1
|
Ye J, Kan CH, Yang X, Ma C. Inhibition of bacterial RNA polymerase function and protein-protein interactions: a promising approach for next-generation antibacterial therapeutics. RSC Med Chem 2024; 15:1471-1487. [PMID: 38784472 PMCID: PMC11110800 DOI: 10.1039/d3md00690e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/25/2024] [Indexed: 05/25/2024] Open
Abstract
The increasing prevalence of multidrug-resistant pathogens necessitates the urgent development of new antimicrobial agents with innovative modes of action for the next generation of antimicrobial therapy. Bacterial transcription has been identified and widely studied as a viable target for antimicrobial development. The main focus of these studies has been the discovery of inhibitors that bind directly to the core enzyme of RNA polymerase (RNAP). Over the past two decades, substantial advancements have been made in understanding the properties of protein-protein interactions (PPIs) and gaining structural insights into bacterial RNAP and its associated factors. This has led to the crucial role of computational methods in aiding the identification of new PPI inhibitors to affect the RNAP function. In this context, bacterial transcriptional PPIs present promising, albeit challenging, targets for the creation of new antimicrobials. This review will succinctly outline the structural foundation of bacterial transcription networks and provide a summary of the known small molecules that target transcription PPIs.
Collapse
Affiliation(s)
- Jiqing Ye
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Kowloon Hong Kong SAR China
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University Hefei 230032 China
| | - Cheuk Hei Kan
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital Shatin Hong Kong SAR China
| | - Xiao Yang
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital Shatin Hong Kong SAR China
| | - Cong Ma
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Kowloon Hong Kong SAR China
| |
Collapse
|
2
|
Browning KR, Merrikh H. Pathogenic bacteria experience pervasive RNA polymerase backtracking during infection. mBio 2024; 15:e0273723. [PMID: 38095872 PMCID: PMC10790778 DOI: 10.1128/mbio.02737-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/06/2023] [Indexed: 12/26/2023] Open
Abstract
IMPORTANCE Eukaryotic hosts have defense mechanisms that may disrupt molecular transactions along the pathogen's chromosome through excessive DNA damage. Given that DNA damage stalls RNA polymerase (RNAP) thereby increasing mutagenesis, investigating how host defense mechanisms impact the movement of the transcription machinery on the pathogen chromosome is crucial. Using a new methodology we developed, we elucidated the dynamics of RNAP movement and association with the chromosome in the pathogenic bacterium Salmonella enterica during infection. We found that dynamics of RNAP movement on the chromosome change significantly during infection genome-wide, including at regions that encode for key virulence genes. In particular, we found that there is pervasive RNAP backtracking on the bacterial chromosome during infections and that anti-backtracking factors are critical for pathogenesis. Altogether, our results suggest that, interestingly, the host environment can promote the development of antimicrobial resistance and hypervirulence as stalled RNAPs can accelerate evolution through increased mutagenesis.
Collapse
Affiliation(s)
- Kaitlyn R. Browning
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Houra Merrikh
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
3
|
Ploetz E, Ambrose B, Barth A, Börner R, Erichson F, Kapanidis AN, Kim HD, Levitus M, Lohman TM, Mazumder A, Rueda DS, Steffen FD, Cordes T, Magennis SW, Lerner E. A new twist on PIFE: photoisomerisation-related fluorescence enhancement. Methods Appl Fluoresc 2023; 12:012001. [PMID: 37726007 PMCID: PMC10570931 DOI: 10.1088/2050-6120/acfb58] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/24/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
PIFE was first used as an acronym for protein-induced fluorescence enhancement, which refers to the increase in fluorescence observed upon the interaction of a fluorophore, such as a cyanine, with a protein. This fluorescence enhancement is due to changes in the rate ofcis/transphotoisomerisation. It is clear now that this mechanism is generally applicable to interactions with any biomolecule. In this review, we propose that PIFE is thereby renamed according to its fundamental working principle as photoisomerisation-related fluorescence enhancement, keeping the PIFE acronym intact. We discuss the photochemistry of cyanine fluorophores, the mechanism of PIFE, its advantages and limitations, and recent approaches to turning PIFE into a quantitative assay. We provide an overview of its current applications to different biomolecules and discuss potential future uses, including the study of protein-protein interactions, protein-ligand interactions and conformational changes in biomolecules.
Collapse
Affiliation(s)
- Evelyn Ploetz
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Benjamin Ambrose
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, W12 0HS, United Kingdom
- Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London, W12 0HS, United Kingdom
| | - Anders Barth
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2629 HZ, The Netherlands
| | - Richard Börner
- Laserinstitut Hochschule Mittweida, Mittweida University of Applied Sciences, Mittweida, Germany
| | - Felix Erichson
- Laserinstitut Hochschule Mittweida, Mittweida University of Applied Sciences, Mittweida, Germany
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Department of Physics, University of Oxford, Oxford, United Kingdom
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, United Kingdom
| | - Harold D Kim
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332, United States of America
| | - Marcia Levitus
- School of Molecular Sciences, Arizona State University, 551 E. University Drive, Tempe, AZ,85287, United States of America
| | - Timothy M Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States of America
| | - Abhishek Mazumder
- CSIR-Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India
| | - David S Rueda
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, W12 0HS, United Kingdom
- Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London, W12 0HS, United Kingdom
| | - Fabio D Steffen
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Großhadernerstr. 2-4, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Steven W Magennis
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, United Kingdom
| | - Eitan Lerner
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, Edmond J. Safra Campus, Hebrew University of Jerusalem; Jerusalem 9190401, Israel
- Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem; Jerusalem 9190401, Israel
| |
Collapse
|
4
|
Ploetz E, Ambrose B, Barth A, Börner R, Erichson F, Kapanidis AN, Kim HD, Levitus M, Lohman TM, Mazumder A, Rueda DS, Steffen FD, Cordes T, Magennis SW, Lerner E. A new twist on PIFE: photoisomerisation-related fluorescence enhancement. ARXIV 2023:arXiv:2302.12455v2. [PMID: 36866225 PMCID: PMC9980184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
PIFE was first used as an acronym for protein-induced fluorescence enhancement, which refers to the increase in fluorescence observed upon the interaction of a fluorophore, such as a cyanine, with a protein. This fluorescence enhancement is due to changes in the rate of cis/trans photoisomerisation. It is clear now that this mechanism is generally applicable to interactions with any biomolecule and, in this review, we propose that PIFE is thereby renamed according to its fundamental working principle as photoisomerisation-related fluorescence enhancement, keeping the PIFE acronym intact. We discuss the photochemistry of cyanine fluorophores, the mechanism of PIFE, its advantages and limitations, and recent approaches to turn PIFE into a quantitative assay. We provide an overview of its current applications to different biomolecules and discuss potential future uses, including the study of protein-protein interactions, protein-ligand interactions and conformational changes in biomolecules.
Collapse
Affiliation(s)
- Evelyn Ploetz
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Benjamin Ambrose
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, W12 0HS, UK, Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London, W12 0HS, UK
| | - Anders Barth
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2629 HZ, The Netherlands
| | - Richard Börner
- Laserinstitut Hochschule Mittweida, Mittweida University of Applied Sciences, Mittweida, Germany
| | - Felix Erichson
- Laserinstitut Hochschule Mittweida, Mittweida University of Applied Sciences, Mittweida, Germany
| | - Achillefs N. Kapanidis
- Kavli Institute for Nanoscience Discovery, Department of Biological Physics, The University of Oxford, UK
| | - Harold D. Kim
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332, USA
| | - Marcia Levitus
- School of Molecular Sciences, Arizona State University, 551 E. University Drive, Tempe, AZ, 85287, USA
| | - Timothy M. Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Abhishek Mazumder
- Kavli Institute for Nanoscience Discovery, Department of Biological Physics, The University of Oxford, UK
| | - David S. Rueda
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, W12 0HS, UK, Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London, W12 0HS, UK
| | - Fabio D. Steffen
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr, 2-4, 82152 Planegg-Martinsried, Germany
| | - Steven W. Magennis
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, UK
| | - Eitan Lerner
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, Edmond J. Safra Campus, Hebrew University of Jerusalem; Jerusalem 9190401, Israel, Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem; Jerusalem 9190401, Israel
| |
Collapse
|
5
|
Browning KR, Merrikh H. Pathogenic bacteria experience pervasive RNA polymerase backtracking during infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.12.540596. [PMID: 37215019 PMCID: PMC10197661 DOI: 10.1101/2023.05.12.540596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Pathogenic bacteria and their eukaryotic hosts are in a constant arms race. Hosts have numerous defense mechanisms at their disposal that not only challenge the bacterial invaders, but have the potential to disrupt molecular transactions along the bacterial chromosome. However, it is unclear how the host impacts association of proteins with the bacterial chromosome at the molecular level during infection. This is partially due to the lack of a method that could detect these events in pathogens while they are within host cells. We developed and optimized a system capable of mapping and measuring levels of bacterial proteins associated with the chromosome while they are actively infecting the host (referred to as PIC-seq). Here, we focused on the dynamics of RNA polymerase (RNAP) movement and association with the chromosome in the pathogenic bacterium Salmonella enterica as a model system during infection. Using PIC-seq, we found that RNAP association patterns with the chromosome change during infection genome-wide, including at regions that encode for key virulence genes. Importantly, we found that infection of a host significantly increases RNAP backtracking on the bacterial chromosome. RNAP backtracking is the most common form of disruption to RNAP progress on the chromosome. Interestingly, we found that the resolution of backtracked RNAPs via the anti-backtracking factors GreA and GreB is critical for pathogenesis, revealing a new class of virulence genes. Altogether, our results strongly suggest that infection of a host significantly impacts transcription by disrupting RNAP movement on the chromosome within the bacterial pathogen. The increased backtracking events have important implications not only for efficient transcription, but also for mutation rates as stalled RNAPs increase the levels of mutagenesis.
Collapse
Affiliation(s)
- Kaitlyn R. Browning
- Vanderbilt University School of Medicine, Department of Biochemistry, Nashville, TN 37232, USA
| | - Houra Merrikh
- Vanderbilt University School of Medicine, Department of Biochemistry, Nashville, TN 37232, USA
| |
Collapse
|
6
|
Janissen R, Eslami-Mossallam B, Artsimovitch I, Depken M, Dekker NH. High-throughput single-molecule experiments reveal heterogeneity, state switching, and three interconnected pause states in transcription. Cell Rep 2022; 39:110749. [PMID: 35476989 DOI: 10.1016/j.celrep.2022.110749] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 02/17/2022] [Accepted: 04/07/2022] [Indexed: 11/19/2022] Open
Abstract
Pausing by bacterial RNA polymerase (RNAp) is vital in the recruitment of regulatory factors, RNA folding, and coupled translation. While backtracking and intra-structural isomerization have been proposed to trigger pausing, our mechanistic understanding of backtrack-associated pauses and catalytic recovery remains incomplete. Using high-throughput magnetic tweezers, we examine the Escherichia coli RNAp transcription dynamics over a wide range of forces and NTP concentrations. Dwell-time analysis and stochastic modeling identify, in addition to a short-lived elemental pause, two distinct long-lived backtrack pause states differing in recovery rates. We identify two stochastic sources of transcription heterogeneity: alterations in short-pause frequency that underlies elongation-rate switching, and variations in RNA cleavage rates in long-lived backtrack states. Together with effects of force and Gre factors, we demonstrate that recovery from deep backtracks is governed by intrinsic RNA cleavage rather than diffusional Brownian dynamics. We introduce a consensus mechanistic model that unifies our findings with prior models.
Collapse
Affiliation(s)
- Richard Janissen
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Behrouz Eslami-Mossallam
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Irina Artsimovitch
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA.
| | - Martin Depken
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands.
| | - Nynke H Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
7
|
Agapov A, Olina A, Kulbachinskiy A. OUP accepted manuscript. Nucleic Acids Res 2022; 50:3018-3041. [PMID: 35323981 PMCID: PMC8989532 DOI: 10.1093/nar/gkac174] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 11/14/2022] Open
Abstract
Cellular DNA is continuously transcribed into RNA by multisubunit RNA polymerases (RNAPs). The continuity of transcription can be disrupted by DNA lesions that arise from the activities of cellular enzymes, reactions with endogenous and exogenous chemicals or irradiation. Here, we review available data on translesion RNA synthesis by multisubunit RNAPs from various domains of life, define common principles and variations in DNA damage sensing by RNAP, and consider existing controversies in the field of translesion transcription. Depending on the type of DNA lesion, it may be correctly bypassed by RNAP, or lead to transcriptional mutagenesis, or result in transcription stalling. Various lesions can affect the loading of the templating base into the active site of RNAP, or interfere with nucleotide binding and incorporation into RNA, or impair RNAP translocation. Stalled RNAP acts as a sensor of DNA damage during transcription-coupled repair. The outcome of DNA lesion recognition by RNAP depends on the interplay between multiple transcription and repair factors, which can stimulate RNAP bypass or increase RNAP stalling, and plays the central role in maintaining the DNA integrity. Unveiling the mechanisms of translesion transcription in various systems is thus instrumental for understanding molecular pathways underlying gene regulation and genome stability.
Collapse
Affiliation(s)
- Aleksei Agapov
- Correspondence may also be addressed to Aleksei Agapov. Tel: +7 499 196 0015; Fax: +7 499 196 0015;
| | - Anna Olina
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute” Moscow 123182, Russia
| | - Andrey Kulbachinskiy
- To whom correspondence should be addressed. Tel: +7 499 196 0015; Fax: +7 499 196 0015;
| |
Collapse
|
8
|
Wiedermannová J, Krásný L. β-CASP proteins removing RNA polymerase from DNA: when a torpedo is needed to shoot a sitting duck. Nucleic Acids Res 2021; 49:10221-10234. [PMID: 34551438 PMCID: PMC8501993 DOI: 10.1093/nar/gkab803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
During the first step of gene expression, RNA polymerase (RNAP) engages DNA to transcribe RNA, forming highly stable complexes. These complexes need to be dissociated at the end of transcription units or when RNAP stalls during elongation and becomes an obstacle (‘sitting duck’) to further transcription or replication. In this review, we first outline the mechanisms involved in these processes. Then, we explore in detail the torpedo mechanism whereby a 5′–3′ RNA exonuclease (torpedo) latches itself onto the 5′ end of RNA protruding from RNAP, degrades it and upon contact with RNAP, induces dissociation of the complex. This mechanism, originally described in Eukaryotes and executed by Xrn-type 5′–3′ exonucleases, was recently found in Bacteria and Archaea, mediated by β-CASP family exonucleases. We discuss the mechanistic aspects of this process across the three kingdoms of life and conclude that 5′–3′ exoribonucleases (β-CASP and Xrn families) involved in the ancient torpedo mechanism have emerged at least twice during evolution.
Collapse
Affiliation(s)
- Jana Wiedermannová
- Correspondence may also be addressed to Jana Wiedermannová. Tel: +44 191 208 3226; Fax: +44 191 208 3205;
| | - Libor Krásný
- To whom correspondence should be addressed. Tel: +420 241063208;
| |
Collapse
|
9
|
Espinasse A, Lembke HK, Cao AA, Carlson EE. Modified nucleoside triphosphates in bacterial research for in vitro and live-cell applications. RSC Chem Biol 2020; 1:333-351. [PMID: 33928252 PMCID: PMC8081287 DOI: 10.1039/d0cb00078g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Modified nucleoside triphosphates (NTPs) are invaluable tools to probe bacterial enzymatic mechanisms, develop novel genetic material, and engineer drugs and proteins with new functionalities. Although the impact of nucleobase alterations has predominantly been studied due to their importance for protein recognition, sugar and phosphate modifications have also been investigated. However, NTPs are cell impermeable due to their negatively charged phosphate tail, a major hurdle to achieving live bacterial studies. Herein, we review the recent advances made to investigate and evolve bacteria and their processes with the use of modified NTPs by exploring alterations in one of the three moieties: the nucleobase, the sugar and the phosphate tail. We also present the innovative methods that have been devised to internalize NTPs into bacteria for in vivo applications.
Collapse
Affiliation(s)
- Adeline Espinasse
- Department of Chemistry, University of Minnesota207 Pleasant Street SEMinneapolisMinnesota 55455USA
| | - Hannah K. Lembke
- Department of Chemistry, University of Minnesota207 Pleasant Street SEMinneapolisMinnesota 55455USA
| | - Angela A. Cao
- Department of Chemistry, University of Minnesota207 Pleasant Street SEMinneapolisMinnesota 55455USA
| | - Erin E. Carlson
- Department of Chemistry, University of Minnesota207 Pleasant Street SEMinneapolisMinnesota 55455USA
- Department of Medicinal Chemistry, University of Minnesota208 Harvard Street SEMinneapolisMinnesota 55454USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota321 Church St SEMinneapolisMinnesota 55454USA
| |
Collapse
|
10
|
Jensen D, Manzano AR, Rammohan J, Stallings CL, Galburt EA. CarD and RbpA modify the kinetics of initial transcription and slow promoter escape of the Mycobacterium tuberculosis RNA polymerase. Nucleic Acids Res 2020; 47:6685-6698. [PMID: 31127308 PMCID: PMC6648326 DOI: 10.1093/nar/gkz449] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/11/2019] [Accepted: 05/09/2019] [Indexed: 12/17/2022] Open
Abstract
The pathogen Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, enacts unique transcriptional regulatory mechanisms when subjected to host-derived stresses. Initiation of transcription by the Mycobacterial RNA polymerase (RNAP) has previously been shown to exhibit different open complex kinetics and stabilities relative to Escherichia coli (Eco) RNAP. However, transcription initiation rates also depend on the kinetics following open complex formation such as initial nucleotide incorporation and subsequent promoter escape. Here, using a real-time fluorescence assay, we present the first in-depth kinetic analysis of initial transcription and promoter escape for the Mtb RNAP. We show that in relation to Eco RNAP, Mtb displays slower initial nucleotide incorporation but faster overall promoter escape kinetics on the Mtb rrnAP3 promoter. Furthermore, in the context of the essential transcription factors CarD and RbpA, Mtb promoter escape is slowed via differential effects on initially transcribing complexes. Finally, based on their ability to increase the rate of open complex formation and decrease the rate of promoter escape, we suggest that CarD and RbpA are capable of activation or repression depending on the rate-limiting step of a given promoter's basal initiation kinetics.
Collapse
Affiliation(s)
- Drake Jensen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ana Ruiz Manzano
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jayan Rammohan
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christina L Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eric A Galburt
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
11
|
Heyduk E, Heyduk T. DNA template sequence control of bacterial RNA polymerase escape from the promoter. Nucleic Acids Res 2019; 46:4469-4486. [PMID: 29546317 PMCID: PMC5961368 DOI: 10.1093/nar/gky172] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/28/2018] [Indexed: 01/09/2023] Open
Abstract
Promoter escape involves breaking of the favourable contacts between RNA polymerase (RNAP) and the promoter to allow transition to an elongation complex. The sequence of DNA template that is transcribed during promoter escape (ITS; Initially Transcribed Sequence) can affect promoter escape by mechanisms that are not yet fully understood. We employed a highly parallel strategy utilizing Next Generation Sequencing (NGS) to collect data on escape properties of thousands of ITS variants. We show that ITS controls promoter escape through a combination of position-dependent effects (most prominently, sequence-directed RNAP pausing), and position-independent effects derived from sequence encoded physical properties of the template (for example, RNA/DNA duplex stability). ITS often functions as an independent unit affecting escape in the same manner regardless of the promoter from which transcription initiates. However, in some cases, a strong dependence of ITS effects on promoter context was observed suggesting that promoters may have 'allosteric' abilities to modulate ITS effects. Large effects of ITS on promoter output and the observed interplay between promoter sequence and ITS effects suggests that the definition of bacterial promoter should include ITS sequence.
Collapse
Affiliation(s)
- Ewa Heyduk
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University Medical School, 1100 S. Grand Blvd., St. Louis, MO 63104, USA
| | - Tomasz Heyduk
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University Medical School, 1100 S. Grand Blvd., St. Louis, MO 63104, USA
| |
Collapse
|
12
|
Control of transcriptional pausing by biased thermal fluctuations on repetitive genomic sequences. Proc Natl Acad Sci U S A 2016; 113:E7409-E7417. [PMID: 27830653 DOI: 10.1073/pnas.1607760113] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the process of transcription elongation, RNA polymerase (RNAP) pauses at highly nonrandom positions across genomic DNA, broadly regulating transcription; however, molecular mechanisms responsible for the recognition of such pausing positions remain poorly understood. Here, using a combination of statistical mechanical modeling and high-throughput sequencing and biochemical data, we evaluate the effect of thermal fluctuations on the regulation of RNAP pausing. We demonstrate that diffusive backtracking of RNAP, which is biased by repetitive DNA sequence elements, causes transcriptional pausing. This effect stems from the increased microscopic heterogeneity of an elongation complex, and thus is entropy-dominated. This report shows a linkage between repetitive sequence elements encoded in the genome and regulation of RNAP pausing driven by thermal fluctuations.
Collapse
|
13
|
Sreenivasan R, Heitkamp S, Chhabra M, Saecker R, Lingeman E, Poulos M, McCaslin D, Capp MW, Artsimovitch I, Record MT. Fluorescence Resonance Energy Transfer Characterization of DNA Wrapping in Closed and Open Escherichia coli RNA Polymerase-λP(R) Promoter Complexes. Biochemistry 2016; 55:2174-86. [PMID: 26998673 DOI: 10.1021/acs.biochem.6b00125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Initial recognition of promoter DNA by RNA polymerase (RNAP) is proposed to trigger a series of conformational changes beginning with bending and wrapping of the 40-50 bp of DNA immediately upstream of the -35 region. Kinetic studies demonstrated that the presence of upstream DNA facilitates bending and entry of the downstream duplex (to +20) into the active site cleft to form an advanced closed complex (CC), prior to melting of ∼13 bp (-11 to +2), including the transcription start site (+1). Atomic force microscopy and footprinting revealed that the stable open complex (OC) is also highly wrapped (-60 to +20). To test the proposed bent-wrapped model of duplex DNA in an advanced RNAP-λP(R) CC and compare wrapping in the CC and OC, we use fluorescence resonance energy transfer (FRET) between cyanine dyes at far-upstream (-100) and downstream (+14) positions of promoter DNA. Similarly large intrinsic FRET efficiencies are observed for the CC (0.30 ± 0.07) and the OC (0.32 ± 0.11) for both probe orientations. Fluorescence enhancements at +14 are observed in the single-dye-labeled CC and OC. These results demonstrate that upstream DNA is extensively wrapped and the start site region is bent into the cleft in the advanced CC, reducing the distance between positions -100 and +14 on promoter DNA from >300 to <100 Å. The proximity of upstream DNA to the downstream cleft in the advanced CC is consistent with the proposed mechanism for facilitation of OC formation by upstream DNA.
Collapse
Affiliation(s)
- Raashi Sreenivasan
- Biophysics Program, ‡Department of Biochemistry, and §Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,Department of Microbiology and ⊥Center for RNA Biology, The Ohio State University , Columbus, Ohio 43210, United States
| | - Sara Heitkamp
- Biophysics Program, ‡Department of Biochemistry, and §Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,Department of Microbiology and ⊥Center for RNA Biology, The Ohio State University , Columbus, Ohio 43210, United States
| | - Munish Chhabra
- Biophysics Program, ‡Department of Biochemistry, and §Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,Department of Microbiology and ⊥Center for RNA Biology, The Ohio State University , Columbus, Ohio 43210, United States
| | - Ruth Saecker
- Biophysics Program, ‡Department of Biochemistry, and §Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,Department of Microbiology and ⊥Center for RNA Biology, The Ohio State University , Columbus, Ohio 43210, United States
| | - Emily Lingeman
- Biophysics Program, ‡Department of Biochemistry, and §Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,Department of Microbiology and ⊥Center for RNA Biology, The Ohio State University , Columbus, Ohio 43210, United States
| | - Mikaela Poulos
- Biophysics Program, ‡Department of Biochemistry, and §Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,Department of Microbiology and ⊥Center for RNA Biology, The Ohio State University , Columbus, Ohio 43210, United States
| | - Darrell McCaslin
- Biophysics Program, ‡Department of Biochemistry, and §Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,Department of Microbiology and ⊥Center for RNA Biology, The Ohio State University , Columbus, Ohio 43210, United States
| | - Michael W Capp
- Biophysics Program, ‡Department of Biochemistry, and §Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,Department of Microbiology and ⊥Center for RNA Biology, The Ohio State University , Columbus, Ohio 43210, United States
| | - Irina Artsimovitch
- Biophysics Program, ‡Department of Biochemistry, and §Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,Department of Microbiology and ⊥Center for RNA Biology, The Ohio State University , Columbus, Ohio 43210, United States
| | - M Thomas Record
- Biophysics Program, ‡Department of Biochemistry, and §Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,Department of Microbiology and ⊥Center for RNA Biology, The Ohio State University , Columbus, Ohio 43210, United States
| |
Collapse
|