1
|
Li K, Han J, Zhu J, Zhu X, Zhong Y, Zhu Z. Sex difference in the association between dietary iron intake and bone mineral density in adolescents aged 12-19: A cross-sectional study. J Trace Elem Med Biol 2025; 89:127654. [PMID: 40245651 DOI: 10.1016/j.jtemb.2025.127654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/02/2025] [Accepted: 04/10/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND This cross-sectional study investigated the relationship between dietary iron intake and bone mineral density (BMD) in adolescents, exploring how dietary iron intake and other variables collectively influence BMD. METHODS We analyzed data from participants aged 12-19 years in the National Health and Nutrition Examination Survey (NHANES) conducted from 2005 to 2010. Multivariate linear regression, incorporating multiple covariates, assessed the association between dietary iron intake and BMD at the lumbar and femoral sites. The analysis was stratified by sex, with separate assessments for males and females, and examined the impact of sex on these outcomes, including interactions between dietary iron intake and BMD at both sites. RESULTS The study included 2520 adolescents. Dietary iron intake was positively correlated with BMD at the lumbar spine (β = 0.006, 95 % confidence interval [CI] = 0.001-0.011) and femoral regions (β = 0.008, 95 % CI = 0.002-0.013). However, the strength of this association differed significantly by sex. In males, dietary iron intake was positively associated with lumbar (β = 0.006, 95 % CI = 0.001-0.011) and femoral BMD (β = 0.010, 95 % CI = 0.004-0.017). In contrast, no significant correlation was observed between dietary iron intake and BMD at either site in females (P for interaction = 0.005). CONCLUSION Our findings suggest that increased dietary iron intake is associated with higher BMD in adolescent males but not in females.
Collapse
Affiliation(s)
- Keyi Li
- Department of Radiology, The First Hospital of Jiaxing & The Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Jun Han
- Department of Radiology, The First Hospital of Jiaxing & The Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Jinyu Zhu
- Department of Orthopedics, The First Hospital of Jiaxing & The Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Xiang Zhu
- Department of Radiology, The First Hospital of Jiaxing & The Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yanfang Zhong
- Department of Radiology, The First Hospital of Jiaxing & The Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Zefeng Zhu
- Department of Radiology, The First Hospital of Jiaxing & The Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| |
Collapse
|
2
|
Smith-Díaz C, Das AB, Jurkowski TP, Hore TA, Vissers MCM. Exploring the Ascorbate Requirement of the 2-Oxoglutarate-Dependent Dioxygenases. J Med Chem 2025; 68:2219-2237. [PMID: 39883951 PMCID: PMC11831678 DOI: 10.1021/acs.jmedchem.4c02342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/20/2024] [Accepted: 01/16/2025] [Indexed: 02/01/2025]
Abstract
In humans, the 2-oxoglutarate-dependent dioxygenases (2-OGDDs) catalyze hydroxylation reactions involved in cell metabolism, the biosynthesis of small molecules, DNA and RNA demethylation, the hypoxic response and the formation of collagen. The reaction is catalyzed by a highly oxidizing ferryl-oxo species produced when the active site non-heme iron engages molecular oxygen. Enzyme activity is specifically stimulated by l-ascorbic acid (ascorbate, vitamin C), an effect not well mimicked by other reducing agents. In this perspective article we discuss the reliance of the 2-OGDDs on ascorbate availability. We draw upon findings from studies with different 2-OGDDs to piece together a comprehensive theory for the specific role of ascorbate in supporting enzyme activity. Our discussion centers on the capacity for ascorbate to act as an efficient radical scavenger and its propensity to reduce and chelate transition metals. In addition, we consider the evidence supporting stereospecific binding of ascorbate in the enzyme active site.
Collapse
Affiliation(s)
- Carlos
C. Smith-Díaz
- Ma̅tai
Ha̅ora − Centre for Redox Biology and Medicine, Department
of Biomedical Science and Pathology, University
of Otago, Christchurch, Christchurch 8140, New Zealand
| | - Andrew B. Das
- Ma̅tai
Ha̅ora − Centre for Redox Biology and Medicine, Department
of Biomedical Science and Pathology, University
of Otago, Christchurch, Christchurch 8140, New Zealand
| | - Tomasz P. Jurkowski
- Cardiff
University, School of Biosciences, Museum Avenue, CF10 3AX Cardiff, Wales, U.K.
| | - Timothy A. Hore
- Department
of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - Margreet C. M. Vissers
- Ma̅tai
Ha̅ora − Centre for Redox Biology and Medicine, Department
of Biomedical Science and Pathology, University
of Otago, Christchurch, Christchurch 8140, New Zealand
| |
Collapse
|
3
|
Li H, Cui Y, Hu Y, Zhao M, Li K, Pang X, Sun F, Zhou B. Mammalian SLC39A13 promotes ER/Golgi iron transport and iron homeostasis in multiple compartments. Nat Commun 2024; 15:10838. [PMID: 39738060 PMCID: PMC11685566 DOI: 10.1038/s41467-024-55149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/02/2024] [Indexed: 01/01/2025] Open
Abstract
Iron is a potent biochemical, and accurate homeostatic control is orchestrated by a network of interacting players at multiple levels. Although our understanding of organismal iron homeostasis has advanced, intracellular iron homeostasis is poorly understood, including coordination between organelles and iron export into the ER/Golgi. Here, we show that SLC39A13 (ZIP13), previously identified as a zinc transporter, promotes intracellular iron transport and reduces intracellular iron levels. ZIP13 loss causes an iron deficiency in the ER/Golgi and other intracellular compartments, such as lysosomes and mitochondria, as well as elevating iron in the cytosol. ZIP13 overexpression has the opposite effect, increasing iron in organellar compartments. We suggest that ZIP13 gatekeeps an iron trafficking route that shunts iron from the cytosol to the ER/Golgi hub. Zip13-knockout male mice have iron deposition in several tissues. These data demonstrate that mammalian ZIP13 is crucial for iron homeostasis and suggest a potential iron transport function.
Collapse
Affiliation(s)
- Huihui Li
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yanmei Cui
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yule Hu
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Mengran Zhao
- Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Kuanyu Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China
| | - Xiaoyun Pang
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fei Sun
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bing Zhou
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen, 518055, China.
| |
Collapse
|
4
|
Kashida H, Azuma H, Sotome H, Miyasaka H, Asanuma H. Site-Selective Photo-Crosslinking of Stilbene Pairs in a DNA Duplex Mediated by Ruthenium Photocatalyst. Angew Chem Int Ed Engl 2024; 63:e202319516. [PMID: 38282170 DOI: 10.1002/anie.202319516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 01/30/2024]
Abstract
We herein report a method for site-selective photo-crosslinking of a DNA duplex. A stilbene pair was introduced into a DNA duplex and a ruthenium complex was conjugated with a triplex-forming oligonucleotide. We demonstrated that [2+2] photocycloaddition of the stilbene pair occurred upon irradiation with visible light when the ruthenium complex was in close proximity due to triplex formation. No reaction occurred when the ruthenium complex was not in proximity to the stilbene pair. The wavelength of visible light used was of lower energy than the wavelength of UV light necessary for direct excitation of stilbene. Quantum chemical calculation indicated that ruthenium complex catalyzed the photocycloaddition via triplet-triplet energy transfer. Site selectivity of this photo-crosslinking system was evaluated using a DNA duplex bearing two stilbene pairs as a substrate; we showed that the site of crosslinking was precisely regulated by the sequence of the oligonucleotide linked to the ruthenium complex. Since this method does not require orthogonal photoresponsive molecules, it will be useful in construction of complex photoresponsive DNA circuits, nanodevices and biological tools.
Collapse
Affiliation(s)
- Hiromu Kashida
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Hidenori Azuma
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Hikaru Sotome
- Division of Frontier Materials Science and, Center for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Hiroshi Miyasaka
- Division of Frontier Materials Science and, Center for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Hiroyuki Asanuma
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
5
|
Liu X, An J. Dietary iron intake and its impact on osteopenia/osteoporosis. BMC Endocr Disord 2023; 23:154. [PMID: 37464304 DOI: 10.1186/s12902-023-01389-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Osteoporosis is a prevalent condition characterized by low bone density and increased risk of fractures, resulting in a significant healthcare burden. Previous research has suggested that serum ferritin levels may be related to the risk of developing osteoporosis. The aim of this study was to investigate the relationship between dietary iron intake and the development of osteoporosis. METHODS Using data from the National Health and Nutrition Examination Survey (NHANES) conducted between 2005 and 2018, a total of 11,690 adults aged over 20 were evaluated. Bone mineral density (BMD) measurements of the femoral neck and lumbar spine were used to assess osteoporosis and osteopenia. Dietary iron intake was determined using food intake interviews and the Food and Nutrient Database for Dietary Studies. Logistic regression models were applied to investigate the association between dietary iron consumption and osteopenia and osteoporosis. RESULTS After adjusting for sociodemographic factors, compared with those who had the first quartile (Q1) of dietary iron intake, the odds ratio (OR) for osteopenia across the quartiles of dietary iron intake levels was 0.88 (95%CI: 0.79-0.98), 0.80 (95%CI: 0.72-0.89), and 0.74 (95%CI: 0.67-0.83) for Q2, Q3, and Q4, respectively. And the OR for osteoporosis across the quartiles of dietary iron intake levels was 1.00, 0.77 (95%CI: 0.50-1.19), 0.54 (95%CI: 0.34-0.89), and 0.83 (95%CI: 0.54-1.29) for Q1, Q2, Q3, and Q4, respectively. Notably, the observed association was significant among females but not males. CONCLUSION The risk of osteopenia/osteoporosis in females decreases with a moderate increase in dietary iron consumption. For females to preserve bone health, moderately increasing their dietary iron intake without overindulging should be seen as a key approach. Our study provides useful insights for developing dietary strategies to prevent and manage osteoporosis in vulnerable populations.
Collapse
Affiliation(s)
- Xin Liu
- Operating room, West China hospital, Sichuan University, Chengdu, 610000, Sichuan Province, China
- West China School of Nursing, Sichuan University, Chengdu, 610000, Sichuan Province, China
| | - Jingjing An
- Operating room, West China hospital, Sichuan University, Chengdu, 610000, Sichuan Province, China.
- West China School of Nursing, Sichuan University, Chengdu, 610000, Sichuan Province, China.
| |
Collapse
|
6
|
Quareshy M, Shanmugam M, Cameron AD, Bugg TDH, Chen Y. Characterisation of an unusual cysteine pair in the Rieske carnitine monooxygenase CntA catalytic site. FEBS J 2023; 290:2939-2953. [PMID: 36617384 PMCID: PMC10952381 DOI: 10.1111/febs.16722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/01/2022] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Rieske monooxygenases undertake complex catalysis integral to marine, terrestrial and human gut-ecosystems. Group-I to -IV Rieske monooxygenases accept aromatic substrates and have well-characterised catalytic mechanisms. Nascent to our understanding are Group-V members catalysing the oxidation/breakdown of quaternary ammonium substrates. Phylogenetic analysis of Group V highlights a cysteine residue-pair adjacent to the mononuclear Fe active site with no established role. Following our elucidation of the carnitine monooxygenase CntA structure, we probed the function of the cysteine pair Cys206/Cys209. Utilising biochemical and biophysical techniques, we found the cysteine residues do not play a structural role nor influence the electron transfer pathway, but rather are used in a nonstoichiometric role to ensure the catalytic iron centre remains in an Fe(II) state.
Collapse
Affiliation(s)
| | | | | | | | - Yin Chen
- School of Life SciencesUniversity of WarwickCoventryUK
| |
Collapse
|
7
|
Zhu X, Jiang L, Wei X, Long M, Du Y. Roxadustat: Not just for anemia. Front Pharmacol 2022; 13:971795. [PMID: 36105189 PMCID: PMC9465375 DOI: 10.3389/fphar.2022.971795] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Roxadustat is a recently approved hypoxia-inducible factor prolyl hydroxylase inhibitor that has demonstrated favorable safety and efficacy in the treatment of renal anemia. Recent studies found it also has potential for the treatment of other hypoxia-related diseases. Although clinical studies have not yet found significant adverse or off-target effects of roxadustat, clinicians must be vigilant about these possible effects. Hypoxia-inducible factor regulates the expression of many genes and physiological processes in response to a decreased level of oxygen, but its role in the pathogenesis of different diseases is complex and controversial. In addition to increasing the expression of hypoxia-inducible factor, roxadustat also has some effects that may be HIF-independent, indicating some potential off-target effects. This article reviews the pharmacological characteristics of roxadustat, its current status in the treatment of renal anemia, and its possible effects on other pathological mechanisms.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Lili Jiang
- Physical Examination Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xuejiao Wei
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Mengtuan Long
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yujun Du
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Yujun Du,
| |
Collapse
|
8
|
Ascorbic Acid (Vitamin C) as a Cosmeceutical to Increase Dermal Collagen for Skin Antiaging Purposes: Emerging Combination Therapies. Antioxidants (Basel) 2022; 11:antiox11091663. [PMID: 36139737 PMCID: PMC9495646 DOI: 10.3390/antiox11091663] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Ascorbic acid (AA) is an essential nutrient and has great potential as a cosmeceutical that protects the health and beauty of the skin. AA is expected to attenuate photoaging and the natural aging of the skin by reducing oxidative stress caused by external and internal factors and by promoting collagen gene expression and maturation. In this review, the biochemical basis of AA associated with collagen metabolism and clinical evidence of AA in increasing dermal collagen and inhibiting skin aging were discussed. In addition, we reviewed emerging strategies that have been developed to overcome the shortcomings of AA as a cosmeceutical and achieve maximum efficacy. Because extracellular matrix proteins, such as collagen, have unique amino acid compositions, their production in cells is influenced by the availability of specific amino acids. For example, glycine residues occupy 1/3 of amino acid residues in collagen protein, and the supply of glycine can be a limiting factor for collagen synthesis. Experiments showed that glycinamide was the most effective among the various amino acids and amidated amino acids in stimulating collagen production in human dermal fibroblasts. Thus, it is possible to synergistically improve collagen synthesis by combining AA analogs and amino acid analogs that act at different stages of the collagen production process. This combination therapy would be useful for skin antiaging that requires enhanced collagen production.
Collapse
|
9
|
Wei M, Huang Q, Dai Y, Zhou H, Cui Y, Song W, Di D, Zhang R, Li C, Wang Q, Jing T. Manganese, iron, copper, and selenium co-exposure and osteoporosis risk in Chinese adults. J Trace Elem Med Biol 2022; 72:126989. [PMID: 35512597 DOI: 10.1016/j.jtemb.2022.126989] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND & AIMS Previous experimental studies demonstrated that either deficient or excessive trace elements, such as manganese (Mn), iron (Fe), copper (Cu) and selenium (Se), are detrimental to bone health. Epidemiologic evidence for the effect of the four trace elements on osteoporosis (OP) risk remains inadequate. This cross-sectional study aimed to examine their associations with the OP risk among Chinese adults. METHODS Concentrations of Mn, Fe, Cu, and Se were measured in plasma using an inductively coupled plasma mass spectrometer among 627 Chinese adults aged ≥ 50 years. Individual effect of the four elements on OP risk was analyzed by logistic regression and Bayesian Kernel Machine Regression (BKMR) models. The latter model was also adopted to examine the exposure-response relationships and joint effects of the four elements on OP risk. RESULTS The median Mn, Fe, Cu, and Se levels were 4.78, 1026.63, 904.55, and 105.39 μg/L, respectively, in all participants. Inverse associations of Fe and Se levels with OP risk were observed in the logistic regression model. BKMR analysis revealed a U-shape pattern for the Fe-OP association, and a reduced OP risk in response to co-exposure of the four elements above the 50th percentiles but an elevated one in response to that below the 50th percentiles. Sex discrepancy existed in the findings. No interactions were found for the four elements affecting OP risk. CONCLUSIONS Co-exposure to Mn, Fe, Cu, and Se was associated with improved bone density, where Fe contributed most to the beneficial effect. Further studies are needed to verify these findings and explore the underlying biological mechanism.
Collapse
Affiliation(s)
- Muhong Wei
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qin Huang
- Department of Rehabilitation Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Dai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Haolong Zhou
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuan Cui
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenjing Song
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dongsheng Di
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ruyi Zhang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Can Li
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qi Wang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Tao Jing
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
10
|
Fang J, Li M, Zhang G, Du G, Zhou J, Guan X, Chen J. Vitamin C enhances the ex vivo proliferation of porcine muscle stem cells for cultured meat production. Food Funct 2022; 13:5089-5101. [PMID: 35411884 DOI: 10.1039/d1fo04340d] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Cultured meat technology is a promising alternative strategy for supplying animal protein taking advantage of its efficiency, safety, and sustainability. The muscle stem cell (MuSC) is one of the most important seed cells for producing muscle fibers, but its weak ex vivo proliferation capacity limits the industrialization of cultured meat. Here we reported that vitamin C (VC) is an excellent supplement for the long-term culture of porcine MuSCs (pMuSCs) ex vivo with considerable proliferative and myogenic effects. After 29 days of culture with 100 μM VC, pMuSCs achieved a 2.8 × 107 ± 0.8 × 107-fold increase in the total cell number, which was 360 times higher than that of cells without VC treatment. pMuSCs that were exposed to VC were less arrested in the G0/G1 phase and showed a significant increase in the expression of cell cycle-related genes such as Cdk1, Cdk2, and Ki67. Additionally, the differentiation potential of pMuSCs was enhanced when cells were proliferated with VC, as evidenced by increased expression of MyoD and MyHC. Furthermore, we demonstrated that VC exerted its proliferative effect through activating the PI3K/AKT/mTOR pathway via the IGF-1 signaling. These findings highlighted the potential application of VC in the ex vivo expansion of pMuSCs for cultured meat production.
Collapse
Affiliation(s)
- Jiahua Fang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Mei Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Guoqiang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xin Guan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
11
|
Shi R, Gao S, Zhang J, Xu J, Graham LM, Yang X, Li C. Collagen prolyl 4-hydroxylases modify tumor progression. Acta Biochim Biophys Sin (Shanghai) 2021; 53:805-814. [PMID: 34009234 DOI: 10.1093/abbs/gmab065] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Collagen is the main component of the extracellular matrix. Hydroxylation of proline residues on collagen, catalyzed by collagen prolyl 4-hydroxylase (C-P4H), is essential for the stability of the collagen triple helix. Vertebrate C-P4H is an α2β2 tetramer with three isoenzymes differing in the catalytic α-subunits, which are encoded by P4HA1, P4HA2, and P4HA3 genes. In contrast, β-subunit is encoded by a single gene P4HB. The expressions of P4HAs and P4HB are regulated by multiple cellular factors, including cytokines, transcription factors, and microRNAs. P4HAs and P4HB are highly expressed in many tumors and participate in cancer progression. Several inhibitors of P4HAs and P4HB have been confirmed to have anti-tumor effects, suggesting that targeting C-P4H is a feasible strategy for cancer treatment. Here, we summarize recent progresses on the function and expression of regulatory mechanisms of C-P4H in cancer progression and point out the potential development of therapeutic strategies in targeting C-P4H in the future.
Collapse
Affiliation(s)
- Run Shi
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou 510095, China
| | - Shanshan Gao
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou 510095, China
| | - Jie Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou 510095, China
| | - Jiang Xu
- Department of Stomatology, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832008, China
| | - Linda M Graham
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Xiaowen Yang
- Department of the First Abdominal Surgery, The Affiliated Tumor Hospital of Nanchang University, Jiangxi Cancer Center, Nanchang 330029, China
| | - Chaoyang Li
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou 510095, China
| |
Collapse
|
12
|
Smith-Cortinez N, Fagundes RR, Gomez V, Kong D, de Waart DR, Heegsma J, Sydor S, Olinga P, de Meijer VE, Taylor CT, Bank R, Paulusma CC, Faber KN. Collagen release by human hepatic stellate cells requires vitamin C and is efficiently blocked by hydroxylase inhibition. FASEB J 2020; 35:e21219. [PMID: 33236467 DOI: 10.1096/fj.202001564rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/02/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022]
Abstract
Liver fibrosis is characterized by the accumulation of extracellular matrix proteins, mainly composed of collagen. Hepatic stellate cells (HSCs) mediate liver fibrosis by secreting collagen. Vitamin C (ascorbic acid) is a cofactor of prolyl-hydroxylases that modify newly synthesized collagen on the route for secretion. Unlike most animals, humans cannot synthesize ascorbic acid and its role in liver fibrosis remains unclear. Here, we determined the effect of ascorbic acid and prolyl-hydroxylase inhibition on collagen production and secretion by human HSCs. Primary human HSCs (p-hHSCs) and the human HSCscell line LX-2 were treated with ascorbic acid, transforming growth factor-beta (TGFβ) and/or the pan-hydroxylase inhibitor dimethyloxalylglycine (DMOG). Expression of collagen-I was analyzed by RT-qPCR (COL1A1), Western blotting, and immunofluorescence microscopy. Collagen secretion was determined in the medium by Western blotting for collagen-I and by HPLC for hydroxyproline concentrations. Expression of solute carrier family 23 members 1 and 2 (SLC23A1/SLC23A2), encoding sodium-dependent vitamin C transporters 1 and 2 (SVCT1/SVCT2) was quantified in healthy and cirrhotic human tissue. In the absence of ascorbic acid, collagen-I accumulated intracellularly in p-hHSCs and LX-2 cells, which was potentiated by TGFβ. Ascorbic acid co-treatment strongly promoted collagen-I excretion and enhanced extracellular hydroxyproline concentrations, without affecting collagen-I (COL1A1) mRNA levels. DMOG inhibited collagen-I release even in the presence of ascorbic acid and suppressed COL1A1 and alpha-smooth muscle actin (αSMA/ACTA2) mRNA levels, also under hypoxic conditions. Hepatocytes express both ascorbic acid transporters, while p-hHSCs and LX-2 express the only SVCT2, which is selectively enhanced in cirrhotic livers. Human HSCs rely on ascorbic acid for the efficient secretion of collagen-I, which can be effectively blocked by hydroxylase antagonists, revealing new therapeutic targets to treat liver fibrosis.
Collapse
Affiliation(s)
- Natalia Smith-Cortinez
- Department of Hepatology and Gastroenterology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Raphael R Fagundes
- Department of Hepatology and Gastroenterology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Valentina Gomez
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Defu Kong
- Department of Hepatology and Gastroenterology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Dirk R de Waart
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Janette Heegsma
- Department of Hepatology and Gastroenterology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Svenja Sydor
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, the Netherlands
| | - Vincent E de Meijer
- Department of Surgery, Division of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Cormac T Taylor
- School of Medicine and Medical Science and the Conway Institute, University College Dublin, Dublin, Ireland
| | - Ruud Bank
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Coen C Paulusma
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Klaas Nico Faber
- Department of Hepatology and Gastroenterology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
13
|
Trying to Solve the Puzzle of the Interaction of Ascorbic Acid and Iron: Redox, Chelation and Therapeutic Implications. MEDICINES 2020; 7:medicines7080045. [PMID: 32751493 PMCID: PMC7460366 DOI: 10.3390/medicines7080045] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023]
Abstract
Iron and ascorbic acid (vitamin C) are essential nutrients for the normal growth and development of humans, and their deficiency can result in serious diseases. Their interaction is of nutritional, physiological, pharmacological and toxicological interest, with major implications in health and disease. Millions of people are using pharmaceutical and nutraceutical preparations of these two nutrients, including ferrous ascorbate for the treatment of iron deficiency anaemia and ascorbate combination with deferoxamine for increasing iron excretion in iron overload. The main function and use of vitamin C is its antioxidant activity against reactive oxygen species, which are implicated in many diseases of free radical pathology, including biomolecular-, cellular- and tissue damage-related diseases, as well as cancer and ageing. Ascorbic acid and its metabolites, including the ascorbate anion and oxalate, have metal binding capacity and bind iron, copper and other metals. The biological roles of ascorbate as a vitamin are affected by metal complexation, in particular following binding with iron and copper. Ascorbate forms a complex with Fe3+ followed by reduction to Fe2+, which may potentiate free radical production. The biological and clinical activities of iron, ascorbate and the ascorbate–iron complex can also be affected by many nutrients and pharmaceutical preparations. Optimal therapeutic strategies of improved efficacy and lower toxicity could be designed for the use of ascorbate, iron and the iron–ascorbate complex in different clinical conditions based on their absorption, distribution, metabolism, excretion, toxicity (ADMET), pharmacokinetic, redox and other properties. Similar strategies could also be designed in relation to their interactions with food components and pharmaceuticals, as well as in relation to other aspects concerning personalized medicine.
Collapse
|
14
|
Godoy-Parejo C, Deng C, Zhang Y, Liu W, Chen G. Roles of vitamins in stem cells. Cell Mol Life Sci 2020; 77:1771-1791. [PMID: 31676963 PMCID: PMC11104807 DOI: 10.1007/s00018-019-03352-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/12/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
Abstract
Stem cells can differentiate to diverse cell types in our body, and they hold great promises in both basic research and clinical therapies. For specific stem cell types, distinctive nutritional and signaling components are required to maintain the proliferation capacity and differentiation potential in cell culture. Various vitamins play essential roles in stem cell culture to modulate cell survival, proliferation and differentiation. Besides their common nutritional functions, specific vitamins are recently shown to modulate signal transduction and epigenetics. In this article, we will first review classical vitamin functions in both somatic and stem cell cultures. We will then focus on how stem cells could be modulated by vitamins beyond their nutritional roles. We believe that a better understanding of vitamin functions will significantly benefit stem cell research, and help realize their potentials in regenerative medicine.
Collapse
Affiliation(s)
- Carlos Godoy-Parejo
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Chunhao Deng
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Yumeng Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Weiwei Liu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
- Bioimaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Guokai Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
- Bioimaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
15
|
Copper-catalyzed aerobic oxidative cyclization protocol for the synthesis of quinazolines via amination of C(sp3)-H bonds of methylazaarenes. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130783] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Blanco-Rojo R, Vaquero MP. Iron bioavailability from food fortification to precision nutrition. A review. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2018.04.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Abstract
Collagen is the dominant protein of the extracellular matrix. Its distinguishing feature is a three-stranded helix of great tensile strength. (2 S,4 R)-4-Hydroxyproline residues are essential for the stability of this triple helix. These residues arise from the post-translational modification of (2 S)-proline residues by collagen prolyl 4-hydroxylases (CP4Hs), which are members of the Fe(II)- and α-ketoglutarate (AKG)-dependent dioxygenase family. Here, we provide a framework for the inhibition of CP4Hs as the basis for treating fibrotic diseases and cancer metastasis. We begin with a summary of the structure and enzymatic reaction mechanism of CP4Hs. Then, we review the metal ions, metal chelators, mimetics of AKG and collagen strands, and natural products that are known to inhibit CP4Hs. Our focus is on inhibitors with potential utility in the clinic. We conclude with a prospectus for more effective inhibitors.
Collapse
Affiliation(s)
| | - Ronald T Raines
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
18
|
Osipyants AI, Poloznikov AA, Smirnova NA, Hushpulian DM, Khristichenko AY, Chubar TA, Zakhariants AA, Ahuja M, Gaisina IN, Thomas B, Brown AM, Gazaryan IG, Tishkov VI. L-ascorbic acid: A true substrate for HIF prolyl hydroxylase? Biochimie 2017; 147:46-54. [PMID: 29289682 DOI: 10.1016/j.biochi.2017.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/22/2017] [Indexed: 12/20/2022]
Abstract
L-Ascorbate (L-Asc), but not D-isoascorbate (D-Asc) and N-acetylcysteine (NAC) suppress HIF1 ODD-luc reporter activation induced by various inhibitors of HIF prolyl hydroxylase (PHD). The efficiency of suppression by L-Asc was sensitive to the nature of HIF PHD inhibitor chosen for reporter activation. In particular, the inhibitors developed to compete with alpha-ketoglutarate (αKG), were less sensitive to suppression by the physiological range of L-Asc (40-100 μM) than those having a strong iron chelation motif. Challenging those HIF activators in the reporter system with D-Asc demonstrated that the D-isomer, despite exhibiting the same reducing potency with respect to ferric iron, had almost no effect compared to L-Asc. Similarly, no effect on reporter activation was observed with cell-permeable reducing agent NAC up to 1 mM. Docking of L-Asc and D-Asc acid into the HIF PHD2 crystal structure showed interference of Tyr310 with respect to D-Asc. This suggests that L-Asc is not merely a reducing agent preventing enzyme inactivation. Rather, the overall results identify L-Asc as a co-substrate of HIF PHD that may compete for the binding site of αKG in the enzyme active center. This conclusion is in agreement with the results obtained recently in cell-based systems for TET enzymes and jumonji histone demethylases, where L-Asc has been proposed to act as a co-substrate and not as a reducing agent preventing enzyme inactivation.
Collapse
Affiliation(s)
- Andrey I Osipyants
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997, Moscow, Russian Federation
| | - Andrey A Poloznikov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997, Moscow, Russian Federation.
| | - Natalya A Smirnova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997, Moscow, Russian Federation
| | - Dmitry M Hushpulian
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997, Moscow, Russian Federation
| | - Anna Yu Khristichenko
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997, Moscow, Russian Federation
| | - Tatiana A Chubar
- Department of Chemical Enzymology, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, 119992, Russian Federation
| | - Arpenik A Zakhariants
- Department of Chemical Enzymology, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, 119992, Russian Federation
| | - Manuj Ahuja
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Irina N Gaisina
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, USA
| | - Bobby Thomas
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Abe M Brown
- Department of Anatomy and Cell Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA
| | - Irina G Gazaryan
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997, Moscow, Russian Federation; Department of Chemical Enzymology, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, 119992, Russian Federation; Department of Anatomy and Cell Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA
| | - Vladimir I Tishkov
- Department of Chemical Enzymology, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, 119992, Russian Federation; Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences. 33, bld. 2 Leninsky Ave., Moscow 119071, Russian Federation; Innovations and High Technologies MSU Ltd, Tsymlyanskaya, 16, of 96, Moscow, 109599, Russian Federation
| |
Collapse
|
19
|
Timmins A, Saint-André M, de Visser SP. Understanding How Prolyl-4-hydroxylase Structure Steers a Ferryl Oxidant toward Scission of a Strong C-H Bond. J Am Chem Soc 2017; 139:9855-9866. [PMID: 28657747 DOI: 10.1021/jacs.7b02839] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Prolyl-4-hydroxylase (P4H) is a non-heme iron hydroxylase that regio- and stereospecifically hydroxylates proline residues in a peptide chain into R-4-hydroxyproline, which is essential for collagen cross-linking purposes in the human body. Surprisingly, in P4H, a strong aliphatic C-H bond is activated, while thermodynamically much weaker aliphatic C-H groups, that is, at the C3 and C5 positions, are untouched. Little is known on the origins of the high regio- and stereoselectivity of P4H and many non-heme and heme enzymes in general, and insight into this matter may be relevant to Biotechnology as well as Drug Development. The active site of the protein contains two aromatic residues (Tyr140 and Trp243) that we expected to be crucial for guiding the regioselectivity of the reaction. We performed a detailed quantum mechanics/molecular mechanics (QM/MM) and molecular dynamics (MD) study on wild-type and mutant structures. The work shows that Trp243 is involved in key protein loop-loop interactions that affect the shape and size of the substrate binding pocket and its mutation has major long-range effects. By contrast, the Tyr140 residue is shown to guide the regio- and stereoselectivity by holding the substrate and ferryl oxidant in a specific orientation through hydrogen bonding and π-stacking interactions. Compelling evidence is found that the Tyr140 residue is involved in expelling the product from the binding pocket after the reaction is complete. It is shown that mutations where the hydrogen bonding network that involves the Tyr140 and Trp243 residues is disrupted lead to major changes in folding of the protein and the size and shape of the substrate binding pocket. Specifically, the Trp243 residue positions the amino acid side chains of Arg161 and Glu127 in specific orientations with substrate. As such, the P4H enzyme is a carefully designed protein with a subtle and rigid secondary structure that enables the binding of substrate, guides the regioselectivity, and expels product efficiently.
Collapse
Affiliation(s)
- Amy Timmins
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Maud Saint-André
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Sam P de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
20
|
Vasta JD, Choudhary A, Jensen KH, McGrath NA, Raines RT. Prolyl 4-Hydroxylase: Substrate Isosteres in Which an (E)- or (Z)-Alkene Replaces the Prolyl Peptide Bond. Biochemistry 2016; 56:219-227. [PMID: 28001367 DOI: 10.1021/acs.biochem.6b00976] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Collagen prolyl 4-hydroxylases (CP4Hs) catalyze a prevalent posttranslational modification, the hydroxylation of (2S)-proline residues in protocollagen strands. The ensuing (2S,4R)-4-hydroxyproline residues are necessary for the conformational stability of the collagen triple helix. Prolyl peptide bonds isomerize between cis and trans isomers, and the preference of the enzyme is unknown. We synthesized alkene isosteres of the cis and trans isomers to probe the conformational preferences of human CP4H1. We discovered that the presence of a prolyl peptide bond is necessary for catalysis. The cis isostere is, however, an inhibitor with a potency greater than that of the trans isostere, suggesting that the cis conformation of a prolyl peptide bond is recognized preferentially. Comparative studies with a Chlamydomonas reinhardtii P4H, which has a similar catalytic domain but lacks an N-terminal substrate-binding domain, showed a similar preference for the cis isostere. These findings support the hypothesis that the catalytic domain of CP4Hs recognizes the cis conformation of the prolyl peptide bond and inform the use of alkenes as isosteres for peptide bonds.
Collapse
Affiliation(s)
- James D Vasta
- Department of Biochemistry, ‡Graduate Program in Biophysics, and §Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Amit Choudhary
- Department of Biochemistry, ‡Graduate Program in Biophysics, and §Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Katrina H Jensen
- Department of Biochemistry, ‡Graduate Program in Biophysics, and §Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Nicholas A McGrath
- Department of Biochemistry, ‡Graduate Program in Biophysics, and §Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Ronald T Raines
- Department of Biochemistry, ‡Graduate Program in Biophysics, and §Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|