1
|
Wu Y, Huang J, Liu C, Wang F. Autophagy Proteins and clinical data reveal the prognosis of polycystic ovary syndrome. BMC Pregnancy Childbirth 2024; 24:152. [PMID: 38383330 PMCID: PMC10880238 DOI: 10.1186/s12884-024-06273-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 01/14/2024] [Indexed: 02/23/2024] Open
Abstract
OBJECTIVE We aimed to investigate the significance of autophagy proteins and their association with clinical data on pregnancy loss in polycystic ovary syndrome (PCOS), while also constructing predictive models. METHODS This study was a secondary analysis. we collected endometrial samples from 33 patients with polycystic ovary syndrome (PCOS) and 7 patients with successful pregnancy control women at the Reproductive Center of the Second Hospital of Lanzhou University between September 2019 and September 2020. Liquid chromatography tandem mass spectrometry was employed to identify expressed proteins in the endometrium of 40 patients. R was use to identify differential expression proteins(DEPs). Subsequently, Metascape was utilized for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Multivariate Cox analysis was performed to analyze autophagy proteins associated with reproductive outcomes, while logistic regression was used for analyzing clinical data. Linear correlation analysis was conducted to examine the relationship between autophagy proteins and clinical data. We established prognostic models and constructed the nomograms based on proteome data and clinical data respectively. The performance of the prognostic model was evaluated by the receiver operating characteristic curve (ROC) and decision curve analysis (DCA). RESULTS A total of 5331 proteins were identified, with 450 proteins exhibiting significant differential expression between the PCOS and control groups. A prognostic model for autophagy protein was developed based on three autophagy proteins (ARSA, ITGB1, and GABARAPL2). Additionally, another prognostic model for clinical data was established using insulin, TSH, TPOAB, and VD3. Our findings revealed a significant positive correlation between insulin and ARSA (R = 0.49), as well as ITGB1 (R = 0.3). Conversely, TSH exhibited a negative correlation with both ARSA (-0.33) and ITGB1 (R = -0.26). CONCLUSION Our research could effectively predict the occurrence of pregnancy loss in PCOS patients and provide a basis for subsequent research.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Gansu University of Chinese Medicine, Lanzhou, 730030, China
| | - Jinge Huang
- Gansu University of Chinese Medicine, Lanzhou, 730030, China
| | - Cai Liu
- Department of Reproductive Medicine, Lanzhou University Second Hospital Lanzhou, Lanzhou, 730030, China
| | - Fang Wang
- Department of Reproductive Medicine, Lanzhou University Second Hospital Lanzhou, Lanzhou, 730030, China.
| |
Collapse
|
2
|
Rogov VV, Nezis IP, Tsapras P, Zhang H, Dagdas Y, Noda NN, Nakatogawa H, Wirth M, Mouilleron S, McEwan DG, Behrends C, Deretic V, Elazar Z, Tooze SA, Dikic I, Lamark T, Johansen T. Atg8 family proteins, LIR/AIM motifs and other interaction modes. AUTOPHAGY REPORTS 2023; 2:27694127.2023.2188523. [PMID: 38214012 PMCID: PMC7615515 DOI: 10.1080/27694127.2023.2188523] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
The Atg8 family of ubiquitin-like proteins play pivotal roles in autophagy and other processes involving vesicle fusion and transport where the lysosome/vacuole is the end station. Nuclear roles of Atg8 proteins are also emerging. Here, we review the structural and functional features of Atg8 family proteins and their protein-protein interaction modes in model organisms such as yeast, Arabidopsis, C. elegans and Drosophila to humans. Although varying in number of homologs, from one in yeast to seven in humans, and more than ten in some plants, there is a strong evolutionary conservation of structural features and interaction modes. The most prominent interaction mode is between the LC3 interacting region (LIR), also called Atg8 interacting motif (AIM), binding to the LIR docking site (LDS) in Atg8 homologs. There are variants of these motifs like "half-LIRs" and helical LIRs. We discuss details of the binding modes and how selectivity is achieved as well as the role of multivalent LIR-LDS interactions in selective autophagy. A number of LIR-LDS interactions are known to be regulated by phosphorylation. New methods to predict LIR motifs in proteins have emerged that will aid in discovery and analyses. There are also other interaction surfaces than the LDS becoming known where we presently lack detailed structural information, like the N-terminal arm region and the UIM-docking site (UDS). More interaction modes are likely to be discovered in future studies.
Collapse
Affiliation(s)
- Vladimir V. Rogov
- Institute for Pharmaceutical Chemistry, Department of Biochemistry, Chemistry and Pharmacy, Goethe University, 60438 Frankfurt, am Main, and Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Ioannis P. Nezis
- School of Life Sciences, University of Warwick, CV4 7AL Coventry, UK
| | | | - Hong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China and College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yasin Dagdas
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Nobuo N. Noda
- Institute for Genetic Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo 060-0815, Japan
| | - Hitoshi Nakatogawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Martina Wirth
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, London, UK
| | - Stephane Mouilleron
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | | | - Christian Behrends
- Munich Cluster of Systems Neurology, Ludwig-Maximilians-Universität München, München, Germany
| | - Vojo Deretic
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM and Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Zvulun Elazar
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Sharon A. Tooze
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, London, UK
| | - Ivan Dikic
- Institute of Biochemistry II, Medical Faculty, Goethe-University, Frankfurt am Main, and Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany
| | - Trond Lamark
- Autophagy Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Terje Johansen
- Autophagy Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
3
|
Chan JCY, Gorski SM. Unlocking the gate to GABARAPL2. Biol Futur 2022; 73:157-169. [PMID: 35486231 DOI: 10.1007/s42977-022-00119-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
GABARAPL2 was initially characterized for its involvement in protein transport and membrane fusion events, but has since gained notoriety for its role in autophagy. GABARAPL2 is frequently studied alongside its GABARAP subfamily members, GABARAP and GABARAPL1. Although functional redundancy exists among the subfamily members, a complex network of molecular interactions, physiological processes and pathologies can be primarily related to GABARAPL2. GABARAPL2 has a multifaceted role, ranging from cellular differentiation to intracellular degradation. Much of what we know about GABARAPL2 is gained through identifying its interacting partners-a list that is constantly growing. In this article, we review both the autophagy-dependent and autophagy-independent roles of GABARAPL2, and emphasize their implications for both health and disease.
Collapse
Affiliation(s)
- Jennifer C Y Chan
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.,Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | - Sharon M Gorski
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada. .,Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, V5Z 1L3, Canada. .,Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
4
|
Brennan A, Layfield R, Long J, Williams HEL, Oldham NJ, Scott D, Searle MS. An ALS-associated variant of the autophagy receptor SQSTM1/p62 reprograms binding selectivity toward the autophagy-related hATG8 proteins. J Biol Chem 2022; 298:101514. [PMID: 34929165 PMCID: PMC8762078 DOI: 10.1016/j.jbc.2021.101514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/29/2022] Open
Abstract
Recognition of human autophagy-related 8 (hATG8) proteins by autophagy receptors represents a critical step within this cellular quality control system. Autophagy impairment is known to be a pathogenic mechanism in the motor neuron disorder amyotrophic lateral sclerosis (ALS). Overlapping but specific roles of hATG8 proteins belonging to the LC3 and GABARAP subfamilies are incompletely understood, and binding selectivity is typically overlooked. We previously showed that an ALS-associated variant of the SQSTM1/p62 (p62) autophagy receptor bearing an L341V mutation within its ATG8-interacting motif (AIM) impairs recognition of LC3B in vitro, yielding an autophagy-deficient phenotype. Improvements in understanding of hATG8 recognition by AIMs now distinguish LC3-interaction and GABARAP-interaction motifs and predict the effects of L341V substitution may extend beyond loss of function to biasing AIM binding preference. Through biophysical analyses, we confirm impaired binding of the L341V-AIM mutant to LC3A, LC3B, GABARAP, and GABARAPL1. In contrast, p62 AIM interactions with LC3C and GABARAPL2 are unaffected by this mutation. Isothermal titration calorimetry and NMR investigations provided insights into the entropy-driven GABARAPL2/p62 interaction and how the L341V mutation may be tolerated. Competition binding demonstrated reduced association of the L341V-AIM with one hATG8 manifests as a relative increase in association with alternate hATG8s, indicating effective reprogramming of hATG8 selectivity. These data highlight how a single AIM peptide might compete for binding with different hATG8s and suggest that the L341V-AIM mutation may be neomorphic, representative of a disease mechanism that likely extends into other human disorders.
Collapse
Affiliation(s)
- Andrew Brennan
- Centre for Biomolecular Sciences, School of Chemistry, University Park, University of Nottingham, Nottingham, UK
| | - Robert Layfield
- School of Life Sciences, University of Nottingham Medical School, Nottingham, UK.
| | - Jed Long
- Centre for Biomolecular Sciences, School of Chemistry, University Park, University of Nottingham, Nottingham, UK
| | - Huw E L Williams
- Centre for Biomolecular Sciences, School of Chemistry, University Park, University of Nottingham, Nottingham, UK
| | - Neil J Oldham
- School of Chemistry, University Park, University of Nottingham, Nottingham, UK
| | - Daniel Scott
- School of Life Sciences, University of Nottingham Medical School, Nottingham, UK.
| | - Mark S Searle
- Centre for Biomolecular Sciences, School of Chemistry, University Park, University of Nottingham, Nottingham, UK.
| |
Collapse
|
5
|
Dongre AV, Das S, Bellur A, Kumar S, Chandrashekarmath A, Karmakar T, Balaram P, Balasubramanian S, Balaram H. Structural basis for the hyperthermostability of an archaeal enzyme induced by succinimide formation. Biophys J 2021; 120:3732-3746. [PMID: 34302792 DOI: 10.1016/j.bpj.2021.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/18/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022] Open
Abstract
Stability of proteins from hyperthermophiles (organisms existing under boiling water conditions) enabled by a reduction of conformational flexibility is realized through various mechanisms. A succinimide (SNN) arising from the post-translational cyclization of the side chains of aspartyl/asparaginyl residues with the backbone amide -NH of the succeeding residue would restrain the torsion angle Ψ and can serve as a new route for hyperthermostability. However, such a succinimide is typically prone to hydrolysis, transforming to either an aspartyl or β-isoaspartyl residue. Here, we present the crystal structure of Methanocaldococcus jannaschii glutamine amidotransferase and, using enhanced sampling molecular dynamics simulations, address the mechanism of its increased thermostability, up to 100°C, imparted by an unexpectedly stable succinimidyl residue at position 109. The stability of SNN109 to hydrolysis is seen to arise from its electrostatic shielding by the side-chain carboxylate group of its succeeding residue Asp110, as well as through n → π∗ interactions between SNN109 and its preceding residue Glu108, both of which prevent water access to SNN. The stable succinimidyl residue induces the formation of an α-turn structure involving 13-atom hydrogen bonding, which locks the local conformation, reducing protein flexibility. The destabilization of the protein upon replacement of SNN with a Φ-restricted prolyl residue highlights the specificity of the succinimidyl residue in imparting hyperthermostability to the enzyme. The conservation of the succinimide-forming tripeptide sequence (E(N/D)(E/D)) in several archaeal GATases strongly suggests an adaptation of this otherwise detrimental post-translational modification as a harbinger of thermostability.
Collapse
Affiliation(s)
- Aparna Vilas Dongre
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Sudip Das
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Asutosh Bellur
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Sanjeev Kumar
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India; National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Anusha Chandrashekarmath
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Tarak Karmakar
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India; Department of Chemistry and Applied Biosciences, ETH Zurich, Lugano, Ticino, Switzerland; Facoltà di Informatica, Istituto di Scienze Computationali, Università della Svizzera Italiana, Lugano, Ticino, Switzerland
| | - Padmanabhan Balaram
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India; Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India.
| | - Hemalatha Balaram
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India.
| |
Collapse
|
6
|
Scicluna K, Dewson G, Czabotar PE, Birkinshaw RW. A new crystal form of GABARAPL2. Acta Crystallogr F Struct Biol Commun 2021; 77:140-147. [PMID: 33949974 PMCID: PMC8098127 DOI: 10.1107/s2053230x21004489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/27/2021] [Indexed: 01/07/2023] Open
Abstract
The Atg8 protein family comprises the GABA type A receptor-associated proteins (GABARAPs) and microtubule-associated protein 1 light chains 3 (MAP1LC3s) that are essential mediators of autophagy. The LC3-interacting region (LIR) motifs of autophagy receptors and adaptors bind Atg8 proteins to promote autophagosome formation, cargo recruitment, and autophagosome closure and fusion to lysosomes. A crystal structure of human GABARAPL2 has been published [PDB entry 4co7; Ma et al. (2015), Biochemistry, 54, 5469-5479]. This was crystallized in space group P21 with a monoclinic angle of 90° and shows a pseudomerohedral twinning pathology. This article reports a new, untwinned GABARAPL2 crystal form, also in space group P21, but with a 98° monoclinic angle. No major conformational differences were observed between the structures. In the structure described here, the C-terminal Phe117 binds into the LIR docking site (LDS) of a neighbouring molecule within the asymmetric unit, as observed in the previously reported structure. This crystal contact blocks the LDS for co-crystallization with ligands. Phe117 of GABARAPL2 is normally removed during biological processing by Atg4 family proteases. These data indicate that to establish interactions with the LIR, Phe117 should be removed to eliminate the crystal contact and liberate the LDS for co-crystallization with LIR peptides.
Collapse
Affiliation(s)
- Kristen Scicluna
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Grant Dewson
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Peter E. Czabotar
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Richard W. Birkinshaw
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3052, Australia
| |
Collapse
|
7
|
Wesch N, Kirkin V, Rogov VV. Atg8-Family Proteins-Structural Features and Molecular Interactions in Autophagy and Beyond. Cells 2020; 9:E2008. [PMID: 32882854 PMCID: PMC7564214 DOI: 10.3390/cells9092008] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/25/2022] Open
Abstract
Autophagy is a common name for a number of catabolic processes, which keep the cellular homeostasis by removing damaged and dysfunctional intracellular components. Impairment or misbalance of autophagy can lead to various diseases, such as neurodegeneration, infection diseases, and cancer. A central axis of autophagy is formed along the interactions of autophagy modifiers (Atg8-family proteins) with a variety of their cellular counter partners. Besides autophagy, Atg8-proteins participate in many other pathways, among which membrane trafficking and neuronal signaling are the most known. Despite the fact that autophagy modifiers are well-studied, as the small globular proteins show similarity to ubiquitin on a structural level, the mechanism of their interactions are still not completely understood. A thorough analysis and classification of all known mechanisms of Atg8-protein interactions could shed light on their functioning and connect the pathways involving Atg8-proteins. In this review, we present our views of the key features of the Atg8-proteins and describe the basic principles of their recognition and binding by interaction partners. We discuss affinity and selectivity of their interactions as well as provide perspectives for discovery of new Atg8-interacting proteins and therapeutic approaches to tackle major human diseases.
Collapse
Affiliation(s)
- Nicole Wesch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany;
| | - Vladimir Kirkin
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research London, Sutton SM2 5NG, UK;
| | - Vladimir V. Rogov
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany;
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany
| |
Collapse
|
8
|
Sora V, Kumar M, Maiani E, Lambrughi M, Tiberti M, Papaleo E. Structure and Dynamics in the ATG8 Family From Experimental to Computational Techniques. Front Cell Dev Biol 2020; 8:420. [PMID: 32587856 PMCID: PMC7297954 DOI: 10.3389/fcell.2020.00420] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/06/2020] [Indexed: 12/31/2022] Open
Abstract
Autophagy is a conserved and essential intracellular mechanism for the removal of damaged components. Since autophagy deregulation is linked to different kinds of pathologies, it is fundamental to gain knowledge on the fine molecular and structural details related to the core proteins of the autophagy machinery. Among these, the family of human ATG8 proteins plays a central role in recruiting other proteins to the different membrane structures involved in the autophagic pathway. Several experimental structures are available for the members of the ATG8 family alone or in complex with their different biological partners, including disordered regions of proteins containing a short linear motif called LC3 interacting motif. Recently, the first structural details of the interaction of ATG8 proteins with biological membranes came into light. The availability of structural data for human ATG8 proteins has been paving the way for studies on their structure-function-dynamic relationship using biomolecular simulations. Experimental and computational structural biology can help to address several outstanding questions on the mechanism of human ATG8 proteins, including their specificity toward different interactors, their association with membranes, the heterogeneity of their conformational ensemble, and their regulation by post-translational modifications. We here summarize the main results collected so far and discuss the future perspectives within the field and the knowledge gaps. Our review can serve as a roadmap for future structural and dynamics studies of the ATG8 family members in health and disease.
Collapse
Affiliation(s)
- Valentina Sora
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Mukesh Kumar
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Emiliano Maiani
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Matteo Lambrughi
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Matteo Tiberti
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Elena Papaleo
- Computational Biology Laboratory, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
- Translational Disease System Biology, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Liao Q. Enhanced sampling and free energy calculations for protein simulations. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 170:177-213. [PMID: 32145945 DOI: 10.1016/bs.pmbts.2020.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Molecular dynamics simulation is a powerful computational technique to study biomolecular systems, which complements experiments by providing insights into the structural dynamics relevant to biological functions at atomic scale. It can also be used to calculate the free energy landscapes of the conformational transitions to better understand the functions of the biomolecules. However, the sampling of biomolecular configurations is limited by the free energy barriers that need to be overcome, leading to considerable gaps between the timescales reached by MD simulation and those governing biological processes. To address this issue, many enhanced sampling methodologies have been developed to increase the sampling efficiency of molecular dynamics simulations and free energy calculations. Usually, enhanced sampling algorithms can be classified into methods based on collective variables (CV-based) and approaches which do not require predefined CVs (CV-free). In this chapter, the theoretical basis of free energy estimation is briefly reviewed first, followed by the reviews of the most common CV-based and CV-free methods including the presentation of some examples and recent developments. Finally, the combination of different enhanced sampling methods is discussed.
Collapse
Affiliation(s)
- Qinghua Liao
- Science for Life Laboratory, Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
10
|
Schwarten M, Weiergräber OH, Petrović D, Strodel B, Willbold D. Structural Studies of Autophagy-Related Proteins. Methods Mol Biol 2019; 1880:17-56. [PMID: 30610688 DOI: 10.1007/978-1-4939-8873-0_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Information about the structure and dynamics of proteins is crucial for understanding their physiological functions as well as for the development of strategies to modulate these activities. In this chapter we will describe the work packages required to determine the three-dimensional structures of proteins involved in autophagy by using X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. Further we will provide instructions how to perform a molecular dynamics (MD) simulation using GABARAP as example protein.
Collapse
Affiliation(s)
- Melanie Schwarten
- Institute of Complex Systems ICS-6 (Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Oliver H Weiergräber
- Institute of Complex Systems ICS-6 (Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Dušan Petrović
- Institute of Complex Systems ICS-6 (Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- Department of Chemistry, BMC, Uppsala University, Uppsala, Sweden
| | - Birgit Strodel
- Institute of Complex Systems ICS-6 (Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dieter Willbold
- Institute of Complex Systems ICS-6 (Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany.
- Institut für Physikalische Biologie, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
11
|
Möckel C, Kubiak J, Schillinger O, Kühnemuth R, Della Corte D, Schröder GF, Willbold D, Strodel B, Seidel CAM, Neudecker P. Integrated NMR, Fluorescence, and Molecular Dynamics Benchmark Study of Protein Mechanics and Hydrodynamics. J Phys Chem B 2018; 123:1453-1480. [DOI: 10.1021/acs.jpcb.8b08903] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Christina Möckel
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Institute of Complex Systems (ICS-6: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Jakub Kubiak
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Oliver Schillinger
- Institute of Complex Systems (ICS-6: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut für Theoretische Chemie und Computerchemie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Ralf Kühnemuth
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Dennis Della Corte
- Institute of Complex Systems (ICS-6: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Gunnar F. Schröder
- Institute of Complex Systems (ICS-6: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
- Physics Department, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Dieter Willbold
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Institute of Complex Systems (ICS-6: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Birgit Strodel
- Institute of Complex Systems (ICS-6: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut für Theoretische Chemie und Computerchemie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Claus A. M. Seidel
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Philipp Neudecker
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Institute of Complex Systems (ICS-6: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
12
|
Abdollahzadeh I, Schwarten M, Gensch T, Willbold D, Weiergräber OH. The Atg8 Family of Proteins-Modulating Shape and Functionality of Autophagic Membranes. Front Genet 2017; 8:109. [PMID: 28894458 PMCID: PMC5581321 DOI: 10.3389/fgene.2017.00109] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/07/2017] [Indexed: 12/23/2022] Open
Abstract
Aging is a multifactorial process involving an accumulation of alterations on various organizational levels, which finally compromises viability and limits the lifespan of organisms. It is now well-established that many aspects of aging can be positively affected by (macro)autophagy, a mechanism of self-digestion found in virtually all eukaryotic cells. A comprehensive understanding of autophagy is thus expected to not only deepen our insight into the mechanisms of aging but to also open up new avenues toward increasing the healthy lifespan in humans. In this review, we focus on the Atg8 family of ubiquitin-like proteins, which play a crucial role in the autophagy process by virtue of their unique mode of reversible membrane association.
Collapse
Affiliation(s)
- Iman Abdollahzadeh
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum JülichJülich, Germany.,Institute of Complex Systems, Cellular Biophysics (ICS-4), Forschungszentrum JülichJülich, Germany
| | - Melanie Schwarten
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum JülichJülich, Germany
| | - Thomas Gensch
- Institute of Complex Systems, Cellular Biophysics (ICS-4), Forschungszentrum JülichJülich, Germany
| | - Dieter Willbold
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum JülichJülich, Germany.,Institut für Physikalische Biologie und Biologisch-Medizinisches Forschungszentrum, Heinrich-Heine-Universität DüsseldorfDüsseldorf, Germany
| | - Oliver H Weiergräber
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum JülichJülich, Germany
| |
Collapse
|
13
|
Weiergräber OH, Schwarten M, Strodel B, Willbold D. Investigating Structure and Dynamics of Atg8 Family Proteins. Methods Enzymol 2016; 587:115-142. [PMID: 28253952 DOI: 10.1016/bs.mie.2016.09.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Atg8 family members were the first autophagy-related proteins to be investigated in structural detail and continue to be among the best-understood molecules of the pathway. In this review, we will first provide a concise outline of the major methods that are being applied for structural characterization of these proteins and the complexes they are involved in. This includes a discussion of the strengths and limitations associated with each method, along with guidelines for successful adoption to a specific problem. Subsequently, we will present examples illustrating the application of these techniques, with a particular focus on the complementarity of information they provide.
Collapse
Affiliation(s)
- O H Weiergräber
- Institute of Complex Systems, ICS-6 (Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - M Schwarten
- Institute of Complex Systems, ICS-6 (Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - B Strodel
- Institute of Complex Systems, ICS-6 (Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - D Willbold
- Institute of Complex Systems, ICS-6 (Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany; Institut für Physikalische Biologie und BMFZ, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
14
|
Qiu Y, Zheng Y, Taherbhoy AM, Kaiser SE, Schulman BA. Crystallographic Characterization of ATG Proteins and Their Interacting Partners. Methods Enzymol 2016; 587:227-246. [PMID: 28253958 DOI: 10.1016/bs.mie.2016.09.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Autophagosome formation and specific substrate recruitment during autophagy require ligation of the ubiquitin-like protein (UBL) Atg8 to the head group of the lipid phosphatidylethanolamine. Atg8 lipidation is mediated by distinctive UBL cascades involving autophagy-specific E1, E2, and E3 enzymes that differ substantially in sequence from components of other UBL conjugation cascades. Structural studies are important for elucidating the roles of Atg proteins that regulate multiple steps involved in autophagy. This chapter describes methods to prepare and crystallize selected proteins and complexes involved in autophagy UBL conjugation pathways, as a guide for strategies for structural and biochemical characterization of Atg proteins.
Collapse
Affiliation(s)
- Y Qiu
- St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Y Zheng
- St. Jude Children's Research Hospital, Memphis, TN, United States; University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - A M Taherbhoy
- St. Jude Children's Research Hospital, Memphis, TN, United States
| | - S E Kaiser
- St. Jude Children's Research Hospital, Memphis, TN, United States
| | - B A Schulman
- St. Jude Children's Research Hospital, Memphis, TN, United States; University of Tennessee Health Sciences Center, Memphis, TN, United States; Howard Hughes Medical Institute, St. Jude Children's Research Hospital, Memphis, TN, United States.
| |
Collapse
|
15
|
An H, Statsyuk AV. Facile synthesis of covalent probes to capture enzymatic intermediates during E1 enzyme catalysis. Chem Commun (Camb) 2015; 52:2477-80. [PMID: 26575161 DOI: 10.1039/c5cc08592f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We report a facile synthetic strategy to prepare UBL-AMP electrophilic probes that form a covalent bond with the catalytic cysteine of cognate E1s, mimicking the tetrahedral intermediate of the E1-UBL-AMP complex. These probes enable the structural and biochemical study of both canonical- and non-canonical E1s.
Collapse
Affiliation(s)
- Heeseon An
- Department of Chemistry, Center for Molecular Innovation and Drug Discovery, Chemistry of Life Processes Institute, Northwestern University, Silverman Hall, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | | |
Collapse
|