1
|
Asakereh I, Rutbeek NR, Singh M, Davidson D, Prehna G, Khajehpour M. The Streptococcus phage protein paratox is an intrinsically disordered protein. Protein Sci 2024; 33:e5037. [PMID: 38801244 PMCID: PMC11129628 DOI: 10.1002/pro.5037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024]
Abstract
The bacteriophage protein paratox (Prx) blocks quorum sensing in its streptococcal host by directly binding the signal receptor and transcription factor ComR. This reduces the ability of Streptococcus to uptake environmental DNA and protects phage DNA from damage by recombination. Past work characterizing the Prx:ComR molecular interaction revealed that paratox adopts a well-ordered globular fold when bound to ComR. However, solution-state biophysical measurements suggested that Prx may be conformationally dynamic. To address this discrepancy, we investigated the stability and dynamic properties of Prx in solution using circular dichroism, nuclear magnetic resonance, and several fluorescence-based protein folding assays. Our work shows that under dilute buffer conditions Prx is intrinsically disordered. We also show that the addition of kosmotropic salts or protein stabilizing osmolytes induces Prx folding. However, the solute stabilized fold is different from the conformation Prx adopts when it is bound to ComR. Furthermore, we have characterized Prx folding thermodynamics and folding kinetics through steady-state fluorescence and stopped flow kinetic measurements. Our results show that Prx is a highly dynamic protein in dilute solution, folding and refolding within the 10 ms timescale. Overall, our results demonstrate that the streptococcal phage protein Prx is an intrinsically disordered protein in a two-state equilibrium with a solute-stabilized folded form. Furthermore, the solute-stabilized fold is likely the predominant form of Prx in a solute-crowded bacterial cell. Finally, our work suggests that Prx binds and inhibits ComR, and thus quorum sensing in Streptococcus, by a combination of conformational selection and induced-fit binding mechanisms.
Collapse
Affiliation(s)
- Iman Asakereh
- Department of ChemistryUniversity of ManitobaWinnipegManitobaCanada
| | - Nicole R. Rutbeek
- Department of MicrobiologyUniversity of ManitobaWinnipegManitobaCanada
| | - Manvir Singh
- Department of ChemistryUniversity of ManitobaWinnipegManitobaCanada
| | - David Davidson
- Department of ChemistryUniversity of ManitobaWinnipegManitobaCanada
| | - Gerd Prehna
- Department of MicrobiologyUniversity of ManitobaWinnipegManitobaCanada
| | | |
Collapse
|
2
|
Monterroso B, Margolin W, Boersma AJ, Rivas G, Poolman B, Zorrilla S. Macromolecular Crowding, Phase Separation, and Homeostasis in the Orchestration of Bacterial Cellular Functions. Chem Rev 2024; 124:1899-1949. [PMID: 38331392 PMCID: PMC10906006 DOI: 10.1021/acs.chemrev.3c00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/01/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024]
Abstract
Macromolecular crowding affects the activity of proteins and functional macromolecular complexes in all cells, including bacteria. Crowding, together with physicochemical parameters such as pH, ionic strength, and the energy status, influences the structure of the cytoplasm and thereby indirectly macromolecular function. Notably, crowding also promotes the formation of biomolecular condensates by phase separation, initially identified in eukaryotic cells but more recently discovered to play key functions in bacteria. Bacterial cells require a variety of mechanisms to maintain physicochemical homeostasis, in particular in environments with fluctuating conditions, and the formation of biomolecular condensates is emerging as one such mechanism. In this work, we connect physicochemical homeostasis and macromolecular crowding with the formation and function of biomolecular condensates in the bacterial cell and compare the supramolecular structures found in bacteria with those of eukaryotic cells. We focus on the effects of crowding and phase separation on the control of bacterial chromosome replication, segregation, and cell division, and we discuss the contribution of biomolecular condensates to bacterial cell fitness and adaptation to environmental stress.
Collapse
Affiliation(s)
- Begoña Monterroso
- Department
of Structural and Chemical Biology, Centro de Investigaciones Biológicas
Margarita Salas, Consejo Superior de Investigaciones
Científicas (CSIC), 28040 Madrid, Spain
| | - William Margolin
- Department
of Microbiology and Molecular Genetics, McGovern Medical School, UTHealth-Houston, Houston, Texas 77030, United States
| | - Arnold J. Boersma
- Cellular
Protein Chemistry, Bijvoet Centre for Biomolecular Research, Faculty
of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Germán Rivas
- Department
of Structural and Chemical Biology, Centro de Investigaciones Biológicas
Margarita Salas, Consejo Superior de Investigaciones
Científicas (CSIC), 28040 Madrid, Spain
| | - Bert Poolman
- Department
of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Silvia Zorrilla
- Department
of Structural and Chemical Biology, Centro de Investigaciones Biológicas
Margarita Salas, Consejo Superior de Investigaciones
Científicas (CSIC), 28040 Madrid, Spain
| |
Collapse
|
3
|
Khandwala CB, Sarkar P, Schmidt HB, Ma M, Kinnebrew M, Pusapati GV, Patel BB, Tillo D, Lebensohn AM, Rohatgi R. Direct ionic stress sensing and mitigation by the transcription factor NFAT5. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.23.559074. [PMID: 37886503 PMCID: PMC10602047 DOI: 10.1101/2023.09.23.559074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Homeostatic control of intracellular ionic strength is essential for protein, organelle and genome function, yet mechanisms that sense and enable adaptation to ionic stress remain poorly understood in animals. We find that the transcription factor NFAT5 directly senses solution ionic strength using a C-terminal intrinsically disordered region. Both in intact cells and in a purified system, NFAT5 forms dynamic, reversible biomolecular condensates in response to increasing ionic strength. This self-associative property, conserved from insects to mammals, allows NFAT5 to accumulate in the nucleus and activate genes that restore cellular ion content. Mutations that reduce condensation or those that promote aggregation both reduce NFAT5 activity, highlighting the importance of optimally tuned associative interactions. Remarkably, human NFAT5 alone is sufficient to reconstitute a mammalian transcriptional response to ionic or hypertonic stress in yeast. Thus NFAT5 is both the sensor and effector of a cell-autonomous ionic stress response pathway in animal cells.
Collapse
Affiliation(s)
- Chandni B. Khandwala
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Parijat Sarkar
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - H. Broder Schmidt
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mengxiao Ma
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maia Kinnebrew
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ganesh V. Pusapati
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bhaven B. Patel
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Desiree Tillo
- Center for Cancer Research Genomics Core, National Cancer Institute, National Institutes of Health, NIH, Building 37, RM 2056B, Bethesda, MD, 20892, USA
| | - Andres M. Lebensohn
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, NIH, Building 37, RM 2056B, Bethesda, MD, 20892, USA
| | - Rajat Rohatgi
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Ozturk TN, Coumoundouros C, Culham DE, Wood JM. Structural Determinants and Functional Significance of Dimerization for Osmosensing Transporter ProP in Escherichia coli. Biochemistry 2023; 62:118-133. [PMID: 36516499 DOI: 10.1021/acs.biochem.2c00393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Osmosensing transporter ProP forestalls cellular dehydration by detecting environments with high osmotic pressure and mediating the accumulation of organic osmolytes by bacterial cells. It is composed of 12 transmembrane helices with cytoplasmic N- and C-termini. In Escherichia coli, dimers form when the C-terminal domains of ProP molecules form homodimeric, antiparallel, α-helical coiled coils. No dominant negative effect was detected when inactive and active ProP molecules formed heterodimers in vivo. Purification of ProP in detergent dodecylmaltoside yielded monomers, which were functional after reconstitution in proteoliposomes. With other evidence, this suggests that ProP monomers function independently whether in the monomeric or dimeric state. Amino acid replacements that disrupted or reversed the coiled coil did not prevent in vivo dimerization of ProP detected with a bacterial two-hybrid system. Maleimide labeling detected no osmolality-dependent variation in the reactivities of cysteine residues introduced to transmembrane helix (TM) XII. In contrast, coarse-grained molecular dynamic simulations detected deformation of the lipid around TMs III and VI, on the lipid-exposed protein surface opposite to TM XII. This suggests that the dimer interface of ProP includes the surfaces of TMs III and VI, not of TM XII as previously suggested by crosslinking data. Homology modeling suggested that coiled-coil formation and dimerization via such an interface are not mutually exclusive. In previous work, alterations to the C-terminal coiled coil blocked co-localization of ProP with phospholipid cardiolipin at E. coli cell poles. Thus, dimerization may contribute to ProP targeting, adjust its lipid environment, and hence indirectly modify its osmotic stress response.
Collapse
Affiliation(s)
- Tugba N Ozturk
- Department of Biochemistry and Molecular Biophysics, Washington University in Saint Louis, Saint Louis, Missouri63110, United States.,Theoretical Molecular Biophysics Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland20814, United States
| | - Chelsea Coumoundouros
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, CanadaN1G 2 W1
| | - Doreen E Culham
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, CanadaN1G 2 W1
| | - Janet M Wood
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, CanadaN1G 2 W1
| |
Collapse
|
5
|
Sikkema HR, van den Noort M, Rheinberger J, de Boer M, Krepel ST, Schuurman-Wolters GK, Paulino C, Poolman B. Gating by ionic strength and safety check by cyclic-di-AMP in the ABC transporter OpuA. SCIENCE ADVANCES 2020; 6:6/47/eabd7697. [PMID: 33208376 PMCID: PMC7673798 DOI: 10.1126/sciadv.abd7697] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/01/2020] [Indexed: 05/02/2023]
Abstract
(Micro)organisms are exposed to fluctuating environmental conditions, and adaptation to stress is essential for survival. Increased osmolality (hypertonicity) causes outflow of water and loss of turgor and is dangerous if the cell is not capable of rapidly restoring its volume. The osmoregulatory adenosine triphosphate-binding cassette transporter OpuA restores the cell volume by accumulating large amounts of compatible solute. OpuA is gated by ionic strength and inhibited by the second messenger cyclic-di-AMP, a molecule recently shown to affect many cellular processes. Despite the master regulatory role of cyclic-di-AMP, structural and functional insights into how the second messenger regulates (transport) proteins on the molecular level are lacking. Here, we present high-resolution cryo-electron microscopy structures of OpuA and in vitro activity assays that show how the osmoregulator OpuA is activated by high ionic strength and how cyclic-di-AMP acts as a backstop to prevent unbridled uptake of compatible solutes.
Collapse
Affiliation(s)
- Hendrik R Sikkema
- Department of Biochemistry, Membrane Enzymology Group, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, Netherlands
| | - Marco van den Noort
- Department of Biochemistry, Membrane Enzymology Group, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, Netherlands
| | - Jan Rheinberger
- Department of Biochemistry, Structural Biology Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, Netherlands
| | - Marijn de Boer
- Department of Biochemistry, Membrane Enzymology Group, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, Netherlands
| | - Sabrina T Krepel
- Department of Biochemistry, Membrane Enzymology Group, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, Netherlands
| | - Gea K Schuurman-Wolters
- Department of Biochemistry, Membrane Enzymology Group, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, Netherlands
| | - Cristina Paulino
- Department of Biochemistry, Structural Biology Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, Netherlands.
| | - Bert Poolman
- Department of Biochemistry, Membrane Enzymology Group, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, Netherlands.
| |
Collapse
|
6
|
Ozturk TN, Culham DE, Tempelhagen L, Wood JM, Lamoureux G. Salt-Dependent Interactions between the C-Terminal Domain of Osmoregulatory Transporter ProP of Escherichia coli and the Lipid Membrane. J Phys Chem B 2020; 124:8209-8220. [PMID: 32838524 DOI: 10.1021/acs.jpcb.0c03935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Osmosensing transporter ProP detects the increase in cytoplasmic cation concentration associated with osmotically induced cell dehydration and mediates osmolyte uptake into bacteria. ProP is a 12-transmembrane helix protein with an α-helical, cytoplasmic C-terminal domain (CTD) linked to transmembrane helix XII (TM XII). It has been proposed that the CTD helix associates with the anionic membrane surface to lock ProP in an inactive conformation and that the release of the CTD may activate ProP. To investigate this possible activation mechanism, we have built and simulated a structural model in which the CTD was anchored to the membrane by TM XII and the CTD helix was associated with the membrane surface. Molecular dynamics simulations showed specific intrapeptide salt bridges forming when the CTD associated with the membrane. Experiments supported the presence of the salt bridge Lys447-Asp455 and suggested a role for these residues in osmosensing. Simulations performed at different salt concentrations showed weakened CTD-lipid interactions at 0.25 M KCl and gradual stiffening of the membrane with increasing salinity. These results suggest that salt cations may affect CTD release and activate ProP by increasing the order of membrane phospholipids.
Collapse
Affiliation(s)
- Tugba N Ozturk
- Department of Physics, Concordia University, Montreal QC H4B 1R6, Canada.,Centre for Research in Molecular Modeling, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Doreen E Culham
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Laura Tempelhagen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Janet M Wood
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Guillaume Lamoureux
- Centre for Research in Molecular Modeling, Concordia University, Montreal, Quebec H4B 1R6, Canada.,Department of Chemistry and Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey 08102, United States
| |
Collapse
|
7
|
Roussel G, White SH. Binding of SecA ATPase monomers and dimers to lipid vesicles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183112. [PMID: 31676370 DOI: 10.1016/j.bbamem.2019.183112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 11/29/2022]
Abstract
The Escherichia coli SecA ATPase motor protein is essential for secretion of proteins through the SecYEG translocon into the periplasmic space. Its function relies upon interactions with the surrounding lipid bilayer as well as SecYEG translocon. That negatively charged lipids are required for bilayer binding has been known for >25 years, but little systematic quantitative data is available. We have carried out an extensive investigation of SecA partitioning into large unilamellar vesicles (LUV) using a wide range of lipid and electrolyte compositions, including the principal cytoplasmic salt of E. coli, potassium glutamate, which we have shown stabilizes SecA. The water-to-bilayer transfer free energy is about -7.5 kcal mol-1 for typical E. coli lipid compositions. Although it has been established that SecA is dimeric in the cytoplasm, we find that the most widely cited dimer form (PDB 1M6N) binds only weakly to LUVs formed from E. coli lipids.
Collapse
Affiliation(s)
- Guillaume Roussel
- Department of Physiology & Biophysics, University of California, Irvine, CA 92697, United States of America
| | - Stephen H White
- Department of Physiology & Biophysics, University of California, Irvine, CA 92697, United States of America.
| |
Collapse
|
8
|
Christgen SL, Becker DF. Role of Proline in Pathogen and Host Interactions. Antioxid Redox Signal 2019; 30:683-709. [PMID: 29241353 PMCID: PMC6338583 DOI: 10.1089/ars.2017.7335] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/26/2017] [Accepted: 11/14/2017] [Indexed: 01/20/2023]
Abstract
SIGNIFICANCE Proline metabolism has complex roles in a variety of biological processes, including cell signaling, stress protection, and energy production. Proline also contributes to the pathogenesis of various disease-causing organisms. Understanding the mechanisms of how pathogens utilize proline is important for developing new strategies against infectious diseases. Recent Advances: The ability of pathogens to acquire amino acids is critical during infection. Besides protein biosynthesis, some amino acids, such as proline, serve as a carbon, nitrogen, or energy source in bacterial and protozoa pathogens. The role of proline during infection depends on the physiology of the host/pathogen interactions. Some pathogens rely on proline as a critical respiratory substrate, whereas others exploit proline for stress protection. CRITICAL ISSUES Disruption of proline metabolism and uptake has been shown to significantly attenuate virulence of certain pathogens, whereas in other pathogens the importance of proline during infection is not known. Inhibiting proline metabolism and transport may be a useful therapeutic strategy against some pathogens. Developing specific inhibitors to avoid off-target effects in the host, however, will be challenging. Also, potential treatments that target proline metabolism should consider the impact on intracellular levels of Δ1-pyrroline-5-carboxylate, a metabolite intermediate that can have opposing effects on pathogenesis. FUTURE DIRECTIONS Further characterization of how proline metabolism is regulated during infection would provide new insights into the role of proline in pathogenesis. Biochemical and structural characterization of proline metabolic enzymes from different pathogens could lead to new tools for exploring proline metabolism during infection and possibly new therapeutic compounds.
Collapse
Affiliation(s)
- Shelbi L. Christgen
- Department of Biochemistry, Redox Biology Center, University of Nebraska−Lincoln, Lincoln, Nebraska
| | - Donald F. Becker
- Department of Biochemistry, Redox Biology Center, University of Nebraska−Lincoln, Lincoln, Nebraska
| |
Collapse
|
9
|
Francisco OA, Clark CJ, Glor HM, Khajehpour M. Do soft anions promote protein denaturation through binding interactions? A case study using ribonuclease A. RSC Adv 2019; 9:3416-3428. [PMID: 35518962 PMCID: PMC9060304 DOI: 10.1039/c8ra10303h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 01/20/2019] [Indexed: 11/21/2022] Open
Abstract
It has long been known that large soft anions like bromide, iodide and thiocyanate are protein denaturing agents, but their mechanism of action is still unclear. In this work we have investigated the protein denaturing properties of these anions using Ribonuclease A (RNase A) as a model protein system. Salt-induced perturbations to the protein folding free energy were determined using differential scanning calorimetry and the results demonstrate that the addition of sodium iodide and sodium thiocyanate significantly decreases the melting temperature of the protein. In order to account for this reduction in protein stability, we show that the introduction of salts that contain soft anions to the aqueous solvent perturbs the protein unfolding free energy through three mechanisms: (a) screening Coulomb interactions that exist between charged protein residues, (b) Hofmeister effects, and (c) specific anion binding to CH and CH2 moieties in the protein polypeptide backbone. Using the micellization of 1,2-hexanediol as a ruler for hydrophobicity, we have devised a practical methodology that separates the Coulomb and Hofmeister contributions of salts to the protein unfolding free energy. This allowing us to isolate the contribution of soft anion binding interactions to the unfolding process. The analysis shows that binding contributions have the largest magnitude, confirming that it is the binding of soft anions to the polypeptide backbone that is the main promoter of protein unfolding.
Collapse
Affiliation(s)
| | | | - Hayden M Glor
- Department of Chemistry, University of Manitoba Canada
| | - Mazdak Khajehpour
- Department of Chemistry, University of Manitoba Canada
- University of Manitoba 468 Parker Bldg. Winnipeg Manitoba R3T2N2 Canada +1-204-2721546
| |
Collapse
|
10
|
Culham DE, Marom D, Boutin R, Garner J, Ozturk TN, Sahtout N, Tempelhagen L, Lamoureux G, Wood JM. Dual Role of the C-Terminal Domain in Osmosensing by Bacterial Osmolyte Transporter ProP. Biophys J 2018; 115:2152-2166. [PMID: 30448037 PMCID: PMC6289098 DOI: 10.1016/j.bpj.2018.10.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 11/23/2022] Open
Abstract
ProP is a member of the major facilitator superfamily, a proton-osmolyte symporter, and an osmosensing transporter. ProP proteins share extended cytoplasmic carboxyl terminal domains (CTDs) implicated in osmosensing. The CTDs of the best characterized, group A ProP orthologs, terminate in sequences that form intermolecular, antiparallel α-helical coiled coils (e.g., ProPEc, from Escherichia coli). Group B orthologs lack that feature (e.g., ProPXc, from Xanthomonas campestris). ProPXc was expressed and characterized in E. coli to further elucidate the role of the coiled coil in osmosensing. The activity of ProPXc was a sigmoid function of the osmolality in cells and proteoliposomes. ProPEc and ProPXc attained similar activities at the same expression level in E. coli. ProPEc transports proline and glycine betaine with comparable high affinities at low osmolality. In contrast, proline weakly inhibited high-affinity glycine-betaine uptake via ProPXc. The KM for proline uptake via ProPEc increases dramatically with the osmolality. The KM for glycine-betaine uptake via ProPXc did not. Thus, ProPXc is an osmosensing transporter, and the C-terminal coiled coil is not essential for osmosensing. The role of CTD-membrane interaction in osmosensing was examined further. As for ProPEc, the ProPXc CTD co-sedimented with liposomes comprising E. coli phospholipid. Molecular dynamics simulations illustrated association of the monomeric ProPEc CTD with the membrane surface. Comparison with the available NMR structure for the homodimeric coiled coil formed by the ProPEc-CTD suggested that membrane association and homodimeric coiled-coil formation by that peptide are mutually exclusive. The membrane fluidity in liposomes comprising E. coli phospholipid decreased with increasing osmolality in the range relevant for ProP activation. These data support the proposal that ProP activates as cellular dehydration increases cytoplasmic cation concentration, releasing the CTD from the membrane surface. For group A orthologs, this also favors α-helical coiled-coil formation that stabilizes the transporter in an active form.
Collapse
Affiliation(s)
- Doreen E Culham
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - David Marom
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Rebecca Boutin
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Jennifer Garner
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada; Centre for Research in Molecular Modeling, Concordia University, Montréal, Québec, Canada
| | - Tugba Nur Ozturk
- Centre for Research in Molecular Modeling, Concordia University, Montréal, Québec, Canada; Department of Physics, Concordia University, Montréal, Québec, Canada
| | - Naheda Sahtout
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Laura Tempelhagen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Guillaume Lamoureux
- Centre for Research in Molecular Modeling, Concordia University, Montréal, Québec, Canada; Department of Physics, Concordia University, Montréal, Québec, Canada; Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, Canada
| | - Janet M Wood
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
11
|
OpuF, a New Bacillus Compatible Solute ABC Transporter with a Substrate-Binding Protein Fused to the Transmembrane Domain. Appl Environ Microbiol 2018; 84:AEM.01728-18. [PMID: 30097444 DOI: 10.1128/aem.01728-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 08/08/2018] [Indexed: 01/20/2023] Open
Abstract
The accumulation of compatible solutes is a common defense of bacteria against the detrimental effects of high osmolarity. Uptake systems for these compounds are cornerstones in cellular osmostress responses because they allow the energy-preserving scavenging of osmostress protectants from environmental sources. Bacillus subtilis is well studied with respect to the import of compatible solutes and its five transport systems (OpuA, OpuB, OpuC, OpuD, and OpuE), for these stress protectants have previously been comprehensively studied. Building on this knowledge and taking advantage of the unabated appearance of new genome sequences of members of the genus Bacillus, we report here the discovery, physiological characterization, and phylogenomics of a new member of the Opu family of transporters, OpuF (OpuFA-OpuFB). OpuF is not present in B. subtilis but it is widely distributed in members of the large genus Bacillus OpuF is a representative of a subgroup of ATP-binding cassette (ABC) transporters in which the substrate-binding protein (SBP) is fused to the transmembrane domain (TMD). We studied the salient features of the OpuF transporters from Bacillus infantis and Bacillus panaciterrae by functional reconstitution in a B. subtilis chassis strain lacking known Opu transporters. A common property of the examined OpuF systems is their substrate profile; OpuF mediates the import of glycine betaine, proline betaine, homobetaine, and the marine osmolyte dimethylsulfoniopropionate (DMSP). An in silico model of the SBP domain of the TMD-SBP hybrid protein OpuFB was established. It revealed the presence of an aromatic cage, a structural feature commonly present in ligand-binding sites of compatible solute importers.IMPORTANCE The high-affinity import of compatible solutes from environmental sources is an important aspect of the cellular defense of many bacteria and archaea against the harmful effects of high external osmolarity. The accumulation of these osmostress protectants counteracts high-osmolarity-instigated water efflux, a drop in turgor to nonphysiological values, and an undue increase in molecular crowding of the cytoplasm; they thereby foster microbial growth under osmotically unfavorable conditions. Importers for compatible solutes allow the energy-preserving scavenging of osmoprotective and physiologically compliant organic solutes from environmental sources. We report here the discovery, exemplary physiological characterization, and phylogenomics of a new compatible solute importer, OpuF, widely found in members of the Bacillus genus. The OpuF system is a representative of a growing subgroup of ABC transporters in which the substrate-scavenging function of the substrate-binding protein (SBP) and the membrane-embedded substrate translocating subunit (TMD) are fused into a single polypeptide chain.
Collapse
|
12
|
Rydeen AE, Brustad EM, Pielak GJ. Osmolytes and Protein–Protein Interactions. J Am Chem Soc 2018; 140:7441-7444. [DOI: 10.1021/jacs.8b03903] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
Czech L, Hermann L, Stöveken N, Richter AA, Höppner A, Smits SHJ, Heider J, Bremer E. Role of the Extremolytes Ectoine and Hydroxyectoine as Stress Protectants and Nutrients: Genetics, Phylogenomics, Biochemistry, and Structural Analysis. Genes (Basel) 2018; 9:genes9040177. [PMID: 29565833 PMCID: PMC5924519 DOI: 10.3390/genes9040177] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 01/26/2023] Open
Abstract
Fluctuations in environmental osmolarity are ubiquitous stress factors in many natural habitats of microorganisms, as they inevitably trigger osmotically instigated fluxes of water across the semi-permeable cytoplasmic membrane. Under hyperosmotic conditions, many microorganisms fend off the detrimental effects of water efflux and the ensuing dehydration of the cytoplasm and drop in turgor through the accumulation of a restricted class of organic osmolytes, the compatible solutes. Ectoine and its derivative 5-hydroxyectoine are prominent members of these compounds and are synthesized widely by members of the Bacteria and a few Archaea and Eukarya in response to high salinity/osmolarity and/or growth temperature extremes. Ectoines have excellent function-preserving properties, attributes that have led to their description as chemical chaperones and fostered the development of an industrial-scale biotechnological production process for their exploitation in biotechnology, skin care, and medicine. We review, here, the current knowledge on the biochemistry of the ectoine/hydroxyectoine biosynthetic enzymes and the available crystal structures of some of them, explore the genetics of the underlying biosynthetic genes and their transcriptional regulation, and present an extensive phylogenomic analysis of the ectoine/hydroxyectoine biosynthetic genes. In addition, we address the biochemistry, phylogenomics, and genetic regulation for the alternative use of ectoines as nutrients.
Collapse
Affiliation(s)
- Laura Czech
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
| | - Lucas Hermann
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
| | - Nadine Stöveken
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
- LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany.
| | - Alexandra A Richter
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
| | - Astrid Höppner
- Center for Structural Studies, Heinrich-Heine University Düsseldorf, Universitäts Str. 1, D-40225 Düsseldorf, Germany.
| | - Sander H J Smits
- Center for Structural Studies, Heinrich-Heine University Düsseldorf, Universitäts Str. 1, D-40225 Düsseldorf, Germany.
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitäts Str. 1, D-40225 Düsseldorf, Germany.
| | - Johann Heider
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
- LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany.
| | - Erhard Bremer
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
- LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany.
| |
Collapse
|
14
|
Schwinefus JJ, Baka NL, Modi K, Billmeyer KN, Lu S, Haase LR, Menssen RJ. l-Proline and RNA Duplex m-Value Temperature Dependence. J Phys Chem B 2017; 121:7247-7255. [PMID: 28737394 DOI: 10.1021/acs.jpcb.7b03608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The temperature dependence of l-proline interactions with the RNA dodecamer duplex surface exposed after unfolding was quantified using thermal and isothermal titration denaturation monitored by uv-absorbance. The m-value quantifying proline interactions with the RNA duplex surface area exposed after unfolding was measured using RNA duplexes with GC content ranging between 17 and 83%. The m-values from thermal denaturation decreased with increasing GC content signifying increasingly favorable proline interactions with the exposed RNA surface area. However, m-values from isothermal titration denaturation at 25.0 °C were independent of GC content and less negative than those from thermal denaturation. The m-value from isothermal titration denaturation for a 50% GC RNA duplex decreased (became more negative) as the temperature increased and was in nearly exact agreement with the m-value from thermal denaturation. Since RNA duplex transition temperatures increased with GC content, the more favorable proline interactions with the high GC content duplex surface area observed from thermal denaturation resulted from the temperature dependence of proline interactions rather than the RNA surface chemical composition. The enthalpy contribution to the m-value was positive and small (indicating a slight increase in duplex unfolding enthalpy with proline) while the entropic contribution to the m-value was positive and increased with temperature. Our results will facilitate proline's use as a probe of solvent accessible surface area changes during biochemical reactions at different reaction temperatures.
Collapse
Affiliation(s)
- Jeffrey J Schwinefus
- Department of Chemistry, St. Olaf College , Northfield, Minnesota 55057, United States
| | - Nadia L Baka
- Department of Chemistry, St. Olaf College , Northfield, Minnesota 55057, United States
| | - Kalpit Modi
- Department of Chemistry, St. Olaf College , Northfield, Minnesota 55057, United States
| | - Kaylyn N Billmeyer
- Department of Chemistry, St. Olaf College , Northfield, Minnesota 55057, United States
| | - Shutian Lu
- Department of Chemistry, St. Olaf College , Northfield, Minnesota 55057, United States
| | - Lucas R Haase
- Department of Chemistry, St. Olaf College , Northfield, Minnesota 55057, United States
| | - Ryan J Menssen
- Department of Chemistry, St. Olaf College , Northfield, Minnesota 55057, United States
| |
Collapse
|
15
|
van den Berg J, Boersma AJ, Poolman B. Microorganisms maintain crowding homeostasis. Nat Rev Microbiol 2017; 15:309-318. [DOI: 10.1038/nrmicro.2017.17] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
16
|
Romantsov T, Culham DE, Caplan T, Garner J, Hodges RS, Wood JM. ProP‐ProP and ProP‐phospholipid interactions determine the subcellular distribution of osmosensing transporter ProP inEscherichia coli. Mol Microbiol 2016; 103:469-482. [DOI: 10.1111/mmi.13569] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Tatyana Romantsov
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelph ON CanadaN1G2W1
| | - Doreen E. Culham
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelph ON CanadaN1G2W1
| | - Tavia Caplan
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelph ON CanadaN1G2W1
| | - Jennifer Garner
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelph ON CanadaN1G2W1
| | - Robert S. Hodges
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Denver, School of MedicineP.O. Box 6511, Mail Stop 8101Aurora CO80045, USA
| | - Janet M. Wood
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelph ON CanadaN1G2W1
| |
Collapse
|
17
|
Czech L, Stöveken N, Bremer E. EctD-mediated biotransformation of the chemical chaperone ectoine into hydroxyectoine and its mechanosensitive channel-independent excretion. Microb Cell Fact 2016; 15:126. [PMID: 27439307 PMCID: PMC4955205 DOI: 10.1186/s12934-016-0525-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 07/12/2016] [Indexed: 11/26/2022] Open
Abstract
Background Ectoine and its derivative 5-hydroxyectoine are cytoprotectants widely synthesized by microorganisms as a defense against the detrimental effects of high osmolarity on cellular physiology and growth. Both ectoines possess the ability to preserve the functionality of proteins, macromolecular complexes, and even entire cells, attributes that led to their description as chemical chaperones. As a consequence, there is growing interest in using ectoines for biotechnological purposes, in skin care, and in medical applications. 5-Hydroxyectoine is synthesized from ectoine through a region- and stereo-specific hydroxylation reaction mediated by the EctD enzyme, a member of the non-heme-containing iron(II) and 2-oxoglutarate-dependent dioxygenases. This chemical modification endows the newly formed 5-hydroxyectoine with either superior or different stress- protecting and stabilizing properties. Microorganisms producing 5-hydroxyectoine typically contain a mixture of both ectoines. We aimed to establish a recombinant microbial cell factory where 5-hydroxyectoine is (i) produced in highly purified form, and (ii) secreted into the growth medium. Results We used an Escherichia coli strain (FF4169) defective in the synthesis of the osmostress protectant trehalose as the chassis for our recombinant cell factory. We expressed in this strain a plasmid-encoded ectD gene from Pseudomonas stutzeri A1501 under the control of the anhydrotetracycline-inducible tet promoter. We chose the ectoine hydroxylase from P. stutzeri A1501 for our cell factory after a careful comparison of the in vivo performance of seven different EctD proteins. In the final set-up of the cell factory, ectoine was provided to salt-stressed cultures of strain FF4169 (pMP41; ectD+). Ectoine was imported into the cells via the osmotically inducible ProP and ProU transport systems, intracellularly converted to 5-hydroxyectoine, which was then almost quantitatively secreted into the growth medium. Experiments with an E. coli mutant lacking all currently known mechanosensitive channels (MscL, MscS, MscK, MscM) revealed that the release of 5-hydroxyectoine under osmotic steady-state conditions occurred independently of these microbial safety valves. In shake-flask experiments, 2.13 g l−1 ectoine (15 mM) was completely converted into 5-hydroxyectoine within 24 h. Conclusions We describe here a recombinant E. coli cell factory for the production and secretion of the chemical chaperone 5-hydroxyectoine free from contaminating ectoine. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0525-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laura Czech
- Laboratory for Microbiology, Department of Biology, Philipps-University at Marburg, 35043, Marburg, Germany
| | - Nadine Stöveken
- Laboratory for Microbiology, Department of Biology, Philipps-University at Marburg, 35043, Marburg, Germany.,LOEWE Center for Synthetic Microbiology, Philipps-University Marburg at Marburg, 35043, Marburg, Germany
| | - Erhard Bremer
- Laboratory for Microbiology, Department of Biology, Philipps-University at Marburg, 35043, Marburg, Germany. .,LOEWE Center for Synthetic Microbiology, Philipps-University Marburg at Marburg, 35043, Marburg, Germany. .,Laboratory for Microbiology, Department of Biology, Philipps-University at Marburg, Karl-von-Frisch-Str. 8, 35043, Marburg, Germany.
| |
Collapse
|