1
|
Kurre D, Dang PX, Le LTM, Gadkari VV, Alam A. Structural insights into binding-site access and ligand recognition by human ABCB1. EMBO J 2025; 44:991-1006. [PMID: 39806099 PMCID: PMC11833089 DOI: 10.1038/s44318-025-00361-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
ABCB1 is a broad-spectrum efflux pump central to cellular drug handling and multidrug resistance in humans. However, how it is able to recognize and transport a wide range of diverse substrates remains poorly understood. Here we present cryo-EM structures of lipid-embedded human ABCB1 in conformationally distinct apo-, substrate-bound, inhibitor-bound, and nucleotide-trapped states at 3.4-3.9 Å resolution, in the absence of stabilizing antibodies or mutations. The substrate-binding site is located within one half of the molecule and, in the apo state, is obstructed by the transmembrane helix (TM) 4. Substrate and inhibitor binding are distinguished by major TM rearrangements and their ligand binding chemistry, with TM4 playing a central role in all conformational transitions. Furthermore, our data identify secondary structure-breaking residues that impart localized TM flexibility and asymmetry between the two transmembrane domains. The resulting structural changes and lipid interactions that are induced by substrate and inhibitor binding can predict substrate-binding profiles and may direct ABCB1 inhibitor design.
Collapse
Affiliation(s)
- Devanshu Kurre
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Phuoc X Dang
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
- Department of Pharmacy-Inpatient, Mayo Clinic, Rochester, MN, 55901, USA
| | - Le T M Le
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55901, USA
| | - Varun V Gadkari
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Amer Alam
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA.
| |
Collapse
|
2
|
De Vecchis D, Schäfer LV. Coupling the role of lipids to the conformational dynamics of the ABC transporter P-glycoprotein. Biophys J 2024; 123:2522-2536. [PMID: 38909280 PMCID: PMC11365111 DOI: 10.1016/j.bpj.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/31/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024] Open
Abstract
The ATP-binding cassette transporter P-glycoprotein (P-gp) is a multidrug efflux pump that is overexpressed in a variety of cancers and associated with the drug-resistance phenomenon. P-gp structures were previously determined in detergent and in nanodiscs, in which different transmembrane helix conformations were found, "straight" and "kinked," respectively, indicating a possible role of the lipid environment on the P-gp structural ensemble. Here, we investigate the dynamic conformational ensembles and protein-lipid interactions of two human P-gp inward-open conformers, straight and kinked, employing all-atom molecular dynamics (MD) simulations in asymmetric multicomponent lipid bilayers that mimic the highly specialized hepatocyte membrane in which P-gp is expressed. The two conformers are found to differ in terms of the accessibility of the substrate cavity. The MD simulations show how cholesterol and different lipid species wedge, snorkel, and partially enter into the cavity of the straight P-gp conformer solved in detergent. However, access to the cavity of the kinked P-gp conformer solved in nanodiscs is restricted. Furthermore, the volume and dynamic fluctuations of the substrate cavity largely differ between the two P-gp conformers and are modulated by the presence (or absence) of cholesterol in the membrane and/or of ATP. From the mechanistic perspective, the findings indicate that the straight conformer likely precedes the kinked conformer in the functional working cycle of P-gp, with the latter conformation representing a post substrate-bound state. The inaccessibility of the main transmembrane cavity in the kinked conformer might be crucial in preventing substrate disengagement and transport withdrawal. Remarkably, in our unbiased MD simulations, one transmembrane helix (TM10) of the straight conformer underwent a spontaneous transition to a kinked conformation, underlining the relevance of both conformations in a native phospholipid environment and revealing structural descriptors defining the transition between the two P-gp conformers.
Collapse
Affiliation(s)
- Dario De Vecchis
- Center for Theoretical Chemistry, Ruhr University Bochum, Bochum, Germany.
| | - Lars V Schäfer
- Center for Theoretical Chemistry, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
3
|
Kurre D, Dang PX, Le LT, Gadkari VV, Alam A. Structural insight into binding site access and ligand recognition by human ABCB1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607598. [PMID: 39185192 PMCID: PMC11343101 DOI: 10.1101/2024.08.12.607598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
ABCB1 is a broad-spectrum efflux pump central to cellular drug handling and multidrug resistance in humans. However, its mechanisms of poly-specific substrate recognition and transport remain poorly resolved. Here we present cryo-EM structures of lipid embedded human ABCB1 in its apo, substrate-bound, inhibitor-bound, and nucleotide-trapped states at 3.4-3.9 Å resolution without using stabilizing antibodies or mutations and each revealing a distinct conformation. The substrate binding site is located within one half of the molecule and, in the apo state, is obstructed by transmembrane helix (TM) 4. Substrate and inhibitor binding are distinguished by major differences in TM arrangement and ligand binding chemistry, with TM4 playing a central role in all conformational transitions. Our data offer fundamental new insights into the role structural asymmetry, secondary structure breaks, and lipid interactions play in ABCB1 function and have far-reaching implications for ABCB1 inhibitor design and predicting its substrate binding profiles.
Collapse
Affiliation(s)
- Devanshu Kurre
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, United States
| | - Phuoc X. Dang
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, United States
- Current Address: Department of Pharmacy - Inpatient, Mayo Clinic, Rochester, Minnesota 55901, United States
| | - Le T.M. Le
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, United States
- Current Address: Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55901, United States
| | - Varun V. Gadkari
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Amer Alam
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, United States
| |
Collapse
|
4
|
Hosamani S, Chakraborty S. Cholesterol Allosterically Modulates the Structure and Dynamics of the Taurocholate Export Pump (ABCB11). J Phys Chem Lett 2024; 15:7901-7908. [PMID: 39058973 DOI: 10.1021/acs.jpclett.4c01341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The BSEP/ABCB11 transmembrane protein translocates taurine- and glycine-conjugated bile salts across the hepatocyte bilayer driven by ATP-hydrolysis. Direct inhibition of BSEP/ABCB11 leads to idiosyncratic drug-induced liver injury. ABCB11 is localized within the cholesterol-enriched lipid raft, and membrane cholesterol depletion leads to impaired taurocholate transport. However, structural insight into the mechanism of the cholesterol-mediated regulation of ABCB11 activity remains elusive. We used extensive molecular dynamics simulation coupled with well-tempered metadynamics to elucidate the role of membrane cholesterol in the structure and dynamics of ABCB11. We identified specific high-residence binding sites for cholesterol within the transmembrane domain. The free-energy simulations have elucidated that the bound cholesterol stabilizes the "inward-open" conformation of the protein. Cholesterol-ABCB11 interactions trigger allosteric communications between the transmembrane and nucleotide-binding domains through the linker region. Cholesterol depletion destabilizes the allosteric network of the protein. As a result, it adopts a more collapsed form with a reduced volume of the taurocholate-binding pocket.
Collapse
Affiliation(s)
- Soundharya Hosamani
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, India
| | - Sandipan Chakraborty
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, India
| |
Collapse
|
5
|
Gellen G, Klement E, Biwott K, Schlosser G, Kalló G, Csősz É, Medzihradszky KF, Bacso Z. Cross-Linking Mass Spectrometry on P-Glycoprotein. Int J Mol Sci 2023; 24:10627. [PMID: 37445813 DOI: 10.3390/ijms241310627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
The ABC transporter P-glycoprotein (Pgp) has been found to be involved in multidrug resistance in tumor cells. Lipids and cholesterol have a pivotal role in Pgp's conformations; however, it is often difficult to investigate it with conventional structural biology techniques. Here, we applied robust approaches coupled with cross-linking mass spectrometry (XL-MS), where the natural lipid environment remains quasi-intact. Two experimental approaches were carried out using different cross-linkers (i) on living cells, followed by membrane preparation and immunoprecipitation enrichment of Pgp, and (ii) on-bead, subsequent to membrane preparation and immunoprecipitation. Pgp-containing complexes were enriched employing extracellular monoclonal anti-Pgp antibodies on magnetic beads, followed by on-bead enzymatic digestion. The LC-MS/MS results revealed mono-links on Pgp's solvent-accessible residues, while intraprotein cross-links confirmed a complex interplay between extracellular, transmembrane, and intracellular segments of the protein, of which several have been reported to be connected to cholesterol. Harnessing the MS results and those of molecular docking, we suggest an epitope for the 15D3 cholesterol-dependent mouse monoclonal antibody. Additionally, enriched neighbors of Pgp prove the strong connection of Pgp to the cytoskeleton and other cholesterol-regulated proteins. These findings suggest that XL-MS may be utilized for protein structure and network analyses in such convoluted systems as membrane proteins.
Collapse
Affiliation(s)
- Gabriella Gellen
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Department of Analytical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary
| | - Eva Klement
- Single Cell Omics Advanced Core Facility, HCEMM, H-6728 Szeged, Hungary
- Laboratory of Proteomics Research, BRC, H-6726 Szeged, Hungary
| | - Kipchumba Biwott
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary
| | - Gitta Schlosser
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Department of Analytical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Gergő Kalló
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary
| | - Éva Csősz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary
| | | | - Zsolt Bacso
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary
- Faculty of Pharmacology, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary
| |
Collapse
|
6
|
Kotlyarov S, Kotlyarova A. Clinical Significance of Lipid Transport Function of ABC Transporters in the Innate Immune System. MEMBRANES 2022; 12:1083. [PMID: 36363640 PMCID: PMC9698216 DOI: 10.3390/membranes12111083] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
ABC transporters are a large family of proteins that transport a variety of substrates across cell plasma membranes. Because of this, they are involved in many physiological processes. It is of interest to note that many ABC transporters are involved in the transport of various lipids. In addition, this function may be related to the innate immune system. The evidence that ABC transporters are involved in the regulation of the innate immune system through the transport of various substances greatly enhances the understanding of their clinical significance. ABC transporters are involved in the cellular homeostasis of cholesterol as well as in the regulation of its content in lipid rafts. Through these mechanisms, they can regulate the function of membrane proteins, including receptors of the innate immune system. By regulating lipid transport, some members of ABC transporters are involved in phagocytosis. In addition, ABC transporters are involved in the transport of lipopolysaccharide, lipid mediators of inflammation, and perform other functions in the innate immune system.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacy Management and Economics, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
7
|
Schleker ESM, Buschmann S, Xie H, Welsch S, Michel H, Reinhart C. Structural and functional investigation of ABC transporter STE6-2p from Pichia pastoris reveals unexpected interaction with sterol molecules. Proc Natl Acad Sci U S A 2022; 119:e2202822119. [PMID: 36256814 PMCID: PMC9618074 DOI: 10.1073/pnas.2202822119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are multidomain transmembrane proteins, which facilitate the transport of various substances across cell membranes using energy derived from ATP hydrolysis. They are important drug targets since they mediate decreased drug susceptibility during pharmacological treatments. For the methylotrophic yeast Pichia pastoris, a model organism that is a widely used host for protein expression, the role and function of its ABC transporters is unexplored. In this work, we investigated the Pichia ABC-B transporter STE6-2p. Functional investigations revealed that STE6-2p is capable of transporting rhodamines in vivo and is active in the presence of verapamil and triazoles in vitro. A phylogenetic analysis displays homology among multidrug resistance (MDR) transporters from pathogenic fungi to human ABC-B transporters. Further, we present high-resolution single-particle electron cryomicroscopy structures of an ABC transporter from P. pastoris in the apo conformation (3.1 Å) and in complex with verapamil and adenylyl imidodiphosphate (AMP-PNP) (3.2 Å). An unknown density between transmembrane helices 4, 5, and 6 in both structures suggests the presence of a sterol-binding site of unknown function.
Collapse
Affiliation(s)
- E. Sabine M. Schleker
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, D-60438 Frankfurt am Main, Germany
| | - Sabine Buschmann
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, D-60438 Frankfurt am Main, Germany
| | - Hao Xie
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, D-60438 Frankfurt am Main, Germany
| | - Sonja Welsch
- Central Electron Microscopy Facility, Max Planck Institute of Biophysics, D-60438 Frankfurt am Main, Germany
| | - Hartmut Michel
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, D-60438 Frankfurt am Main, Germany
| | - Christoph Reinhart
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
8
|
Kotlyarov S, Kotlyarova A. The Importance of the Plasma Membrane in Atherogenesis. MEMBRANES 2022; 12:1036. [PMID: 36363591 PMCID: PMC9698587 DOI: 10.3390/membranes12111036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Atherosclerotic cardiovascular diseases are an important medical problem due to their high prevalence, impact on quality of life and prognosis. The pathogenesis of atherosclerosis is an urgent medical and social problem, the solution of which may improve the quality of diagnosis and treatment of patients. Atherosclerosis is a complex chain of events, which proceeds over many years and in which many cells in the bloodstream and the vascular wall are involved. A growing body of evidence suggests that there are complex, closely linked molecular mechanisms that occur in the plasma membranes of cells involved in atherogenesis. Lipid transport, innate immune system receptor function, and hemodynamic regulation are linked to plasma membranes and their biophysical properties. A better understanding of these interrelationships will improve diagnostic quality and treatment efficacy.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacy Management and Economics, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
9
|
Guo J, Du X, Li C. BAG family proteins contributes to autophagy-mediated multidrug resistance of tumor. Clin Transl Oncol 2022; 24:1492-1500. [PMID: 35278199 DOI: 10.1007/s12094-022-02819-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/22/2022] [Indexed: 12/13/2022]
Abstract
Multidrug resistance (MDR) is a significant cause of tumor treatment failure. Accumulating evidence suggests that autophagy plays a significant role in the development of MDR. Autophagy is a conserved mechanism that maintains tumor homeostasis by removing damaged mitochondria. However, the specific regulatory mechanism is unclear. Here, we summarize recent studies on the role of autophagy in the development of MDR and the initiation of mitophagy by Bcl-2-associated athanogene (BAG) family proteins. Additionally, this mini-review emphasizes the regulatory role of BAG family proteins, which maintain mitochondrial homeostasis by regulating the PINK1/Parkin pathway. Elucidation of the regulatory mechanisms of mitophagy may foster the development of clinical therapeutic strategies for MDR tumors.
Collapse
Affiliation(s)
- Jufang Guo
- Department of Obstetrics and Gynecology, Jinniu District Maternal and Child Health Hospital, Chengdu, China
| | - Xuelian Du
- Department of Obstetrics and Gynecology, Jinniu District Maternal and Child Health Hospital, Chengdu, China
| | - Chaolin Li
- Department of Obstetrics and Gynecology, Jinniu District Maternal and Child Health Hospital, Chengdu, China.
| |
Collapse
|
10
|
Budani M, Auray-Blais C, Lingwood C. ATP-binding cassette transporters mediate differential biosynthesis of glycosphingolipid species. J Lipid Res 2021; 62:100128. [PMID: 34597626 PMCID: PMC8569594 DOI: 10.1016/j.jlr.2021.100128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/18/2021] [Accepted: 09/03/2021] [Indexed: 01/13/2023] Open
Abstract
The cytosolic-oriented glucosylceramide (GlcCer) synthase is enigmatic, requiring nascent GlcCer translocation to the luminal Golgi membrane to access glycosphingolipid (GSL) anabolic glycosyltransferases. The mechanism by which GlcCer is flipped remains unclear. To investigate the role of GlcCer-binding partners in this process, we previously made cleavable, biotinylated, photoreactive GlcCer analogs in which the reactive nitrene was closely apposed to the GlcCer head group, while maintaining a C16-acyl chain. GlcCer-binding protein specificity was validated for both photoprobes. Using one probe, XLB, here we identified ATP-binding cassette (ABC) transporters ABCA3, ABCB4, and ABCB10 as unfractionated microsomal GlcCer-binding proteins in DU-145 prostate tumor cells. siRNA knockdown (KD) of these transporters differentially blocked GSL synthesis assessed in toto and via metabolic labeling. KD of ABCA3 reduced acid/neutral GSL levels, but increased those of LacCer, while KD of ABCB4 preferentially reduced neutral GSL levels, and KD of ABCB10 reduced levels of both neutral and acidic GSLs. Depletion of ABCA12, implicated in GlcCer transport, preferentially decreased neutral GSL levels, while ABCB1 KD preferentially reduced gangliosides, but increased neutral GSL Gb3. These results imply that multiple ABC transporters may provide distinct but overlapping GlcCer and LacCer pools within the Golgi lumen for anabolism of different GSL series by metabolic channeling. Differential ABC family member usage may fine-tune GSL biosynthesis depending on cell/tissue type. We conclude that ABC transporters provide a new tool for the regulation of GSL biosynthesis and serve as potential targets to reduce selected GSL species/subsets in diseases in which GSLs are dysregulated.
Collapse
Affiliation(s)
- Monique Budani
- Division of Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Christiane Auray-Blais
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Québec, Canada
| | - Clifford Lingwood
- Division of Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
11
|
Kotlyarov S, Kotlyarova A. The Role of ABC Transporters in Lipid Metabolism and the Comorbid Course of Chronic Obstructive Pulmonary Disease and Atherosclerosis. Int J Mol Sci 2021; 22:6711. [PMID: 34201488 PMCID: PMC8269124 DOI: 10.3390/ijms22136711] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/12/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) ranks among the leading causes of morbidity and mortality worldwide. COPD rarely occurs in isolation and is often combined with various diseases. It is considered that systemic inflammation underlies the comorbid course of COPD. The data obtained in recent years have shown the importance of violations of the cross-links of lipid metabolism and the immune response, which are links in the pathogenesis of both COPD and atherosclerosis. The role of lipid metabolism disorders in the pathogenesis of the comorbid course of COPD and atherosclerosis and the participation of ATP-binding cassette (ABC) transporters in these processes is discussed in this article. It is known that about 20 representatives of a large family of ABC transporters provide lipid homeostasis of cells by moving lipids inside the cell and in its plasma membrane, as well as removing lipids from the cell. It was shown that some representatives of the ABC-transporter family are involved in various links of the pathogenesis of COPD and atherosclerosis, which can determine their comorbid course.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
12
|
Molecular Regulation of Canalicular ABC Transporters. Int J Mol Sci 2021; 22:ijms22042113. [PMID: 33672718 PMCID: PMC7924332 DOI: 10.3390/ijms22042113] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 12/17/2022] Open
Abstract
The ATP-binding cassette (ABC) transporters expressed at the canalicular membrane of hepatocytes mediate the secretion of several compounds into the bile canaliculi and therefore play a key role in bile secretion. Among these transporters, ABCB11 secretes bile acids, ABCB4 translocates phosphatidylcholine and ABCG5/G8 is responsible for cholesterol secretion, while ABCB1 and ABCC2 transport a variety of drugs and other compounds. The dysfunction of these transporters leads to severe, rare, evolutionary biliary diseases. The development of new therapies for patients with these diseases requires a deep understanding of the biology of these transporters. In this review, we report the current knowledge regarding the regulation of canalicular ABC transporters' folding, trafficking, membrane stability and function, and we highlight the role of molecular partners in these regulating mechanisms.
Collapse
|
13
|
Abstract
Drug transporters are integral membrane proteins that play a critical role in drug disposition by affecting absorption, distribution, and excretion. They translocate drugs, as well as endogenous molecules and toxins, across membranes using ATP hydrolysis, or ion/concentration gradients. In general, drug transporters are expressed ubiquitously, but they function in drug disposition by being concentrated in tissues such as the intestine, the kidneys, the liver, and the brain. Based on their primary sequence and their mechanism, transporters can be divided into the ATP-binding cassette (ABC), solute-linked carrier (SLC), and the solute carrier organic anion (SLCO) superfamilies. Many X-ray crystallography and cryo-electron microscopy (cryo-EM) structures have been solved in the ABC and SLC transporter superfamilies or of their bacterial homologs. The structures have provided valuable insight into the structural basis of transport. This chapter will provide particular focus on the promiscuous drug transporters because of their effect on drug disposition and the challenges associated with them.
Collapse
Affiliation(s)
- Arthur G Roberts
- Pharmaceutical and Biomedical Sciences Department, University of Georgia, Athens, GA, USA.
| |
Collapse
|
14
|
Wang L, Sun Y. Efflux mechanism and pathway of verapamil pumping by human P-glycoprotein. Arch Biochem Biophys 2020; 696:108675. [PMID: 33197430 DOI: 10.1016/j.abb.2020.108675] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/23/2020] [Accepted: 11/08/2020] [Indexed: 11/28/2022]
Abstract
Multidrug resistance (MDR) caused by overexpressed permeability-glycoprotein (P-gp) in cancer cells is the main barrier for the cure of cancers. P-gp can pump many chemotherapeutic drugs, which is a viable target to overcome P-gp-mediated MDR by efficient inhibitors of P-gp. However, limited understanding of the efflux mechanism by human P-gp hinders the development of efficient inhibitors. Herein, the transport of a P-gp inhibitor, verapamil, by human P-gp has been investigated using targeted molecular dynamics simulations and energetics analysis based on our previous research on the transport of a drug (doxorubicin). The energetics analysis identifies that the driving forces for the transport of verapamil are electrostatic repulsions contributed by the positively charged residues in the initial stage and then hydrophobic interactions contributed by the important residues in the later stage. This scenario is generally consistent with that in the transport of doxorubicin. However, the positively charged residues and the important residues for the transport of verapamil are incompletely consistent with the relative residues for the transport of doxorubicin. Moreover, the binding free energy contributions of the positively charged residues for the transport of verapamil are generally higher than them for the transport of doxorubicin, while the important residues constitute significantly different binding free energy compositions in the transports of the two substrates. Consequently, the pathway for the transport of verapamil is identified, which shares only two residues (F336 and M986) with the pathway of doxorubicin. This may imply the weak competitiveness of verapamil with doxorubicin in the substrate efflux. Taken together, this work provided new insights into the efflux mechanisms by human P-gp and would be beneficial in the design of potent P-gp inhibitors.
Collapse
Affiliation(s)
- Lijie Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
15
|
Kotlyarov SN, Kotlyarova AA. Participation of ABC-transporters in lipid metabolism and pathogenesis of atherosclerosis. GENES & CELLS 2020; 15:22-28. [DOI: 10.23868/202011003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Atherosclerosis is one of the key causes of morbidity and mortality worldwide. It is known that a leading role in the development and progression of atherosclerosis is played by a violation of lipid metabolism. ABC transporters provide lipid cell homeostasis, performing a number of transport functions - moving lipids inside the cell, in the plasma membrane, and also removing lipids from the cell. In a large group of ABC transporters, about 20 take part in lipid homeostasis, playing, among other things, an important role in the pathogenesis of atherosclerosis. It was shown that cholesterol is not only a substrate for a number of ABC transporters, but also able to modulate their activity. Regulation of activity is carried out due to specific lipid-protein interactions.
Collapse
|
16
|
Bonito CA, Ferreira RJ, Ferreira MJU, Gillet JP, Cordeiro MNDS, Dos Santos DJVA. Theoretical insights on helix repacking as the origin of P-glycoprotein promiscuity. Sci Rep 2020; 10:9823. [PMID: 32555203 PMCID: PMC7300024 DOI: 10.1038/s41598-020-66587-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
P-glycoprotein (P-gp, ABCB1) overexpression is, currently, one of the most important multidrug resistance (MDR) mechanisms in tumor cells. Thus, modulating drug efflux by P-gp has become one of the most promising approaches to overcome MDR in cancer. Yet, more insights on the molecular basis of drug specificity and efflux-related signal transmission mechanism between the transmembrane domains (TMDs) and the nucleotide binding domains (NBDs) are needed to develop molecules with higher selectivity and efficacy. Starting from a murine P-gp crystallographic structure at the inward-facing conformation (PDB ID: 4Q9H), we evaluated the structural quality of the herein generated human P-gp homology model. This initial human P-gp model, in the presence of the “linker” and inserted in a suitable lipid bilayer, was refined through molecular dynamics simulations and thoroughly validated. The best human P-gp model was further used to study the effect of four single-point mutations located at the TMDs, experimentally related with changes in substrate specificity and drug-stimulated ATPase activity. Remarkably, each P-gp mutation is able to induce transmembrane α-helices (TMHs) repacking, affecting the drug-binding pocket volume and the drug-binding sites properties (e.g. volume, shape and polarity) finally compromising drug binding at the substrate binding sites. Furthermore, intracellular coupling helices (ICH) also play an important role since changes in the TMHs rearrangement are shown to have an impact in residue interactions at the ICH-NBD interfaces, suggesting that identified TMHs repacking affect TMD-NBD contacts and interfere with signal transmission from the TMDs to the NBDs.
Collapse
Affiliation(s)
- Cátia A Bonito
- LAQV@REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Ricardo J Ferreira
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, 75124, Uppsala, Sweden
| | - Maria-José U Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Jean-Pierre Gillet
- Laboratory of Molecular Cancer Biology, Molecular Physiology Research Unit-URPhyM, Namur Research Institute for Life Sciences (NARILIS), Faculty of Medicine, University of Namur, B-5000, Namur, Belgium
| | - M Natália D S Cordeiro
- LAQV@REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Daniel J V A Dos Santos
- LAQV@REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal. .,Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal.
| |
Collapse
|
17
|
Replacing the eleven native tryptophans by directed evolution produces an active P-glycoprotein with site-specific, non-conservative substitutions. Sci Rep 2020; 10:3224. [PMID: 32081894 PMCID: PMC7035247 DOI: 10.1038/s41598-020-59802-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/28/2020] [Indexed: 11/09/2022] Open
Abstract
P-glycoprotein (Pgp) pumps an array of hydrophobic compounds out of cells, and has major roles in drug pharmacokinetics and cancer multidrug resistance. Yet, polyspecific drug binding and ATP hydrolysis-driven drug export in Pgp are poorly understood. Fluorescence spectroscopy using tryptophans (Trp) inserted at strategic positions is an important tool to study ligand binding. In Pgp, this method will require removal of 11 endogenous Trps, including highly conserved Trps that may be important for function, protein-lipid interactions, and/or protein stability. Here, we developed a directed evolutionary approach to first replace all eight transmembrane Trps and select for transport-active mutants in Saccharomyces cerevisiae. Surprisingly, many Trp positions contained non-conservative substitutions that supported in vivo activity, and were preferred over aromatic amino acids. The most active construct, W(3Cyto), served for directed evolution of the three cytoplasmic Trps, where two positions revealed strong functional bias towards tyrosine. W(3Cyto) and Trp-less Pgp retained wild-type-like protein expression, localization and transport function, and purified proteins retained drug stimulation of ATP hydrolysis and drug binding affinities. The data indicate preferred Trp substitutions specific to the local context, often dictated by protein structural requirements and/or membrane lipid interactions, and these new insights will offer guidance for membrane protein engineering.
Collapse
|
18
|
Thangapandian S, Kapoor K, Tajkhorshid E. Probing cholesterol binding and translocation in P-glycoprotein. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183090. [PMID: 31676371 PMCID: PMC6934093 DOI: 10.1016/j.bbamem.2019.183090] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/15/2019] [Accepted: 09/17/2019] [Indexed: 01/01/2023]
Abstract
P-glycoprotein (Pgp) is a biomedically important member of the ABC transporter superfamily that mediates multidrug resistance in various cancer types. Substrate binding and transport in Pgp are modulated by the presence of cholesterol in the membrane. Structural information on cholesterol binding sites and mechanistic details of its redistribution are, however, largely unknown. In this study, a set of 40 independent molecular dynamics (MD) simulations of Pgp embedded in cholesterol-rich lipid bilayers are reported, totaling 8 μs, enabling extensive sampling of cholesterol-protein interactions in Pgp. Clustering analyses of the ensemble of cholesterol molecules (∼5740) sampled around Pgp in these simulations reveal specific and asymmetric cholesterol-binding regions formed by the transmembrane (TM) helices TM1-6 and TM8. Notably, not all the putative cholesterol binding sites identified by MD can be predicted by the primary sequence based cholesterol-recognition amino acid consensus (CRAC) or inverted CRAC (CARC) motifs, an observation that we attribute to inadequacy of these motifs to account for binding sites formed by remote amino acids in the sequence that can still be spatially adjacent to each other. Binding of cholesterol to Pgp occurs more frequently through its rough β-face formed by the two protruding methyl groups, whereas the opposite smooth α-face prefers packing alongside the membrane lipids. One full and two partial cholesterol flipping events between the two leaflets of the bilayer mediated by the surface of Pgp are also captured in these simulations. All flipping events are observed in a region formed by helices TM1, TM2, and TM11, featuring two full and two partial CRAC/CARC motifs, with Tyr49 and Tyr126 identified as key residues interacting with cholesterol during this event. Our study is the first to report direct observation of unconventional cholesterol translocation on the surface of Pgp, providing a secondary transport model for the known flippase activity of ABC exporters of cholesterol. This article is part of a Special Issue entitled: Molecular biophysics of membranes and membrane proteins.
Collapse
Affiliation(s)
- Sundar Thangapandian
- NIH Center for Molecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Karan Kapoor
- NIH Center for Molecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- NIH Center for Molecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
19
|
Peterson E, Shippee E, Brinton MA, Kaur P. Biochemical characterization of the mouse ABCF3 protein, a partner of the flavivirus-resistance protein OAS1B. J Biol Chem 2019; 294:14937-14952. [PMID: 31413116 DOI: 10.1074/jbc.ra119.008477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/12/2019] [Indexed: 11/06/2022] Open
Abstract
Mammalian ATP-binding cassette (ABC) subfamily F member 3 (ABCF3) is a class 2 ABC protein that has previously been identified as a partner of the mouse flavivirus resistance protein 2',5'-oligoadenylate synthetase 1B (OAS1B). The functions and natural substrates of ABCF3 are not known. In this study, analysis of purified ABCF3 showed that it is an active ATPase, and binding analyses with a fluorescent ATP analog suggested unequal contributions by the two nucleotide-binding domains. We further showed that ABCF3 activity is increased by lipids, including sphingosine, sphingomyelin, platelet-activating factor, and lysophosphatidylcholine. However, cholesterol inhibited ABCF3 activity, whereas alkyl ether lipids either inhibited or resulted in a biphasic response, suggesting small changes in lipid structure differentially affect ABCF3 activity. Point mutations in the two nucleotide-binding domains of ABCF3 affected sphingosine-stimulated ATPase activity differently, further supporting different roles for the two catalytic pockets. We propose a model in which pocket 1 is the site of basal catalysis, whereas pocket 2 engages in ligand-stimulated ATP hydrolysis. Co-localization of the ABCF3-OAS1B complex to the virus-remodeled endoplasmic reticulum membrane has been shown before. We also noted that co-expression of ABCF3 and OAS1B in bacteria alleviated growth inhibition caused by expression of OAS1B alone, and ABCF3 significantly enhanced OAS1B levels, indirectly showing interaction between these two proteins in bacterial cells. As viral RNA synthesis requires large amounts of ATP, we conclude that lipid-stimulated ATP hydrolysis may contribute to the reduction in viral RNA production characteristic of the flavivirus resistance phenotype.
Collapse
Affiliation(s)
| | - Emma Shippee
- Department of Biology, Georgia State University, Atlanta, Georgia 30303
| | - Margo A Brinton
- Department of Biology, Georgia State University, Atlanta, Georgia 30303
| | - Parjit Kaur
- Department of Biology, Georgia State University, Atlanta, Georgia 30303
| |
Collapse
|
20
|
Alam A, Kowal J, Broude E, Roninson I, Locher KP. Structural insight into substrate and inhibitor discrimination by human P-glycoprotein. Science 2019; 363:753-756. [PMID: 30765569 DOI: 10.1126/science.aav7102] [Citation(s) in RCA: 352] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/18/2019] [Indexed: 12/19/2022]
Abstract
ABCB1, also known as P-glycoprotein, actively extrudes xenobiotic compounds across the plasma membrane of diverse cells, which contributes to cellular drug resistance and interferes with therapeutic drug delivery. We determined the 3.5-angstrom cryo-electron microscopy structure of substrate-bound human ABCB1 reconstituted in lipidic nanodiscs, revealing a single molecule of the chemotherapeutic compound paclitaxel (Taxol) bound in a central, occluded pocket. A second structure of inhibited, human-mouse chimeric ABCB1 revealed two molecules of zosuquidar occupying the same drug-binding pocket. Minor structural differences between substrate- and inhibitor-bound ABCB1 sites are amplified toward the nucleotide-binding domains (NBDs), revealing how the plasticity of the drug-binding site controls the dynamics of the adenosine triphosphate-hydrolyzing NBDs. Ordered cholesterol and phospholipid molecules suggest how the membrane modulates the conformational changes associated with drug binding and transport.
Collapse
Affiliation(s)
- Amer Alam
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Julia Kowal
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Eugenia Broude
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA
| | - Igor Roninson
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland.
| |
Collapse
|
21
|
Kuroi K, Imaizumi M, Miura T, Nakabayashi T. Examination of the association states of dehydroergosterol towards understanding the association structures of sterols in a membrane. Biochem Biophys Res Commun 2019; 515:228-233. [PMID: 31146916 DOI: 10.1016/j.bbrc.2019.05.109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 05/16/2019] [Indexed: 10/26/2022]
Abstract
Cholesterol plays a number of roles in cell membranes, and dehydroergosterol (DHE) is a fluorescent derivative of cholesterol, which is used to investigate the association structure of cholesterol. Although the fluorescent property of DHE depends on its association state, it is insufficient to distinguish the association state of DHE only by its fluorescence. Circular dichroism (CD) spectroscopy is an effective way to investigate the molecular geometry of DHE. In the present study, therefore we investigated the association structure of DHE by CD and fluorescence spectroscopy in solution and in a lipid membrane. DHE was shown to exist as three states (monomeric, microcrystalline, and micelle states) in methanol-water mixtures depending on solvent hydrophobicity. The CD spectrum of DHE in a liposome was similar to that of the micelle state, indicating that the association state of DHE in a liposome exhibits a parallel arrangement similar to that in the micelle state. This result is difficult to be obtained only from the measurement of the fluorescence spectra. The combination of CD and fluorescence spectroscopic techniques is necessary to investigate the association of DHE.
Collapse
Affiliation(s)
- Kunisato Kuroi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Masatomo Imaizumi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Takashi Miura
- Department of Pharmaceutical Sciences, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan.
| | - Takakazu Nakabayashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan.
| |
Collapse
|
22
|
Corradi V, Sejdiu BI, Mesa-Galloso H, Abdizadeh H, Noskov SY, Marrink SJ, Tieleman DP. Emerging Diversity in Lipid-Protein Interactions. Chem Rev 2019; 119:5775-5848. [PMID: 30758191 PMCID: PMC6509647 DOI: 10.1021/acs.chemrev.8b00451] [Citation(s) in RCA: 309] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 02/07/2023]
Abstract
Membrane lipids interact with proteins in a variety of ways, ranging from providing a stable membrane environment for proteins to being embedded in to detailed roles in complicated and well-regulated protein functions. Experimental and computational advances are converging in a rapidly expanding research area of lipid-protein interactions. Experimentally, the database of high-resolution membrane protein structures is growing, as are capabilities to identify the complex lipid composition of different membranes, to probe the challenging time and length scales of lipid-protein interactions, and to link lipid-protein interactions to protein function in a variety of proteins. Computationally, more accurate membrane models and more powerful computers now enable a detailed look at lipid-protein interactions and increasing overlap with experimental observations for validation and joint interpretation of simulation and experiment. Here we review papers that use computational approaches to study detailed lipid-protein interactions, together with brief experimental and physiological contexts, aiming at comprehensive coverage of simulation papers in the last five years. Overall, a complex picture of lipid-protein interactions emerges, through a range of mechanisms including modulation of the physical properties of the lipid environment, detailed chemical interactions between lipids and proteins, and key functional roles of very specific lipids binding to well-defined binding sites on proteins. Computationally, despite important limitations, molecular dynamics simulations with current computer power and theoretical models are now in an excellent position to answer detailed questions about lipid-protein interactions.
Collapse
Affiliation(s)
- Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Besian I. Sejdiu
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haydee Mesa-Galloso
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haleh Abdizadeh
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Sergei Yu. Noskov
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
23
|
Lee AG. A Database of Predicted Binding Sites for Cholesterol on Membrane Proteins, Deep in the Membrane. Biophys J 2018; 115:522-532. [PMID: 30007584 DOI: 10.1016/j.bpj.2018.06.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 01/13/2023] Open
Abstract
The outer membranes of animal cells contain high concentrations of cholesterol, of which a small proportion is located deep within the hydrophobic core of the membrane. An automated docking procedure is described that allows the characterization of binding sites for these deep cholesterol molecules on the membrane-spanning surfaces of membrane proteins and in protein cavities or pores, driven by hydrogen bond formation. A database of this class of predicted binding site is described, covering 397 high-resolution structures. The database includes sites on the transmembrane surfaces of many G-protein coupled receptors; within the fenestrations of two-pore K+ channels and ATP-gated P2X3 channels; in the central cavities of a number of transporters, including Glut1, Glut5, and P-glycoprotein; and in deep clefts in mitochondrial complexes III and IV.
Collapse
Affiliation(s)
- Anthony G Lee
- Centre for Biological Sciences, University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
24
|
Domicevica L, Koldsø H, Biggin PC. Multiscale molecular dynamics simulations of lipid interactions with P-glycoprotein in a complex membrane. J Mol Graph Model 2018; 80:147-156. [PMID: 29353693 DOI: 10.1016/j.jmgm.2017.12.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
P-glycoprotein (P-gp) can transport a wide range of very different hydrophobic organic molecules across the membrane. Its ability to extrude molecules from the cell creates delivery problems for drugs that target proteins in the central nervous system (CNS) and also causes drug-resistance in many forms of cancer. Whether a drug will be susceptible to export by P-gp is difficult to predict and currently this is usually assessed with empirical and/or animal models. Thus, there is a need to better understand how P-gp works at the molecular level in order to fulfil the 3Rs: Refinement, reduction and replacement of animals in research. As structural information increasingly becomes available, our understanding at the molecular level improves. Proteins like P-gp are however very dynamic entities and thus one of the most appropriate ways to study them is with molecular dynamics simulations, especially as this can capture the influence of the surrounding environment. Recent parameterization developments have meant that it is now possible to simulate lipid bilayers that more closely resemble in vivo membranes in terms of their composition. In this report we construct a complex lipid bilayer that mimics the composition of brain epithelial cells and examine the interactions of it with P-gp. We find that the negatively charged phosphatidylserine lipids in the inner leaflet of the membrane tend to form an annulus around P-gp. We also observed the interaction of cholesterol with three distinct areas of the P-gp. Potential of mean force (PMF) calculations suggest that a crevice between transmembrane helices 10 and 12 has particularly favourable interaction energy for cholesterol.
Collapse
Affiliation(s)
- Laura Domicevica
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | - Heidi Koldsø
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | - Philip C Biggin
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom.
| |
Collapse
|
25
|
Domicevica L, Koldsø H, Biggin PC. Multiscale molecular dynamics simulations of lipid interactions with P-glycoprotein in a complex membrane. J Mol Graph Model 2017; 77:250-258. [PMID: 28903085 DOI: 10.1016/j.jmgm.2017.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/29/2017] [Accepted: 09/01/2017] [Indexed: 11/16/2022]
Abstract
P-glycoprotein (P-gp) can transport a wide range of very different hydrophobic organic molecules across the membrane. Its ability to extrude molecules from the cell creates delivery problems for drugs that target proteins in the central nervous system (CNS) and also causes drug-resistance in many forms of cancer. Whether a drug will be susceptible to export by P-gp is difficult to predict and currently this is usually assessed with empirical and/or animal models. Thus, there is a need to better understand how P-gp works at the molecular level in order to fulfil the 3Rs: Refinement, reduction and replacement of animals in research. As structural information increasingly becomes available, our understanding at the molecular level improves. Proteins like P-gp are however very dynamic entities and thus one of the most appropriate ways to study them is with molecular dynamics simulations, especially as this can capture the influence of the surrounding environment. Recent parameterization developments have meant that it is now possible to simulate lipid bilayers that more closely resemble in vivo membranes in terms of their composition. In this report we construct a complex lipid bilayer that mimics the composition of brain epithelial cells and examine the interactions of it with P-gp. We find that the negatively charged phosphatidylserine lipids in the inner leaflet of the membrane tend to form an annulus around P-gp. We also observed the interaction of cholesterol with three distinct areas of the P-gp. Potential of mean force (PMF) calculations suggest that a crevice between transmembrane helices 10 and 12 has particularly favourable interaction energy for cholesterol.
Collapse
Affiliation(s)
- Laura Domicevica
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | - Heidi Koldsø
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | - Philip C Biggin
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom.
| |
Collapse
|
26
|
Multidrug ABC transporter Cdr1 of Candida albicans harbors specific and overlapping binding sites for human steroid hormones transport. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1778-1789. [DOI: 10.1016/j.bbamem.2017.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/12/2017] [Accepted: 05/25/2017] [Indexed: 11/23/2022]
|
27
|
Affiliation(s)
- Gerhard F. Ecker
- University; of Vienna; Department of Pharmaceutical Chemistry; Althanstrasse 14 1090 Wien Austria
| |
Collapse
|
28
|
Kraft ML. Sphingolipid Organization in the Plasma Membrane and the Mechanisms That Influence It. Front Cell Dev Biol 2017; 4:154. [PMID: 28119913 PMCID: PMC5222807 DOI: 10.3389/fcell.2016.00154] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 12/27/2016] [Indexed: 11/13/2022] Open
Abstract
Sphingolipids are structural components in the plasma membranes of eukaryotic cells. Their metabolism produces bioactive signaling molecules that modulate fundamental cellular processes. The segregation of sphingolipids into distinct membrane domains is likely essential for cellular function. This review presents the early studies of sphingolipid distribution in the plasma membranes of mammalian cells that shaped the most popular current model of plasma membrane organization. The results of traditional imaging studies of sphingolipid distribution in stimulated and resting cells are described. These data are compared with recent results obtained with advanced imaging techniques, including super-resolution fluorescence detection and high-resolution secondary ion mass spectrometry (SIMS). Emphasis is placed on the new insight into the sphingolipid organization within the plasma membrane that has resulted from the direct imaging of stable isotope-labeled lipids in actual cell membranes with high-resolution SIMS. Super-resolution fluorescence techniques have recently revealed the biophysical behaviors of sphingolipids and the unhindered diffusion of cholesterol analogs in the membranes of living cells are ultimately in contrast to the prevailing hypothetical model of plasma membrane organization. High-resolution SIMS studies also conflicted with the prevailing hypothesis, showing sphingolipids are concentrated in micrometer-scale membrane domains, but cholesterol is evenly distributed within the plasma membrane. Reductions in cellular cholesterol decreased the number of sphingolipid domains in the plasma membrane, whereas disruption of the cytoskeleton eliminated them. In addition, hemagglutinin, a transmembrane protein that is thought to be a putative raft marker, did not cluster within sphingolipid-enriched regions in the plasma membrane. Thus, sphingolipid distribution in the plasma membrane is dependent on the cytoskeleton, but not on favorable interactions with cholesterol or hemagglutinin. The alternate views of plasma membrane organization suggested by these findings are discussed.
Collapse
Affiliation(s)
- Mary L Kraft
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana, IL, USA
| |
Collapse
|
29
|
Fosso-Tande J, Black C, G. Aller S, Lu L, D. Hills Jr R. Simulation of lipid-protein interactions with the CgProt force field. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.3.352] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
30
|
Tian NN, Li C, Tian N, Zhou QX, Hou YJ, Zhang BW, Wang XS. Syntheses of 7-dehydrocholesterol peroxides and their improved anticancer activity and selectivity over ergosterol peroxide. NEW J CHEM 2017. [DOI: 10.1039/c7nj04100d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three 7-dehydrocholesterol peroxides were photochemically prepared and their anticancer activity was studied.
Collapse
Affiliation(s)
- Na-na Tian
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry Chinese Academy of Sciences
- Beijing 100190
- P. R. China
- University of Chinese Academy of Sciences
| | - Chao Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Na Tian
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry Chinese Academy of Sciences
- Beijing 100190
- P. R. China
- University of Chinese Academy of Sciences
| | - Qian-xiong Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Yuan-jun Hou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Bao-wen Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Xue-song Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry Chinese Academy of Sciences
- Beijing 100190
- P. R. China
- University of Chinese Academy of Sciences
| |
Collapse
|
31
|
Di Scala C, Baier CJ, Evans LS, Williamson PT, Fantini J, Barrantes FJ. Relevance of CARC and CRAC Cholesterol-Recognition Motifs in the Nicotinic Acetylcholine Receptor and Other Membrane-Bound Receptors. CURRENT TOPICS IN MEMBRANES 2017; 80:3-23. [DOI: 10.1016/bs.ctm.2017.05.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
32
|
Yang Z, Zhou Q, Mok L, Singh A, Swartz DJ, Urbatsch IL, Brouillette CG. Interactions and cooperativity between P-glycoprotein structural domains determined by thermal unfolding provides insights into its solution structure and function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:48-60. [PMID: 27783926 DOI: 10.1016/j.bbamem.2016.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/19/2016] [Accepted: 10/21/2016] [Indexed: 12/16/2022]
Abstract
Structural changes in mouse P-glycoprotein (Pgp) induced by thermal unfolding were studied by differential scanning calorimetry (DSC), circular dichroism and fluorescence spectroscopy to gain insight into the solution conformation(s) of this ABC transporter that may not be apparent from current crystal structures. DSC of reconstituted Pgp showed two thermal unfolding transitions in the absence of MgATP, suggesting that each transition involved the cooperative unfolding of two or more interacting structural domains. A low calorimetric unfolding enthalpy and minimal structural changes were observed, which are hallmarks of the thermal unfolding of α-helical membrane proteins, because generally only the extramembranous regions undergo significant unfolding. Nucleotide binding increased the unfolding temperature of both transitions to the same extent, suggesting that one nucleotide binding domain (NBD) unfolds with each transition. Combined with the results from the two isolated NBDs, we propose that each DSC transition represents the cooperative unfolding of one NBD and the two contacting intracellular loops. Further, the presence of two transitions in both apo and MgATP bound wild-type Pgp suggests the NBD-dimeric conformation is transient, and that Pgp resides predominantly in the crystallographically observed inward-facing conformation with NBDs separated, even under conditions supporting continuous MgATP hydrolysis. In contrast, DSC of the vanadate-trapped MgADP·Pgp complex and the MgATP-bound catalytically inactive mutant, E552A/E1197A, show an additional transition at much higher temperature, corresponding to the unfolding of the nucleotide-trapped NBD-dimeric outward-facing conformation. The collective results indicate a strong preference for an NBD dissociated, inward-facing conformation of Pgp.
Collapse
Affiliation(s)
- Zhengrong Yang
- Center for Structural Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Qingxian Zhou
- Center for Structural Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Leo Mok
- Department of Cell Biology and Biochemistry, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Anukriti Singh
- Department of Cell Biology and Biochemistry, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Douglas J Swartz
- Department of Cell Biology and Biochemistry, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ina L Urbatsch
- Department of Cell Biology and Biochemistry, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Christie G Brouillette
- Center for Structural Biology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
33
|
Neumann J, Rose-Sperling D, Hellmich UA. Diverse relations between ABC transporters and lipids: An overview. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:605-618. [PMID: 27693344 DOI: 10.1016/j.bbamem.2016.09.023] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/24/2016] [Accepted: 09/26/2016] [Indexed: 12/19/2022]
Abstract
It was first discovered in 1992 that P-glycoprotein (Pgp, ABCB1), an ATP binding cassette (ABC) transporter, can transport phospholipids such as phosphatidylcholine, -ethanolamine and -serine as well as glucosylceramide and glycosphingolipids. Subsequently, many other ABC transporters were identified to act as lipid transporters. For substrate transport by ABC transporters, typically a classic, alternating access model with an ATP-dependent conformational switch between a high and a low affinity substrate binding site is evoked. Transport of small hydrophilic substrates can easily be imagined this way, as the molecule can in principle enter and exit the transporter in the same orientation. Lipids on the other hand need to undergo a 180° degree turn as they translocate from one membrane leaflet to the other. Lipids and lipidated molecules are highly diverse, so there may be various ways how to achieve their flipping and flopping. Nonetheless, an increase in biophysical, biochemical and structural data is beginning to shed some light on specific aspects of lipid transport by ABC transporters. In addition, there is now abundant evidence that lipids affect ABC transporter conformation, dynamics as well as transport and ATPase activity in general. In this review, we will discuss different ways in which lipids and ABC transporters interact and how lipid translocation may be achieved with a focus on the techniques used to investigate these processes. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.
Collapse
Affiliation(s)
- Jennifer Neumann
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany
| | - Dania Rose-Sperling
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany
| | - Ute A Hellmich
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany.
| |
Collapse
|
34
|
Fantini J, Di Scala C, Baier CJ, Barrantes FJ. Molecular mechanisms of protein-cholesterol interactions in plasma membranes: Functional distinction between topological (tilted) and consensus (CARC/CRAC) domains. Chem Phys Lipids 2016; 199:52-60. [DOI: 10.1016/j.chemphyslip.2016.02.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/24/2016] [Accepted: 02/26/2016] [Indexed: 12/22/2022]
|
35
|
Kishimoto T, Ishitsuka R, Kobayashi T. Detectors for evaluating the cellular landscape of sphingomyelin- and cholesterol-rich membrane domains. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:812-829. [PMID: 26993577 DOI: 10.1016/j.bbalip.2016.03.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/09/2016] [Accepted: 03/09/2016] [Indexed: 12/11/2022]
Abstract
Although sphingomyelin and cholesterol are major lipids of mammalian cells, the detailed distribution of these lipids in cellular membranes remains still obscure. However, the recent development of protein probes that specifically bind sphingomyelin and/or cholesterol provides new information about the landscape of the lipid domains that are enriched with sphingomyelin or cholesterol or both. Here, we critically summarize the tools to study distribution and dynamics of sphingomyelin and cholesterol. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Collapse
Affiliation(s)
| | - Reiko Ishitsuka
- Lipid Biology Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - Toshihide Kobayashi
- Lipid Biology Laboratory, RIKEN, Wako, Saitama 351-0198, Japan; INSERM U1060, Université Lyon 1, Villeurbanne 69621, France.
| |
Collapse
|
36
|
A mirror code for protein-cholesterol interactions in the two leaflets of biological membranes. Sci Rep 2016; 6:21907. [PMID: 26915987 PMCID: PMC4768152 DOI: 10.1038/srep21907] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/29/2016] [Indexed: 11/29/2022] Open
Abstract
Cholesterol controls the activity of a wide range of membrane receptors through specific interactions and identifying cholesterol recognition motifs is therefore critical for understanding signaling receptor function. The membrane-spanning domains of the paradigm neurotransmitter receptor for acetylcholine (AChR) display a series of cholesterol consensus domains (referred to as “CARC”). Here we use a combination of molecular modeling, lipid monolayer/mutational approaches and NMR spectroscopy to study the binding of cholesterol to a synthetic CARC peptide. The CARC-cholesterol interaction is of high affinity, lipid-specific, concentration-dependent, and sensitive to single-point mutations. The CARC motif is generally located in the outer membrane leaflet and its reverse sequence CRAC in the inner one. Their simultaneous presence within the same transmembrane domain obeys a “mirror code” controlling protein-cholesterol interactions in the outer and inner membrane leaflets. Deciphering this code enabled us to elaborate guidelines for the detection of cholesterol-binding motifs in any membrane protein. Several representative examples of neurotransmitter receptors and ABC transporters with the dual CARC/CRAC motifs are presented. The biological significance and potential clinical applications of the mirror code are discussed.
Collapse
|