECB, 33600 Pessac, France
| | - Martin Weik
- Univ.
Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Songi Han
- Department
of Chemical Engineering, University of California
Santa Barbara, Santa Barbara, California 93106, United States
- Department
of Chemistry and Biochemistry, University
of California Santa Barbara, Santa
Barbara, California 93106, United States
| | - Yann Fichou
- Univ.
Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, 33600 Pessac, France
| |
Collapse
|
7
|
Han ZZ, Fleet A, Larrieu D. Can accelerated ageing models inform us on age-related tauopathies? Aging Cell 2023; 22:e13830. [PMID: 37013265 PMCID: PMC10186612 DOI: 10.1111/acel.13830] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Ageing is the greatest risk factor of late-onset neurodegenerative diseases. In the realm of sporadic tauopathies, modelling the process of biological ageing in experimental animals forms the foundation of searching for the molecular origin of pathogenic tau and developing potential therapeutic interventions. Although prior research into transgenic tau models offers valuable lessons for studying how tau mutations and overexpression can drive tau pathologies, the underlying mechanisms by which ageing leads to abnormal tau accumulation remains poorly understood. Mutations associated with human progeroid syndromes have been proposed to be able to mimic an aged environment in animal models. Here, we summarise recent attempts in modelling ageing in relation to tauopathies using animal models that carry mutations associated with human progeroid syndromes, or genetic elements unrelated to human progeroid syndromes, or have exceptional natural lifespans, or a remarkable resistance to ageing-related disorders.
Collapse
Affiliation(s)
- Zhuang Zhuang Han
- Department of PharmacologyUniversity of CambridgeTennis Ct RdCambridgeCB2 1PDUK
| | - Alex Fleet
- Department of PharmacologyUniversity of CambridgeTennis Ct RdCambridgeCB2 1PDUK
| | - Delphine Larrieu
- Department of PharmacologyUniversity of CambridgeTennis Ct RdCambridgeCB2 1PDUK
| |
Collapse
|
8
|
Montgomery K, Carroll EC, Thwin AC, Quddus AY, Hodges P, Southworth DR, Gestwicki JE. Chemical Features of Polyanions Modulate Tau Aggregation and Conformational States. J Am Chem Soc 2023; 145:3926-3936. [PMID: 36753572 PMCID: PMC9951223 DOI: 10.1021/jacs.2c08004] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Indexed: 02/10/2023]
Abstract
The aggregation of tau into insoluble fibrils is a defining feature of neurodegenerative tauopathies. However, tau has a positive overall charge and is highly soluble; so, polyanions, such as heparin, are typically required to promote its aggregation in vitro. There are dozens of polyanions in living systems, and it is not clear which ones might promote this process. Here, we systematically measure the ability of 37 diverse, anionic biomolecules to initiate tau aggregation using either wild-type (WT) tau or the disease-associated P301S mutant. We find that polyanions from many different structural classes can promote fibril formation and that P301S tau is sensitive to a greater number of polyanions (28/37) than WT tau (21/37). We also find that some polyanions preferentially reduce the lag time of the aggregation reactions, while others enhance the elongation rate, suggesting that they act on partially distinct steps. From the resulting structure-activity relationships, the valency of the polyanion seems to be an important chemical feature such that anions with low valency tend to be weaker aggregation inducers, even at the same overall charge. Finally, the identity of the polyanion influences fibril morphology based on electron microscopy and limited proteolysis. These results provide insights into the crucial role of polyanion-tau interactions in modulating tau conformational dynamics with implications for understanding the tau aggregation landscape in a complex cellular environment.
Collapse
Affiliation(s)
- Kelly
M. Montgomery
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
- The
Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, California 94158, United States
| | - Emma C. Carroll
- The
Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, California 94158, United States
| | - Aye C. Thwin
- The
Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, California 94158, United States
| | - Athena Y. Quddus
- The
Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, California 94158, United States
| | - Paige Hodges
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
- The
Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, California 94158, United States
| | - Daniel R. Southworth
- The
Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, California 94158, United States
- Department
of Biochemistry and Biophysics, University
of California San Francisco, San Francisco, California 94158, United States
| | - Jason E. Gestwicki
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
- The
Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
9
|
Stecker M. A Perspective: Challenges in Dementia Research. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1368. [PMID: 36295529 PMCID: PMC9609997 DOI: 10.3390/medicina58101368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022]
Abstract
Although dementia is a common and devastating disease that has been studied intensely for more than 100 years, no effective disease modifying treatment has been found. At this impasse, new approaches are important. The purpose of this paper is to provide, in the context of current research, one clinician's perspective regarding important challenges in the field in the form of specific challenges. These challenges not only illustrate the scope of the problems inherent in finding treatments for dementia, but can also be specific targets to foster discussion, criticism and new research. One common theme is the need to transform research activities from small projects in individual laboratories/clinics to larger multinational projects, in which each clinician and researcher works as an integral part. This transformation will require collaboration between researchers, large corporations, regulatory/governmental authorities and the general population, as well as significant financial investments. However, the costs of transforming the approach are small in comparison with the cost of dementia.
Collapse
Affiliation(s)
- Mark Stecker
- Fresno Institute of Neuroscience, Fresno, CA 93720, USA
| |
Collapse
|