1
|
Stocks BB, Thibeault MP, L'Abbé D, Umer M, Liu Y, Stuible M, Durocher Y, Melanson JE. Characterization of biotinylated human ACE2 and SARS-CoV-2 Omicron BA.4/5 spike protein reference materials. Anal Bioanal Chem 2024; 416:4861-4872. [PMID: 38942955 PMCID: PMC11330416 DOI: 10.1007/s00216-024-05413-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
Accurate diagnostic and serology assays are required for the continued management of the COVID-19 pandemic yet spike protein mutations and intellectual property concerns with antigens and antibodies used in various test kits render comparability assessments difficult. As the use of common, well-characterized reagents can help address this lack of standardization, the National Research Council Canada has produced two protein reference materials (RMs) for use in SARS-CoV-2 serology assays: biotinylated human angiotensin-converting enzyme 2 RM, ACE2-1, and SARS-CoV-2 Omicron BA.4/5 spike protein RM, OMIC-1. Reference values were assigned through a combination of amino acid analysis via isotope dilution liquid chromatography tandem mass spectrometry following acid hydrolysis, and ultraviolet-visible (UV-Vis) spectrophotometry at 280 nm. Vial-to-vial homogeneity was established using UV-Vis measurements, and protein oligomeric status, monitored by size exclusion liquid chromatography (LC-SEC), was used to evaluate transportation, storage, and freeze-thaw stabilities. The molar protein concentration in ACE2-1 was 25.3 ± 1.7 µmol L-1 (k = 2, 95% CI) and consisted almost exclusively (98%) of monomeric ACE2, while OMIC-1 contained 5.4 ± 0.5 µmol L-1 (k = 2) spike protein in a mostly (82%) trimeric form. Glycoprotein molar mass determination by LC-SEC with multi-angle light scattering detection facilitated calculation of corresponding mass concentrations. To confirm protein functionality, the binding of OMIC-1 to immobilized ACE2-1 was investigated with surface plasmon resonance and the resulting dissociation constant, KD ~ 4.4 nM, was consistent with literature values.
Collapse
Affiliation(s)
- Bradley B Stocks
- Metrology, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada.
| | - Marie-Pier Thibeault
- Metrology, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Denis L'Abbé
- Human Health Therapeutics, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Muhammad Umer
- Metrology, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Yali Liu
- Human Health Therapeutics, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Matthew Stuible
- Human Health Therapeutics, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Yves Durocher
- Human Health Therapeutics, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Jeremy E Melanson
- Metrology, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| |
Collapse
|
2
|
Upadhyay V, Panja S, Lucas A, Patrick C, Mallela KMG. Biophysical evolution of the receptor-binding domains of SARS-CoVs. Biophys J 2023; 122:4489-4502. [PMID: 37897042 PMCID: PMC10719049 DOI: 10.1016/j.bpj.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/20/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023] Open
Abstract
With hundreds of coronaviruses (CoVs) identified in bats that can infect humans, it is essential to understand how CoVs that affected the human population have evolved. Seven known CoVs have infected humans, of which three CoVs caused severe disease with high mortalities: severe acute respiratory syndrome (SARS)-CoV emerged in 2002, Middle East respiratory syndrome-CoV in 2012, and SARS-CoV-2 in 2019. SARS-CoV and SARS-CoV-2 belong to the same family, follow the same receptor pathway, and use their receptor-binding domain (RBD) of spike protein to bind to the angiotensin-converting enzyme 2 (ACE2) receptor on the human epithelial cell surface. The sequence of the two RBDs is divergent, especially in the receptor-binding motif that directly interacts with ACE2. We probed the biophysical differences between the two RBDs in terms of their structure, stability, aggregation, and function. Since RBD is being explored as an antigen in protein subunit vaccines against CoVs, determining these biophysical properties will also aid in developing stable protein subunit vaccines. Our results show that, despite RBDs having a similar three-dimensional structure, they differ in their thermodynamic stability. RBD of SARS-CoV-2 is significantly less stable than that of SARS-CoV. Correspondingly, SARS-CoV-2 RBD shows a higher aggregation propensity. Regarding binding to ACE2, less stable SARS-CoV-2 RBD binds with a higher affinity than more stable SARS-CoV RBD. In addition, SARS-CoV-2 RBD is more homogenous in terms of its binding stoichiometry toward ACE2 compared to SARS-CoV RBD. These results indicate that SARS-CoV-2 RBD differs from SARS-CoV RBD in terms of its stability, aggregation, and function, possibly originating from the diverse receptor-binding motifs. Higher aggregation propensity and decreased stability of SARS-CoV-2 RBD warrant further optimization of protein subunit vaccines that use RBD as an antigen by inserting stabilizing mutations or formulation screening.
Collapse
Affiliation(s)
- Vaibhav Upadhyay
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sudipta Panja
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Alexandra Lucas
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Casey Patrick
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Krishna M G Mallela
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
3
|
Zaman N, Parvaiz N, Gul F, Yousaf R, Gul K, Azam SS. Dynamics of water-mediated interaction effects on the stability and transmission of Omicron. Sci Rep 2023; 13:20894. [PMID: 38017052 PMCID: PMC10684572 DOI: 10.1038/s41598-023-48186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 11/23/2023] [Indexed: 11/30/2023] Open
Abstract
SARS-Cov-2 Omicron variant and its highly transmissible sublineages amidst news of emerging hybrid variants strengthen the evidence of its ability to rapidly spread and evolve giving rise to unprecedented future waves. Owing to the presence of isolated RBD, monomeric and trimeric Cryo-EM structures of spike protein in complex with ACE2 receptor, comparative analysis of Alpha, Beta, Gamma, Delta, and Omicron assist in a rational assessment of their probability to evolve as new or hybrid variants in future. This study proposes the role of hydration forces in mediating Omicron function and dynamics based on a stronger interplay between protein and solvent with each Covid wave. Mutations of multiple hydrophobic residues into hydrophilic residues underwent concerted interactions with water leading to variations in charge distribution in Delta and Omicron during molecular dynamics simulations. Moreover, comparative analysis of interacting moieties characterized a large number of mutations lying at RBD into constrained, homologous and low-affinity groups referred to as mutational drivers inferring that the probability of future mutations relies on their function. Furthermore, the computational findings reveal a significant difference in angular distances among variants of concern due 3 amino acid insertion (EPE) in Omicron variant that not only facilitates tight domain organization but also seems requisite for characterization of mutational processes. The outcome of this work signifies the possible relation between hydration forces, their impact on conformation and binding affinities, and viral fitness that will significantly aid in understanding dynamics of drug targets for Covid-19 countermeasures. The emerging scenario is that hydration forces and hydrophobic interactions are crucial variables to probe in mutational analysis to explore conformational landscape of macromolecules and reveal the molecular origins of protein behaviors.
Collapse
Affiliation(s)
- Naila Zaman
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Nousheen Parvaiz
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Fouzia Gul
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Rimsha Yousaf
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Kainat Gul
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Syed Sikander Azam
- Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
4
|
Kimura I, Yamasoba D, Nasser H, Ito H, Zahradnik J, Wu J, Fujita S, Uriu K, Sasaki J, Tamura T, Suzuki R, Deguchi S, Plianchaisuk A, Yoshimatsu K, Kazuma Y, Mitoma S, Schreiber G, Asakura H, Nagashima M, Sadamasu K, Yoshimura K, Takaori-Kondo A, The Genotype to Phenotype Japan (G2P-Japan) Consortium
MisawaNaoko1KosugiYusuke1PanLin1SuganamiMai1ChibaMika1YoshimuraRyo1YasudaKyoko1IidaKeiko1OhsumiNaomi1StrangeAdam P.1KakuYu1PlianchaisukArnon1GuoZiyi1HinayAlfredo Jr. Amolong1Mendoza TolentinoJarel Elgin1ChenLuo1ShimizuRyo2Monira BegumM. S. T.2TakahashiOtowa2IchiharaKimiko2JonathanMichael2MugitaYuka2SuzukiSaori3SuzukiTateki4KimuraKanako4NakajimaYukari4YajimaHisano4HashimotoRina4WatanabeYukio4SakamotoAyaka4YasuharaNaoko4NagataKayoko4NomuraRyosuke4HorisawaYoshihito4TashiroYusuke4KawaiYugo4ShibataniYuki5NishiuchiTomoko5YoshidaIsao6KawabataRyoko7MatsunoKeita8NaoNaganori9SawaHirofumi9TanakaShinya10TsudaMasumi10WangLei10OdaYoshikata10FerdousZannatul10ShishidoKenji10MotozonoChihiro11ToyodaMako11UenoTakamasa11TabataKaori12Institute of Medical Science, University of Tokyo, Tokyo, JapanJoint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, JapanHokkaido University, Sapporo, JapanKyoto University, Kyoto, JapanUniversity of Miyazaki, Miyazaki, JapanTokyo Metropolitan Institute of Public Health, Tokyo, JapanHiroshima University, Hiroshima, JapanOne Health Research Center, Hokkaido University, Sapporo, JapanInternational Institute for Zoonosis Control, Hokkaido University, Sapporo, JapanHokkaido University, Sapporo, JapanJoint Research Center for Human Retrovirus infection, Kumamoto, JapanKyushu University, Fukuoka, Japan, Ito J, Shirakawa K, Takayama K, Irie T, Hashiguchi T, Nakagawa S, Fukuhara T, Saito A, Ikeda T, Sato K. Multiple mutations of SARS-CoV-2 Omicron BA.2 variant orchestrate its virological characteristics. J Virol 2023; 97:e0101123. [PMID: 37796123 PMCID: PMC10781145 DOI: 10.1128/jvi.01011-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/16/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE Most studies investigating the characteristics of emerging SARS-CoV-2 variants have been focusing on mutations in the spike proteins that affect viral infectivity, fusogenicity, and pathogenicity. However, few studies have addressed how naturally occurring mutations in the non-spike regions of the SARS-CoV-2 genome impact virological properties. In this study, we proved that multiple SARS-CoV-2 Omicron BA.2 mutations, one in the spike protein and another downstream of the spike gene, orchestrally characterize this variant, shedding light on the importance of Omicron BA.2 mutations out of the spike protein.
Collapse
Affiliation(s)
- Izumi Kimura
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Daichi Yamasoba
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Faculty of Medicine, Kobe University, Kobe, Japan
| | - Hesham Nasser
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Hayato Ito
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Jiri Zahradnik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
- First Medical Faculty at Biocev, Charles University, Vestec-Prague, Czechia
| | - Jiaqi Wu
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Shigeru Fujita
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keiya Uriu
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jiei Sasaki
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Tomokazu Tamura
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Rigel Suzuki
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Sayaka Deguchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Arnon Plianchaisuk
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Yasuhiro Kazuma
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shuya Mitoma
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Mami Nagashima
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Kenji Sadamasu
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | | | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - The Genotype to Phenotype Japan (G2P-Japan) Consortium
MisawaNaoko1KosugiYusuke1PanLin1SuganamiMai1ChibaMika1YoshimuraRyo1YasudaKyoko1IidaKeiko1OhsumiNaomi1StrangeAdam P.1KakuYu1PlianchaisukArnon1GuoZiyi1HinayAlfredo Jr. Amolong1Mendoza TolentinoJarel Elgin1ChenLuo1ShimizuRyo2Monira BegumM. S. T.2TakahashiOtowa2IchiharaKimiko2JonathanMichael2MugitaYuka2SuzukiSaori3SuzukiTateki4KimuraKanako4NakajimaYukari4YajimaHisano4HashimotoRina4WatanabeYukio4SakamotoAyaka4YasuharaNaoko4NagataKayoko4NomuraRyosuke4HorisawaYoshihito4TashiroYusuke4KawaiYugo4ShibataniYuki5NishiuchiTomoko5YoshidaIsao6KawabataRyoko7MatsunoKeita8NaoNaganori9SawaHirofumi9TanakaShinya10TsudaMasumi10WangLei10OdaYoshikata10FerdousZannatul10ShishidoKenji10MotozonoChihiro11ToyodaMako11UenoTakamasa11TabataKaori12Institute of Medical Science, University of Tokyo, Tokyo, JapanJoint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, JapanHokkaido University, Sapporo, JapanKyoto University, Kyoto, JapanUniversity of Miyazaki, Miyazaki, JapanTokyo Metropolitan Institute of Public Health, Tokyo, JapanHiroshima University, Hiroshima, JapanOne Health Research Center, Hokkaido University, Sapporo, JapanInternational Institute for Zoonosis Control, Hokkaido University, Sapporo, JapanHokkaido University, Sapporo, JapanJoint Research Center for Human Retrovirus infection, Kumamoto, JapanKyushu University, Fukuoka, Japan
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Faculty of Medicine, Kobe University, Kobe, Japan
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
- First Medical Faculty at Biocev, Charles University, Vestec-Prague, Czechia
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
- Bioinformation and DDBJ Center, National Institute of Genetics, Mishima, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan
| | - Jumpei Ito
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kotaro Shirakawa
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - Takashi Irie
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
- Bioinformation and DDBJ Center, National Institute of Genetics, Mishima, Japan
| | - Takasuke Fukuhara
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Akatsuki Saito
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki, Japan
- Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | - Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan
| | - Kei Sato
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
5
|
Padhi AK, Kalita P, Maurya S, Poluri KM, Tripathi T. From De Novo Design to Redesign: Harnessing Computational Protein Design for Understanding SARS-CoV-2 Molecular Mechanisms and Developing Therapeutics. J Phys Chem B 2023; 127:8717-8735. [PMID: 37815479 DOI: 10.1021/acs.jpcb.3c04542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The continuous emergence of novel SARS-CoV-2 variants and subvariants serves as compelling evidence that COVID-19 is an ongoing concern. The swift, well-coordinated response to the pandemic highlights how technological advancements can accelerate the detection, monitoring, and treatment of the disease. Robust surveillance systems have been established to understand the clinical characteristics of new variants, although the unpredictable nature of these variants presents significant challenges. Some variants have shown resistance to current treatments, but innovative technologies like computational protein design (CPD) offer promising solutions and versatile therapeutics against SARS-CoV-2. Advances in computing power, coupled with open-source platforms like AlphaFold and RFdiffusion (employing deep neural network and diffusion generative models), among many others, have accelerated the design of protein therapeutics with precise structures and intended functions. CPD has played a pivotal role in developing peptide inhibitors, mini proteins, protein mimics, decoy receptors, nanobodies, monoclonal antibodies, identifying drug-resistance mutations, and even redesigning native SARS-CoV-2 proteins. Pending regulatory approval, these designed therapies hold the potential for a lasting impact on human health and sustainability. As SARS-CoV-2 continues to evolve, use of such technologies enables the ongoing development of alternative strategies, thus equipping us for the "New Normal".
Collapse
Affiliation(s)
- Aditya K Padhi
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Parismita Kalita
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Shweata Maurya
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
- Department of Zoology, School of Life Sciences, North-Eastern Hill University, Shillong 793022, India
| |
Collapse
|
6
|
Li K, Melnychuk S, Sandstrom P, Ji H. Tracking the evolution of the SARS-CoV-2 Delta variant of concern: analysis of genetic diversity and selection across the whole viral genome. Front Microbiol 2023; 14:1222301. [PMID: 37614597 PMCID: PMC10443222 DOI: 10.3389/fmicb.2023.1222301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/17/2023] [Indexed: 08/25/2023] Open
Abstract
Background Since 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has diversified extensively, producing five highly virulent lineages designated as variants of concern (VOCs). The Delta VOC emerged in India with increased transmission, immune evasion, and mortality, causing a massive global case surge in 2021. This study aims to understand how the Delta VOC evolved by characterizing mutation patterns in the viral population before and after its emergence. Furthermore, we aim to identify the influence of positive and negative selection on VOC evolution and understand the prevalence of different mutation types in the viral genome. Methods Three groups of whole viral genomes were retrieved from GISAID, sourced from India, with collection periods as follows: Group A-during the initial appearance of SARS-CoV-2; Group B-just before the emergence of the Delta variant; Group C-after the establishment of the Delta variant in India. Mutations in >1% of each group were identified with BioEdit to reveal differences in mutation quantity and type. Sites under positive or negative selection were identified with FUBAR. The results were compared to determine how mutations correspond with selective pressures and how viral mutation profiles changed to reflect genetic diversity before and after VOC emergence. Results The number of mutations increased progressively in Groups A-C, with Group C reporting a 2.2- and 1.9-fold increase from Groups A and B, respectively. Among all the observed mutations, Group C had the highest percentage of deletions (22.7%; vs. 4.2% and 2.6% in Groups A and B, respectively), and most mutations altered the final amino acid code, such as non-synonymous substitutions and deletions. Conversely, Group B had the most synonymous substitutions that are effectively silent. The number of sites experiencing positive selection increased in Groups A-C, but Group B had 2.4- and 2.6 times more sites under negative selection compared to Groups A and C, respectively. Conclusion Our findings demonstrated that viral genetic diversity continuously increased during and after the emergence of the Delta VOC. Despite this, Group B reports heightened negative selection, which potentially preserves important gene regions during evolution. Group C contains an unprecedented quantity of mutations and positively selected sites, providing strong evidence of active viral adaptation in the population.
Collapse
Affiliation(s)
- Katherine Li
- National Microbiology Laboratory at JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Stephanie Melnychuk
- National Microbiology Laboratory at JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Paul Sandstrom
- National Microbiology Laboratory at JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Hezhao Ji
- National Microbiology Laboratory at JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
7
|
González-Vázquez LD, Arenas M. Molecular Evolution of SARS-CoV-2 during the COVID-19 Pandemic. Genes (Basel) 2023; 14:407. [PMID: 36833334 PMCID: PMC9956206 DOI: 10.3390/genes14020407] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) produced diverse molecular variants during its recent expansion in humans that caused different transmissibility and severity of the associated disease as well as resistance to monoclonal antibodies and polyclonal sera, among other treatments. In order to understand the causes and consequences of the observed SARS-CoV-2 molecular diversity, a variety of recent studies investigated the molecular evolution of this virus during its expansion in humans. In general, this virus evolves with a moderate rate of evolution, in the order of 10-3-10-4 substitutions per site and per year, which presents continuous fluctuations over time. Despite its origin being frequently associated with recombination events between related coronaviruses, little evidence of recombination was detected, and it was mostly located in the spike coding region. Molecular adaptation is heterogeneous among SARS-CoV-2 genes. Although most of the genes evolved under purifying selection, several genes showed genetic signatures of diversifying selection, including a number of positively selected sites that affect proteins relevant for the virus replication. Here, we review current knowledge about the molecular evolution of SARS-CoV-2 in humans, including the emergence and establishment of variants of concern. We also clarify relationships between the nomenclatures of SARS-CoV-2 lineages. We conclude that the molecular evolution of this virus should be monitored over time for predicting relevant phenotypic consequences and designing future efficient treatments.
Collapse
Affiliation(s)
- Luis Daniel González-Vázquez
- Biomedical Research Center (CINBIO), University of Vigo, 36310 Vigo, Spain
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain
| | - Miguel Arenas
- Biomedical Research Center (CINBIO), University of Vigo, 36310 Vigo, Spain
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310 Vigo, Spain
| |
Collapse
|
8
|
Focosi D, Quiroga R, McConnell S, Johnson MC, Casadevall A. Convergent Evolution in SARS-CoV-2 Spike Creates a Variant Soup from Which New COVID-19 Waves Emerge. Int J Mol Sci 2023; 24:2264. [PMID: 36768588 PMCID: PMC9917121 DOI: 10.3390/ijms24032264] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 01/26/2023] Open
Abstract
The first 2 years of the COVID-19 pandemic were mainly characterized by recurrent mutations of SARS-CoV-2 Spike protein at residues K417, L452, E484, N501 and P681 emerging independently across different variants of concern (Alpha, Beta, Gamma, and Delta). Such homoplasy is a marker of convergent evolution. Since Spring 2022 and the third year of the pandemic, with the advent of Omicron and its sublineages, convergent evolution has led to the observation of different lineages acquiring an additional group of mutations at different amino acid residues, namely R346, K444, N450, N460, F486, F490, Q493, and S494. Mutations at these residues have become increasingly prevalent during Summer and Autumn 2022, with combinations showing increased fitness. The most likely reason for this convergence is the selective pressure exerted by previous infection- or vaccine-elicited immunity. Such accelerated evolution has caused failure of all anti-Spike monoclonal antibodies, including bebtelovimab and cilgavimab. While we are learning how fast coronaviruses can mutate and recombine, we should reconsider opportunities for economically sustainable escape-proof combination therapies, and refocus antibody-mediated therapeutic efforts on polyclonal preparations that are less likely to allow for viral immune escape.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy
| | - Rodrigo Quiroga
- Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Cordova 5000, Argentina
| | - Scott McConnell
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Marc C. Johnson
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65201, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
9
|
Lippi G, Henry BM, Plebani M. A Simple Epidemiologic Model for Predicting Impaired Neutralization of New SARS-CoV-2 Variants. Vaccines (Basel) 2023; 11:128. [PMID: 36679973 PMCID: PMC9863154 DOI: 10.3390/vaccines11010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
This study is aimed at developing a simple epidemiologic model that could help predict the impaired neutralization of new SARS-CoV-2 variants. We explored the potential association between neutralization of recent and more prevalent SARS-CoV-2 sublineages belonging to the Omicron family (i.e., BA.4/5, BA.4.6, BA.2.75.2, BQ.1.1 and XBB.1) expressed as FFRNT50 (>50% suppression of fluorescent foci fluorescent focus reduction neutralization test) in recipients of four doses of monovalent mRNA-based coronavirus disease 2019 (COVID-19) vaccines, with epidemiologic variables like emergence date and number of spike protein mutations of these sublineages, cumulative worldwide COVID-19 cases and cumulative number of COVID-19 vaccine doses administered worldwide at the time of SARS-CoV-2 Omicron sublineage emergence. In the univariate analysis, the FFRNT50 value for the different SARS-CoV-2 Omicron sublineages was significantly associated with all such variables except with the number of spike protein mutations. Such associations were confirmed in the multivariate analysis, which enabled the construction of the equation: “−0.3917 × [Emergence (date)] + 1.403 × [COVID-19 cases (million)] − 121.8 × [COVID-19 Vaccine doses (billion)] + 18,250”, predicting the FFRNT50 value of the five SARS-CoV-2 Omicron sublineages with 0.996 accuracy (p = 0.013). We have shown in this work that a simple mathematical approach, encompassing a limited number of widely available epidemiologic variables, such as emergence date of new variants and number of COVID-19 cases and vaccinations, could help identifying the emergence and surge of future lineages with major propensity to impair humoral immunity.
Collapse
Affiliation(s)
- Giuseppe Lippi
- Section of Clinical Biochemistry, School of Medicine, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy
| | - Brandon M. Henry
- Clinical Laboratory, Division of Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mario Plebani
- Department of Medicine, University of Padova, 35128 Padova, Italy
| |
Collapse
|
10
|
Leung CC, Lee ACK. Are we coming out from the COVID-19 pandemic? Respirology 2022; 27:1022-1024. [PMID: 36319590 PMCID: PMC9877730 DOI: 10.1111/resp.14403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Chi Chiu Leung
- Hong Kong Tuberculosis, Chest and Heart Diseases AssociationHong KongChina
| | - Andrew C. K. Lee
- School of Health and Related ResearchThe University of SheffieldLondonUK
| |
Collapse
|
11
|
Moulana A, Dupic T, Phillips AM, Chang J, Nieves S, Roffler AA, Greaney AJ, Starr TN, Bloom JD, Desai MM. Compensatory epistasis maintains ACE2 affinity in SARS-CoV-2 Omicron BA.1. Nat Commun 2022; 13:7011. [PMID: 36384919 PMCID: PMC9668218 DOI: 10.1038/s41467-022-34506-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022] Open
Abstract
The Omicron BA.1 variant emerged in late 2021 and quickly spread across the world. Compared to the earlier SARS-CoV-2 variants, BA.1 has many mutations, some of which are known to enable antibody escape. Many of these antibody-escape mutations individually decrease the spike receptor-binding domain (RBD) affinity for ACE2, but BA.1 still binds ACE2 with high affinity. The fitness and evolution of the BA.1 lineage is therefore driven by the combined effects of numerous mutations. Here, we systematically map the epistatic interactions between the 15 mutations in the RBD of BA.1 relative to the Wuhan Hu-1 strain. Specifically, we measure the ACE2 affinity of all possible combinations of these 15 mutations (215 = 32,768 genotypes), spanning all possible evolutionary intermediates from the ancestral Wuhan Hu-1 strain to BA.1. We find that immune escape mutations in BA.1 individually reduce ACE2 affinity but are compensated by epistatic interactions with other affinity-enhancing mutations, including Q498R and N501Y. Thus, the ability of BA.1 to evade immunity while maintaining ACE2 affinity is contingent on acquiring multiple interacting mutations. Our results implicate compensatory epistasis as a key factor driving substantial evolutionary change for SARS-CoV-2 and are consistent with Omicron BA.1 arising from a chronic infection.
Collapse
Affiliation(s)
- Alief Moulana
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Thomas Dupic
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Angela M Phillips
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
| | - Jeffrey Chang
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Serafina Nieves
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Anne A Roffler
- Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, 02115, USA
| | - Allison J Greaney
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, 98195, USA
| | - Tyler N Starr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
- Howard Hughes Medical Institute, Seattle, WA, 98109, USA
| | - Michael M Desai
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA.
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard University, Cambridge, MA, 02138, USA.
- Quantitative Biology Initiative, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|