1
|
Ahmad NA, Ho J. Fatty Alcohol Membrane Model for Quantifying and Predicting Amphiphilicity. J Chem Inf Model 2025; 65:417-426. [PMID: 39700188 DOI: 10.1021/acs.jcim.4c01615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Amphiphilicity is an important property for drug development and self-assembly. This paper introduces a general approach based on a simple fatty alcohol (dodecanol) membrane model that can be used to quantify the amphiphilicity of small molecules that are in good agreement with experimental surface tension data. By applying the model to a systematic series of compounds, it was possible to elucidate the effect of different motifs on amphiphilicity. The results further indicate that amphiphilicity correlates strongly with water-octanol partition coefficients (logP) for the 29 organic molecules examined in the 0 < logP < 4 range. Importantly, the simulation of the model membrane is an order of magnitude faster than a phospholipid membrane (e.g., 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) simulation and offers a simple atomistic approach for quantifying and predicting amphiphilicity of small drug-like molecules that could be used in quantitative structure-activity relationship studies.
Collapse
Affiliation(s)
- Nur Afiqah Ahmad
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Junming Ho
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
2
|
Li J, Jin X, Jiao Z, Gao L, Dai X, Cheng L, Wang Y, Yan LT. Designing antibacterial materials through simulation and theory. J Mater Chem B 2024; 12:9155-9172. [PMID: 39189825 DOI: 10.1039/d4tb01277a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Antibacterial materials have a wide range of potential applications in bio-antimicrobial, environmental antimicrobial, and food antimicrobial fields due to their intrinsic antimicrobial properties, which can circumvent the development of drug resistance in bacteria. Understanding the intricate mechanisms and intrinsic nature of diverse antibacterial materials is significant for the formulation of guidelines for the design of materials with rapid and efficacious antimicrobial action and a high degree of biomedical material safety. Herein, this review highlights the recent advances in investigating antimicrobial mechanisms of different antibacterial materials with a particular focus on tailored computer simulations and theoretical analysis. From the view of structure and function, we summarize the characteristics and mechanisms of different antibacterial materials, introduce the latest advances of new antibacterial materials, and discuss the design concept and development direction of new materials. In addition, we underscore the significance of employing simulation and theoretical methodologies to elucidate the intrinsic antimicrobial mechanisms, which is crucial for a comprehensive comprehension of the control strategies, safer biomedical applications, and the management of health and environmental concerns associated with antibacterial materials. This review could potentially stimulate further endeavors in fundamental research and facilitate the extensive utilization of computational and theoretical approaches in the design of novel functional nanomaterials.
Collapse
Affiliation(s)
- Jiaqi Li
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Xueqing Jin
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Zheng Jiao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Lijuan Gao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Linghe Cheng
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Yuming Wang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Li W, Hua G, Cai J, Zhou Y, Zhou X, Wang M, Wang X, Fu B, Ren L. Multi-Stimulus Responsive Multilayer Coating for Treatment of Device-Associated Infections. J Funct Biomater 2022; 13:24. [PMID: 35323224 PMCID: PMC8954600 DOI: 10.3390/jfb13010024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/21/2022] Open
Abstract
Antibacterial coating with antibiotics is highly effective in avoiding device-associated infections (DAIs) which is an unsolved healthcare problem that causes significant morbidity and mortality rates. However, bacterial drug resistance caused by uncontrolled release of antibiotics seriously restricts clinical efficacy of antibacterial coating. Hence, a local and controlled-release system which can release antibiotics in response to bacterial infected signals is necessary in antibacterial coating. Herein, a multi-stimulus responsive multilayer antibacterial coating was prepared through layer-by-layer (LbL) self-assembly of montmorillonite (MMT), chlorhexidine acetate (CHA) and Poly(protocatechuic acid-polyethylene glycol 1000-bis(phenylboronic acid carbamoyl) cystamine) (PPPB). The coating can be covered on various substrates such as cellulose acetate membrane, polyacrylonitrile membrane, polyvinyl chloride membrane, and polyurethane membrane, proving it is a versatile coating. Under the stimulation of acids, glucose or dithiothreitol, this coating was able to achieve controlled release of CHA and kill more than 99% of Staphylococcus aureus and Escherichia coli (4 × 108 CFU/mL) within 4 h. In the mouse infection model, CHA releasing of the coating was triggered by infected microenvironment to completely kill bacteria, achieving wounds healing within 14 days.
Collapse
Affiliation(s)
- Wenlong Li
- Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China; (W.L.); (G.H.); (J.C.); (Y.Z.); (X.Z.)
| | - Guanping Hua
- Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China; (W.L.); (G.H.); (J.C.); (Y.Z.); (X.Z.)
| | - Jingfeng Cai
- Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China; (W.L.); (G.H.); (J.C.); (Y.Z.); (X.Z.)
| | - Yaming Zhou
- Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China; (W.L.); (G.H.); (J.C.); (Y.Z.); (X.Z.)
| | - Xi Zhou
- Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China; (W.L.); (G.H.); (J.C.); (Y.Z.); (X.Z.)
| | - Miao Wang
- Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China; (W.L.); (G.H.); (J.C.); (Y.Z.); (X.Z.)
| | - Xiumin Wang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China;
| | - Baoqing Fu
- Department of Laboratory Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Lei Ren
- Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China; (W.L.); (G.H.); (J.C.); (Y.Z.); (X.Z.)
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
4
|
Li W, Thian ES, Wang M, Wang Z, Ren L. Surface Design for Antibacterial Materials: From Fundamentals to Advanced Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100368. [PMID: 34351704 PMCID: PMC8498904 DOI: 10.1002/advs.202100368] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/27/2021] [Indexed: 05/14/2023]
Abstract
Healthcare-acquired infections as well as increasing antimicrobial resistance have become an urgent global challenge, thus smart alternative solutions are needed to tackle bacterial infections. Antibacterial materials in biomedical applications and hospital hygiene have attracted great interest, in particular, the emergence of surface design strategies offer an effective alternative to antibiotics, thereby preventing the possible development of bacterial resistance. In this review, recent progress on advanced surface modifications to prevent bacterial infections are addressed comprehensively, starting with the key factors against bacterial adhesion, followed by varying strategies that can inhibit biofilm formation effectively. Furthermore, "super antibacterial systems" through pre-treatment defense and targeted bactericidal system, are proposed with increasing evidence of clinical potential. Finally, the advantages and future challenges of surface strategies to resist healthcare-associated infections are discussed, with promising prospects of developing novel antimicrobial materials.
Collapse
Affiliation(s)
- Wenlong Li
- Department of BiomaterialsState Key Lab of Physical Chemistry of Solid SurfaceCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Eng San Thian
- Department of Mechanical EngineeringNational University of SingaporeSingapore117576Singapore
| | - Miao Wang
- Department of BiomaterialsState Key Lab of Physical Chemistry of Solid SurfaceCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| | - Zuyong Wang
- College of Materials Science and EngineeringHunan UniversityChangsha410082P. R. China
| | - Lei Ren
- Department of BiomaterialsState Key Lab of Physical Chemistry of Solid SurfaceCollege of MaterialsXiamen UniversityXiamen361005P. R. China
| |
Collapse
|
5
|
Warschawski DE, Lakshmi KV, Marcotte I. Foreword to: Biophysical studies of membrane systems and interactions - Commemorative issue in honour of Professor Michèle Auger. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183609. [PMID: 33794169 DOI: 10.1016/j.bbamem.2021.183609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Dror E Warschawski
- Laboratoire des Biomolécules, LBM, CNRS UMR 7203, Sorbonne Université, École normale supérieure, PSL University, 75005 Paris, France
| | - K V Lakshmi
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Isabelle Marcotte
- Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Downtown Station, H3C 3P8 Montreal, Canada.
| |
Collapse
|
6
|
Crown ether modified peptides: Length and crown ring size impact on membrane interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183261. [DOI: 10.1016/j.bbamem.2020.183261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 11/24/2022]
|
7
|
Paquet-Côté PA, Fillion M, Provencher MÈ, Otis F, Dionne J, Cardinal S, Collignon B, Bürck J, Lagüe P, Ulrich AS, Auger M, Voyer N. Crown ether modified peptide interactions with model membranes‡. Supramol Chem 2019. [DOI: 10.1080/10610278.2019.1574349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
| | - Matthieu Fillion
- Département de chimie, PROTEO, CERMA and CQMF, Université Laval, Québec, Canada
| | | | - François Otis
- Département de chimie and PROTEO, Université Laval, Québec, Canada
| | - Justine Dionne
- Département de chimie, PROTEO, CERMA and CQMF, Université Laval, Québec, Canada
| | | | - Barbara Collignon
- Département de biochimie, de microbiologie et de bio-informatique and PROTEO, Université Laval, Québec, Canada
| | - Jochen Bürck
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Patrick Lagüe
- Département de biochimie, de microbiologie et de bio-informatique and PROTEO, Université Laval, Québec, Canada
| | - Anne S. Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Michèle Auger
- Département de chimie, PROTEO, CERMA and CQMF, Université Laval, Québec, Canada
| | - Normand Voyer
- Département de chimie and PROTEO, Université Laval, Québec, Canada
| |
Collapse
|
8
|
Gomes KAGG, Dos Santos DM, Santos VM, Piló-Veloso D, Mundim HM, Rodrigues LV, Lião LM, Verly RM, de Lima ME, Resende JM. NMR structures in different membrane environments of three ocellatin peptides isolated from Leptodactylus labyrinthicus. Peptides 2018; 103:72-83. [PMID: 29596881 DOI: 10.1016/j.peptides.2018.03.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 10/17/2022]
Abstract
The peptides ocellatin-LB1, -LB2 and -F1 have previously been isolated from anurans of the Leptodactylus genus and the sequences are identical from residue 1-22, which correspond to ocellatin-LB1 sequence (GVVDILKGAAKDIAGHLASKVM-NH2), whereas ocellatin-LB2 carries an extra N and ocellatin-F1 extra NKL residues at their C-termini. These peptides showed different spectra of activities and biophysical investigations indicated a direct correlation between membrane-disruptive properties and antimicrobial activities, i.e. ocellatin-F1 > ocellatin-LB1 > ocellatin-LB2. To better characterize their membrane interactions, we report here the detailed three-dimensional NMR structures of these peptides in TFE-d2:H2O (60:40) and in the presence of zwitterionic DPC-d38 and anionic SDS-d25 micellar solutions. Although the three peptides showed significant helical contents in the three mimetic environments, structural differences were noticed. When the structures of the three peptides in the presence of DPC-d38 micelles are compared to each other, a more pronounced curvature is observed for ocellatin-F1 and the bent helix, with the concave face composed mostly of hydrophobic residues, is consistent with the micellar curvature and the amphipathic nature of the molecule. Interestingly, an almost linear helical segment was observed for ocellatin-F1 in the presence of SDS-d25 micelles and the conformational differences in the two micellar environments are possibly related to the presence of the extra Lys residue near the peptide C-terminus, which increases the affinity of ocellatin-F1 to anionic membranes in comparison with ocellatin-LB1 and -LB2, as proved by isothermal titration calorimetry. To our knowledge, this work reports for the first time the three-dimensional structures of ocellatin peptides.
Collapse
Affiliation(s)
- Karla A G G Gomes
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, P.O. Box 486, 31270-901 Belo Horizonte, MG, Brazil; Instituto de Engenharia, Ciência e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 39440-000 Janaúba, MG, Brazil
| | - Daniel M Dos Santos
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P.O. Box 486, 31270-901 Belo Horizonte, MG, Brazil
| | - Virgílio M Santos
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, P.O. Box 486, 31270-901 Belo Horizonte, MG, Brazil
| | - Dorila Piló-Veloso
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, P.O. Box 486, 31270-901 Belo Horizonte, MG, Brazil
| | - Higor M Mundim
- Instituto de Química, Universidade Federal de Goiás, Av. Esperança, s/n, Campus Samambaia, 74690-900 Goiânia, GO, Brazil
| | - Leticia V Rodrigues
- Instituto de Química, Universidade Federal de Goiás, Av. Esperança, s/n, Campus Samambaia, 74690-900 Goiânia, GO, Brazil
| | - Luciano M Lião
- Instituto de Química, Universidade Federal de Goiás, Av. Esperança, s/n, Campus Samambaia, 74690-900 Goiânia, GO, Brazil
| | - Rodrigo M Verly
- Departamento de Química, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 39100-000 Diamantina, MG, Brazil
| | - Maria Elena de Lima
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P.O. Box 486, 31270-901 Belo Horizonte, MG, Brazil
| | - Jarbas M Resende
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, P.O. Box 486, 31270-901 Belo Horizonte, MG, Brazil.
| |
Collapse
|
9
|
New insights into the influence of monofluorination on dimyristoylphosphatidylcholine membrane properties: A solid-state NMR study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:654-663. [DOI: 10.1016/j.bbamem.2017.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 10/18/2022]
|
10
|
Paquet-Côté PA, Tuck KL, Paradis JP, Graham B, Voyer N. Modulating the activity of membrane-active peptides through Zn(II) complexation. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.10.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Dubovskii PV, Dubinnyi MA, Volynsky PE, Pustovalova YE, Konshina AG, Utkin YN, Arseniev AS, Efremov RG. Impact of membrane partitioning on the spatial structure of an S-type cobra cytotoxin. J Biomol Struct Dyn 2017; 36:3463-3478. [PMID: 28990854 DOI: 10.1080/07391102.2017.1389662] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Peter V. Dubovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
| | - Maxim A. Dubinnyi
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
| | - Pavel E. Volynsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
| | - Yulia E. Pustovalova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
| | - Anastasia G. Konshina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
| | - Yuri N. Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
| | - Alexander S. Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
- Moscow Institute of Physics and Technology (State University), 9 Institutskiy per., Dolgoprudny, Moscow Region 141700, Russia
| | - Roman G. Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
| |
Collapse
|
12
|
Auger M. Membrane solid-state NMR in Canada: A historical perspective. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1483-1489. [PMID: 28652206 DOI: 10.1016/j.bbapap.2017.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/17/2017] [Accepted: 06/21/2017] [Indexed: 11/18/2022]
Abstract
This manuscript presents an overview of more than 40years of membrane solid-state nuclear magnetic resonance (NMR) research in Canada. This technique is a method of choice for the study of the structure and dynamics of lipid bilayers; bilayer interactions with a variety of molecules such as membrane peptides, membrane proteins and drugs; and to investigate membrane peptide and protein structure, dynamics, and topology. Canada has a long tradition in this field of research, starting with pioneering work on natural and model membranes in the 1970s in a context of emergence of biophysics in the country. The 1980s and 1990s saw an emphasis on studying lipid structures and dynamics, and peptide-lipid and protein-lipid interactions. The study of bicelles began in the 1990s, and in the 2000s there was a rise in the study of membrane protein structures. Novel perspectives include using dynamic nuclear polarization (DNP) for membrane studies and using NMR in live cells. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.
Collapse
Affiliation(s)
- Michèle Auger
- Département de chimie, PROTEO, CERMA, CQMF, Université Laval, Québec, Québec G1V 0A6, Canada.
| |
Collapse
|