1
|
Feng B, Pei Y, Zhang W, Zheng Q, Zhou Y. Asparaginase and isoaspartyl peptidase 1 RNA interference suppresses the growth of nasopharyngeal carcinoma cells. Discov Oncol 2024; 15:636. [PMID: 39520610 PMCID: PMC11550296 DOI: 10.1007/s12672-024-01228-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 08/08/2024] [Indexed: 11/16/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is one of the common malignant tumors, and its pathogenesis has not been fully clarified. This study aims to explore the impact of RNA interference on the growth and invasion of NPC cells. Asparaginase and isoaspartyl peptidase 1 (ASRGL1)-short hairpin(sh) RNA expressing lentivirus was used to investigate the effect of ASRGL1 knockdown on NPC cells (C666-1 and SUN-1). The target shASRGL1 gene was determined by mRNA and protein expression in nasopharyngeal carcinoma cells; nasopharyngeal carcinoma cell proliferation viability, migration, invasion, apoptosis, ATP levels, and oxidative stress were examined. The results found that ASRGL1 was found to be highly expressed in NPC tissues and cell lines. shASRGL1 exhibited a high gene expression knockdown efficiency, downregulated the ASRGL1 protein expression in the nasopharyngeal carcinoma cells, suppressed proliferation viability of transfected nasopharyngeal carcinoma cells, inhibited their migration and invasion and ATP levels, promoted nasopharyngeal carcinoma cell apoptosis, ROS, and ferroptosis. shASRGL1 plays a role in protecting against NPC cell growth and invasion.
Collapse
Affiliation(s)
- Bo Feng
- Department of Otorhinolaryngology, The First Affiliated Hospital of Ningbo University, No.56 Liuting Street, Ningbo, 315020, Zhejiang, China.
| | - Yingying Pei
- Department of Otorhinolaryngology, The First Affiliated Hospital of Ningbo University, No.56 Liuting Street, Ningbo, 315020, Zhejiang, China
| | - Weiwei Zhang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Ningbo University, No.56 Liuting Street, Ningbo, 315020, Zhejiang, China
| | - Qi Zheng
- Department of Otorhinolaryngology, The First Affiliated Hospital of Ningbo University, No.56 Liuting Street, Ningbo, 315020, Zhejiang, China
| | - Yan Zhou
- Department of Otorhinolaryngology, The First Affiliated Hospital of Ningbo University, No.56 Liuting Street, Ningbo, 315020, Zhejiang, China
| |
Collapse
|
2
|
Wlodawer A, Dauter Z, Lubkowski J, Loch JI, Brzezinski D, Gilski M, Jaskolski M. Towards a dependable data set of structures for L-asparaginase research. Acta Crystallogr D Struct Biol 2024; 80:506-527. [PMID: 38935343 PMCID: PMC11220836 DOI: 10.1107/s2059798324005461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The Protein Data Bank (PDB) includes a carefully curated treasury of experimentally derived structural data on biological macromolecules and their various complexes. Such information is fundamental for a multitude of projects that involve large-scale data mining and/or detailed evaluation of individual structures of importance to chemistry, biology and, most of all, to medicine, where it provides the foundation for structure-based drug discovery. However, despite extensive validation mechanisms, it is almost inevitable that among the ∼215 000 entries there will occasionally be suboptimal or incorrect structure models. It is thus vital to apply careful verification procedures to those segments of the PDB that are of direct medicinal interest. Here, such an analysis was carried out for crystallographic models of L-asparaginases, enzymes that include approved drugs for the treatment of certain types of leukemia. The focus was on the adherence of the atomic coordinates to the rules of stereochemistry and their agreement with the experimental electron-density maps. Whereas the current clinical application of L-asparaginases is limited to two bacterial proteins and their chemical modifications, the field of investigations of such enzymes has expanded tremendously in recent years with the discovery of three entirely different structural classes and with numerous reports, not always quite reliable, of the anticancer properties of L-asparaginases of different origins.
Collapse
Affiliation(s)
- Alexander Wlodawer
- Center for Structural Biology, Center for Cancer ResearchNational Cancer InstituteMarylandUSA
| | - Zbigniew Dauter
- Center for Structural Biology, Center for Cancer ResearchNational Cancer InstituteMarylandUSA
| | - Jacek Lubkowski
- Center for Structural Biology, Center for Cancer ResearchNational Cancer InstituteMarylandUSA
| | - Joanna I. Loch
- Department of Crystal Chemistry and Crystal Physics, Faculty of ChemistryJagiellonian UniversityCracowPoland
| | - Dariusz Brzezinski
- Institute of Computing SciencePoznan University of TechnologyPoznanPoland
| | - Miroslaw Gilski
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
- Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| | - Mariusz Jaskolski
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
- Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
3
|
Garcia-Montojo M, Fathi S, Rastegar C, Simula ER, Doucet-O'Hare T, Cheng YHH, Abrams RPM, Pasternack N, Malik N, Bachani M, Disanza B, Maric D, Lee MH, Wang H, Santamaria U, Li W, Sampson K, Lorenzo JR, Sanchez IE, Mezghrani A, Li Y, Sechi LA, Pineda S, Heiman M, Kellis M, Steiner J, Nath A. TDP-43 proteinopathy in ALS is triggered by loss of ASRGL1 and associated with HML-2 expression. Nat Commun 2024; 15:4163. [PMID: 38755145 PMCID: PMC11099023 DOI: 10.1038/s41467-024-48488-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) proteinopathy in brain cells is the hallmark of amyotrophic lateral sclerosis (ALS) but its cause remains elusive. Asparaginase-like-1 protein (ASRGL1) cleaves isoaspartates, which alter protein folding and susceptibility to proteolysis. ASRGL1 gene harbors a copy of the human endogenous retrovirus HML-2, whose overexpression contributes to ALS pathogenesis. Here we show that ASRGL1 expression was diminished in ALS brain samples by RNA sequencing, immunohistochemistry, and western blotting. TDP-43 and ASRGL1 colocalized in neurons but, in the absence of ASRGL1, TDP-43 aggregated in the cytoplasm. TDP-43 was found to be prone to isoaspartate formation and a substrate for ASRGL1. ASRGL1 silencing triggered accumulation of misfolded, fragmented, phosphorylated and mislocalized TDP-43 in cultured neurons and motor cortex of female mice. Overexpression of ASRGL1 restored neuronal viability. Overexpression of HML-2 led to ASRGL1 silencing. Loss of ASRGL1 leading to TDP-43 aggregation may be a critical mechanism in ALS pathophysiology.
Collapse
Affiliation(s)
- Marta Garcia-Montojo
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Saeed Fathi
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Cyrus Rastegar
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Elena Rita Simula
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
- Struttura Complessa Microbiologia e Virologia, Azienda Ospedaliera Universitaria Sassari, Sassari, Italy
| | - Tara Doucet-O'Hare
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Y H Hank Cheng
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Rachel P M Abrams
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Nicholas Pasternack
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Nasir Malik
- Translational Neuroscience Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Muzna Bachani
- Translational Neuroscience Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Brianna Disanza
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Myoung-Hwa Lee
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Herui Wang
- Neuro-Oncology Branch, National Cancer Institute (NIH), Bethesda, MD, USA
| | - Ulisses Santamaria
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Wenxue Li
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kevon Sampson
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Juan Ramiro Lorenzo
- Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET-CICPBA-UNCPBA, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro (FCV-UNCPBA), Tandil, Argentina
| | - Ignacio E Sanchez
- Protein Physiology Laboratory, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales and IQUIBICEN-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alexandre Mezghrani
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
- Centre de Biologie Structurale, Centre national de la recherche scientifique (CNRS), Montpellier, France
| | - Yan Li
- Protein/Peptide Sequencing Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Leonardo Antonio Sechi
- Struttura Complessa Microbiologia e Virologia, Azienda Ospedaliera Universitaria Sassari, Sassari, Italy
| | | | - Myriam Heiman
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Manolis Kellis
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joseph Steiner
- Translational Neuroscience Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
4
|
Biswas P, Berry AM, Zawaydeh Q, Bartsch DUG, Raghavendra PB, Hejtmancik JF, Khan NW, Riazuddin SA, Ayyagari R. A Mouse Model with Ablated Asparaginase and Isoaspartyl Peptidase 1 ( Asrgl1) Develops Early Onset Retinal Degeneration (RD) Recapitulating the Human Phenotype. Genes (Basel) 2022; 13:1461. [PMID: 36011372 PMCID: PMC9408336 DOI: 10.3390/genes13081461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
We previously identified a homozygous G178R mutation in human ASRGL1 (hASRGL1) through whole-exome analysis responsible for early onset retinal degeneration (RD) in patients with cone-rod dystrophy. The mutant G178R ASRGL1 expressed in Cos-7 cells showed altered localization, while the mutant ASRGL1 in E. coli lacked the autocatalytic activity needed to generate the active protein. To evaluate the effect of impaired ASRGL1 function on the retina in vivo, we generated a mouse model with c.578_579insAGAAA (NM_001083926.2) mutation (Asrgl1mut/mut) through the CRISPR/Cas9 methodology. The expression of ASGRL1 and its asparaginase activity were undetectable in the retina of Asrgl1mut/mut mice. The ophthalmic evaluation of Asrgl1mut/mut mice showed a significant and progressive decrease in scotopic electroretinographic (ERG) response observed at an early age of 3 months followed by a decrease in photopic response around 5 months compared with age-matched wildtype mice. Immunostaining and RT-PCR analyses with rod and cone cell markers revealed a loss of cone outer segments and a significant decrease in the expression of Rhodopsin, Opn1sw, and Opn1mw at 3 months in Asrgl1mut/mut mice compared with age-matched wildtype mice. Importantly, the retinal phenotype of Asrgl1mut/mut mice is consistent with the phenotype observed in patients harboring the G178R mutation in ASRGL1 confirming a critical role of ASRGL1 in the retina and the contribution of ASRGL1 mutations in retinal degeneration.
Collapse
Affiliation(s)
- Pooja Biswas
- Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
- School of Biotechnology, REVA University, Bengaluru 560064, India
| | - Anne Marie Berry
- Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Qais Zawaydeh
- Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Dirk-Uwe G. Bartsch
- Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Pongali B. Raghavendra
- School of Biotechnology, REVA University, Bengaluru 560064, India
- National Institute of Biomedical Genomics, Kalyani 741251, India
| | | | - Naheed W. Khan
- Ophthalmology and Visual Sciences, University of Michigan Health, Michigan Medicine, Ann Arbor, MI 48109, USA
| | - S. Amer Riazuddin
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 20817, USA
| | - Radha Ayyagari
- Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
5
|
Loch JI, Klonecka A, Kądziołka K, Bonarek P, Barciszewski J, Imiolczyk B, Brzezinski K, Gilski M, Jaskolski M. Structural and biophysical studies of new L-asparaginase variants: lessons from random mutagenesis of the prototypic Escherichia coli Ntn-amidohydrolase. Acta Crystallogr D Struct Biol 2022; 78:911-926. [PMID: 35775990 PMCID: PMC9248843 DOI: 10.1107/s2059798322005691] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/25/2022] [Indexed: 11/11/2022] Open
Abstract
This work reports the results of random mutagenesis of the Escherichia coli class 2 L-asparaginase EcAIII belonging to the Ntn-hydrolase family. New variants of EcAIII were studied using structural, biophysical and bioinformatic methods. Activity tests revealed that the L-asparaginase activity is abolished in all analyzed mutants with the absence of Arg207, but some of them retained the ability to undergo the autoproteolytic maturation process. The results of spectroscopic studies and the determined crystal structures showed that the EcAIII fold is flexible enough to accept different types of mutations; however, these mutations may have a diverse impact on the thermal stability of the protein. The conclusions from the experiments are grouped into six lessons focused on (i) the adaptation of the EcAIII fold to new substitutions, (ii) the role of Arg207 in EcAIII activity, (iii) a network of residues necessary for autoprocessing, (iv) the complexity of the autoprocessing reaction, (v) the conformational changes observed in enzymatically inactive variants and (vi) the cooperativity of the EcAIII dimer subunits. Additionally, the structural requirements (pre-maturation checkpoints) that are necessary for the initiation of the autocleavage of Ntn-hydrolases have been classified. The findings reported in this work provide useful hints that should be considered before planning enzyme-engineering experiments aimed at the design of proteins for therapeutic applications. This is especially important for L-asparaginases that can be utilized in leukemia therapy, as alternative therapeutics are urgently needed to circumvent the severe side effects associated with the currently used enzymes.
Collapse
Affiliation(s)
- Joanna I. Loch
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Agnieszka Klonecka
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Kinga Kądziołka
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Piotr Bonarek
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jakub Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Barbara Imiolczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | - Mirosław Gilski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - Mariusz Jaskolski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| |
Collapse
|
6
|
Loch JI, Jaskolski M. Structural and biophysical aspects of l-asparaginases: a growing family with amazing diversity. IUCRJ 2021; 8:514-531. [PMID: 34258001 PMCID: PMC8256714 DOI: 10.1107/s2052252521006011] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
l-Asparaginases have remained an intriguing research topic since their discovery ∼120 years ago, especially after their introduction in the 1960s as very efficient antileukemic drugs. In addition to bacterial asparaginases, which are still used to treat childhood leukemia, enzymes of plant and mammalian origin are now also known. They have all been structurally characterized by crystallography, in some cases at outstanding resolution. The structural data have also shed light on the mechanistic details of these deceptively simple enzymes. Yet, despite all this progress, no better therapeutic agents have been found to beat bacterial asparaginases. However, a new option might arise with the discovery of yet another type of asparaginase, those from symbiotic nitrogen-fixing Rhizobia, and with progress in the protein engineering of enzymes with desired properties. This review surveys the field of structural biology of l-asparaginases, focusing on the mechanistic aspects of the well established types and speculating about the potential of the new members of this amazingly diversified family.
Collapse
Affiliation(s)
- Joanna I. Loch
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Cracow, Poland
| | - Mariusz Jaskolski
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
7
|
Nagaratnam N, Delker SL, Jernigan R, Edwards TE, Snider J, Thifault D, Williams D, Nannenga BL, Stofega M, Sambucetti L, Hsieh JJ, Flint AJ, Fromme P, Martin-Garcia JM. Structural insights into the function of the catalytically active human Taspase1. Structure 2021; 29:873-885.e5. [PMID: 33784495 DOI: 10.1016/j.str.2021.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/07/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022]
Abstract
Taspase1 is an Ntn-hydrolase overexpressed in primary human cancers, coordinating cancer cell proliferation, invasion, and metastasis. Loss of Taspase1 activity disrupts proliferation of human cancer cells in vitro and in mouse models of glioblastoma. Taspase1 is synthesized as an inactive proenzyme, becoming active upon intramolecular cleavage. The activation process changes the conformation of a long fragment at the C-terminus of the α subunit, for which no full-length structural information exists and whose function is poorly understood. We present a cloning strategy to generate a circularly permuted form of Taspase1 to determine the crystallographic structure of active Taspase1. We discovered that this region forms a long helix and is indispensable for the catalytic activity of Taspase1. Our study highlights the importance of this element for the enzymatic activity of Ntn-hydrolases, suggesting that it could be a potential target for the design of inhibitors with potential to be developed into anticancer therapeutics.
Collapse
Affiliation(s)
- Nirupa Nagaratnam
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Silvia L Delker
- Beryllium Discovery Corp., with present address of UCB Biosciences, Bedford, MA 01730, USA
| | - Rebecca Jernigan
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Thomas E Edwards
- Beryllium Discovery Corp., with present address of UCB Biosciences, Bedford, MA 01730, USA
| | - Janey Snider
- Division of Biosciences, SRI International Menlo Park, Menlo Park, CA 94025, USA
| | - Darren Thifault
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Dewight Williams
- Eyring Materials Center, Arizona State University, Tempe, AZ 85257, USA
| | - Brent L Nannenga
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, USA
| | - Mary Stofega
- Division of Biosciences, SRI International Menlo Park, Menlo Park, CA 94025, USA
| | - Lidia Sambucetti
- Division of Biosciences, SRI International Menlo Park, Menlo Park, CA 94025, USA
| | - James J Hsieh
- Molecular Oncology, Division of Oncology, Department of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Andrew J Flint
- Frederick National Lab for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Petra Fromme
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Jose M Martin-Garcia
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; Department of Crystallography and Structural Biology, Institute of Physical-Chemistry "Rocasolano", Spanish National Research Council (CSIC), Madrid 28006, Spain.
| |
Collapse
|
8
|
da Silva LS, Doonan LB, Pessoa A, de Oliveira MA, Long PF. Structural and functional diversity of asparaginases: Overview and recommendations for a revised nomenclature. Biotechnol Appl Biochem 2021; 69:503-513. [PMID: 33624365 DOI: 10.1002/bab.2127] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/09/2021] [Indexed: 12/19/2022]
Abstract
Asparaginases (ASNases) are a large and structurally diverse group of enzymes ubiquitous amongst archaea, bacteria and eukaryotes, that catalyze hydrolysis of asparagine to aspartate and ammonia. Bacterial ASNases are important biopharmaceuticals for the treatment of acute lymphoblastic leukemia, although some patients experience adverse allergic side effects during treatment with these protein therapeutics. ASNases are currently divided into three families: plant-type ASNases, Rhizobium etli-type ASNases and bacterial-type ASNases. This system is outdated as both bacterial-type and plant-type families also include archaeal, bacterial and eukaryotic enzymes, each with their own distinct characteristics. Herein, phylogenetic studies allied to tertiary structural analyses are described with the aim of proposing a revised and more robust classification system that considers the biochemical diversity of ASNases. Accordingly, based on distinct peptide domains, phylogenetic data, structural analysis and functional characteristics, we recommend that ASNases now be divided into three new distinct classes containing subgroups according to structural and functional aspects. Using this new classification scheme, 25 ASNases were identified as candidates for future new lead discovery.
Collapse
Affiliation(s)
- Leonardo Schultz da Silva
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), São Vicente, São Paulo, Brazil.,Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, UK
| | - Liam B Doonan
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, UK
| | - Adalberto Pessoa
- Departamento de Tecnologia Tecnologia Bioquímico-Farmacêuticas, Faculdade de Ciencias Farmaceuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | | | - Paul F Long
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, UK.,Departamento de Tecnologia Tecnologia Bioquímico-Farmacêuticas, Faculdade de Ciencias Farmaceuticas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Morais SB, Pirolla RAS, Frota NF, Lourenzoni MR, Gozzo FC, Souza TACB. The role of the quaternary structure in the activation of human L-asparaginase. J Proteomics 2020; 224:103818. [PMID: 32434038 DOI: 10.1016/j.jprot.2020.103818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/30/2020] [Accepted: 05/09/2020] [Indexed: 11/25/2022]
Abstract
Human L-asparaginase-like protein 1 (ASRGL1) has hydrolytic activity against L-asparagine and isoaspartyl dipeptides. As an N-terminal nucleophile hydrolase family member, its activation depends on an intramolecular autoprocessing step between G167 and T168. In vitro, autoprocessing reaches only 50% completion, which restrains the activity and hampers the full understanding of the activation process. The ASRGL1 dimer interface plays a critical role in intramolecular processing, and the interactions within oligomers can offer relevant information about autoprocessing. In this work, a fully processed trimeric conformation of ASRGL1 was observed for the first time, and we combined biophysical and structural proteomics assays to characterize trimeric ASRGL1. Our analyses show that oligomerization is critical for autoprocessing, hydrolytic activity and thermal stability. The newest trimeric ASRGL1 conformation enhances protein activity and presents a melting temperature deviation of 4.33 °C in comparison to the monomeric conformation. The interaction of the third monomer in the trimeric conformation is driven by an α-helix comprising residues KVNLARLTLF (227-236).
Collapse
Affiliation(s)
- S B Morais
- Structural and Computational Proteomics Laboratory, Carlos Chagas Institute, FIOCRUZ-PR, Curitiba/PR 80320-290, Brazil
| | - R A S Pirolla
- Institute of Chemistry, University of Campinas UNICAMP, Campinas, SP, 13083-970, Brazil
| | - N F Frota
- Postgraduate Program in Natural Resource Biotechnology, Federal University of Ceara, Campus do Pici, Fortaleza/CE, 60356-000, Brazil
| | - M R Lourenzoni
- Postgraduate Program in Natural Resource Biotechnology, Federal University of Ceara, Campus do Pici, Fortaleza/CE, 60356-000, Brazil; Protein Engineering and Healthcare Solutions Research Group, FIOCRUZ-CE, Eusebio/CE, 61760-000, Brazil
| | - F C Gozzo
- Institute of Chemistry, University of Campinas UNICAMP, Campinas, SP, 13083-970, Brazil
| | - T A C B Souza
- Structural and Computational Proteomics Laboratory, Carlos Chagas Institute, FIOCRUZ-PR, Curitiba/PR 80320-290, Brazil.
| |
Collapse
|
10
|
Lv XF, Hong HQ, Liu L, Cui SH, Ren CC, Li HY, Zhang XA, Zhang LD, Wei TX, Liu JJ, Xing WY, Fu H, Yan SJ. RNAi‑mediated downregulation of asparaginase‑like protein 1 inhibits growth and promotes apoptosis of human cervical cancer line SiHa. Mol Med Rep 2018; 18:931-937. [PMID: 29767260 PMCID: PMC6059725 DOI: 10.3892/mmr.2018.9018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/09/2018] [Indexed: 11/05/2022] Open
Abstract
Asparaginase like 1 (ASRGL1) protein belongs to the N-terminal nucleophile group, cleaving the isoaspartyl-dipeptides and L-asparagine by adding water. It tends to be overexpressed in cancerous tumors including ovarian cancer and breast tumors. The present study assessed the potential ability of ASRGL1 as a molecular target in gene-based cervical cancer treatment. The protein expression level of ASRGL1 was determined in paraffin-embedded tumor specimen by immunohistochemistry. Additionally, in order to assess the activity of ASRGL1 during the process of cervical cancer cell multiplication, ASRGL1-short hairpin (sh) RNA-expressing lentivirus was established, which was used to infect SiHa cells. The Cellomics ArrayScan VT1 Reader identified the influence of downregulation on SiHa caused by RNA interference-intervened ASRGL1. Flow cytometric analysis was also performed to evaluate the influence. The cyclin dependent kinase (CDK2), cyclin A2, B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax) expression levels were assessed by western blot analysis. ASRGL1 was observed to be overexpressed in cervical cancer tissues when compared with the adjacent normal tissues. The knockdown of ASRGL1 in SiHa by ASRGL1-shRNA lentivirus infection significantly inhibited cell growth and enhanced cellular apoptosis; the cells were also captured during the S phase. The knockdown of ASRGL1 expression led to the increased expression of Bax and decreased expression of Bcl-2, CDK2 and cyclin A2. In conclusion, ASRGL1 was closely associated with growth and apoptosis in cervical cancer. Therefore, ASRGL1 may be a novel, potentially effective anti-cervical cancer therapy.
Collapse
Affiliation(s)
- Xiao-Feng Lv
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Han-Qing Hong
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ling Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shi-Hong Cui
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Chen-Chen Ren
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Hong-Yu Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiao-An Zhang
- Department of Imaging, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Lin-Dong Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Tian-Xiang Wei
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jin-Jin Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Wen-Ying Xing
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Han Fu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shu-Jun Yan
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|